Convex Optimization

Convex Sets
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Today

m affine and convex sets

m some important examples

m operations that preserve convexity

m generalized inequalities

m separating and supporting hyperplanes

m dual cones and generalized inequalities
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Affine set

line through x4, x2: all points

r =0z + (1—0)xs (0 € R)

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Az = b}

(conversely, every affine set can be expressed as solution set of system of linear
equations)
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Convex set

line segment between x4 and x5: all points
r=0x1+ (1—0)x

with 0 <0 <1

convex set: contains line segment between any two points in the set
r,r0€C, 0<0<1 = 0Or1+(1—-0)xeC’

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of x4,. . ., xx: any point x of the form
r =01z + Ooxo + - - - + Oz

with 01 +---4+0,=1,0;, >0

convex hull CoS: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of x; and z5: any point of the form
Ir = (912131 + (922132

with 81 >0, 65 > 0

L1

i)

convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces

hyperplane: set of the form {z | a’z = b} (a # 0)

Lo

m a Is the normal vector

m hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center x. and radius r:

B(we,r) = {2 | |z = 2clla <7} = {ze +ru | lulla <1}

ellipsoid: set of the form
{z]|(z—2)' Pz —z,) <1}

with P € S| (i.e., P symmetric positive definite)

other representation: {x.+ Au | ||ul|2 < 1} with A square and nonsingular
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Norm balls and norm cones

norm: a function || - || that satisfies

= ||z|| > 0;

|z|| =0 if and only if z =0
m ||tx|| = |t| [|z|| for t € R

= lz+yl < llzff + llyl

notation: || - || is general (unspecified) norm; || - ||symp is particular norm

norm ball with center z. and radius r: {z | ||z — x.|| < r}

norm cone: {(z,t) | ||z| < t} 0.5

Euclidean norm cone is called second- .

order cone 1 ,
0 0
o —1 —1 T

norm balls and cones are convex
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Polyhedra

solution set of finitely many linear inequalities and equalities
Ax < b, Cx=d
(A e R™", C e RP*" < is componentwise inequality)

ai ao

as

as

ay4

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

m S" is set of symmetric n X n matrices

m ST ={X e€S" | X > 0}: positive semidefinite n x n matrices
XeS! «— z2z'Xz>O0forallz

Sfﬁ IS a convex cone

m ST ={X e€S"| X > 0}: positive definite n x n matrices
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Operations that preserve convexity

practical methods for establishing convexity of a set
1. apply definition

r1,12€C, 0<0<1 = Or1+(1—-0)xz2eC

2. show that C' is obtained from simple convex sets (hyperplanes, halfspaces,
norm balls, . . . ) by operations that preserve convexity

m Intersection

m affine functions

m perspective function

m linear-fractional functions
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Intersection

the intersection of (any number of) convex sets is convex

example:
S={xeR"||p(t) <1for|t| <7/3}

where p(t) = x1 cost + x5 cos 2t + - - - + x,, cOsmt

for m = 2;

p(t)

0 /3 or/3 T 2
/ " / 2
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Affine function

suppose f : R" — R is affine (f(z) = Az + b with A € R™”", b € R™)

m the image of a convex set under f is convex

S CR"convex = f(S)={f(z)|x €S} convex

= the inverse image f~!(C) of a convex set under f is convex

C CR™convex =— fYC)={xcR"| f(z)ec C} convex

examples

m scaling, translation, projection

= solution set of linear matrix inequality {x | v141 + -+ + A, <X B}
(with A;, B € SP)

s hyperbolic cone {z | z* Pz < (¢''z)?, ¢''x > 0} (with P € S%)
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Perspective and linear-fractional function

perspective function P : R"*! — R™:
P(x,t) = x/t, dom P = {(z,t) | t > 0}

images and inverse images of convex sets under perspective are convex

linear-fractional function f : R” — R™":

B Ax +b

—m, domf:{x‘CT.T+d>O}

flz)

images and inverse images of convex sets under linear-fractional functions are
convex
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example of a linear-fractional function

1
f(z) = x
x1+ 22+ 1

1 1
g Of. S 0
-1 —1

—1 0 1 —1 0 1

X1 X1
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Generalized inequalities

a convex cone K C R" is a proper cone if

m K is closed (contains its boundary)
s K is solid (has nonempty interior)

s K is pointed (contains no line)

examples
= nonnegative orthant K =R} ={z € R" |z; > 0,1 =1,...,n}
= positive semidefinite cone K = S’}

= nonnegative polynomials on [0, 1]:

K={zcR" |z +aot +ast’+ - +a,t"* >0fortec|01]}
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generalized inequality defined by a proper cone K:
r gy <<— y—xeckK, r<gy < y—xcintk
examples
= componentwise inequality (K = RY})
ijzy — z;<lvy;, 1=1,...,n
= matrix inequality (K = S’)

X 551 Y <<= Y — X positive semidefinite

these two types are so common that we drop the subscript in <g

properties: many properties of <g are similar to < on R, e.g.,

TKkY, UKV — TH+UKY-+v
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Minimum and minimal elements

<Kk is not in general a linear ordering: we can have x A y and y A =

x € S is the minimum element of S with respect to < if

x € S is a minimal element of S with respect to < if

yes, yxr — y==

example (K = R?%)

x1 I1s the minimum element of S,
ZTo 1S @ minimal element of S5
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Separating hyperplane theorem

if C' and D are disjoint convex sets, then there exists a # 0, b such that

aT:cgbfora:EC’, alx>bforze D

the hyperplane {z | alz = b} separates C and D

strict separation requires additional assumptions (e.g., C' is closed, D is a
singleton)
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Supporting hyperplane theorem

supporting hyperplane to set C' at boundary point xq:
{|alz =a’zo)}

where a # 0 and a’z < al'zg for all z € C

supporting hyperplane theorem: if C' is convex, then there exists a supporting
hyperplane at every boundary point of C
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Dual cones and generalized inequalities

dual cone of a cone K:
K*={y|y'z>0forall x € K}

examples

» K=R}: K* =R}

» K=S%: K*=S"

s K= {(z,0) | lzlle <) K7 = {(z,1) | [z]2 <t}
s K= {(z,0) [ lzlh <tj: K = (1) | [2]e <1}

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

yr—gx0 <= yszOforallxiKO
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Minimum and minimal elements via dual inequalities

minimum element w.r.t. <g

2 1s minimum element of S iff for all
A =g+ 0, x is the unique minimizer of
Mz over S

minimal element w.r.t. <g

= if £ minimizes A\’ z over S for some \ >+ 0, then x is minimal
A1

-

L1

A2

o

m If £ Is a minimal element of a convex set S, then there exists a nonzero
A\ =+ 0 such that £ minimizes \! z over S
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optimal production frontier

m different production methods use different amounts of resources x € R"
m production set P: resource vectors x for all possible production methods

s efficient (Pareto optimal) methods correspond to resource vectors x that are
minimal w.r.t. RY

fuel
example (n = 2)

xr1, T2, r3 are efficient; x4, x5 are not

labor
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