Convex Optimization

Convex Problems
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Today

m optimization problem in standard form
m convex optimization problems

m quasiconvex optimization

m linear optimization

m quadratic optimization
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Optimization problem in standard form

minimize  fo(x)
subject to  fi(x) <

0,
hi(x) =0,

m z € R" is the optimization variable
s fo: R" — R is the objective or cost function
m f;:R" =R, 1=1,...,m, are the inequality constraint functions

m h; : R — R are the equality constraint functions

optimal value:

Hlf{f()( )|f’L( )Soa 7/:177m7 ]’Lz(CIf):O, Z:]-aap}

m p* = oo if problem is infeasible (no x satisfies the constraints)

m p* = —oco if problem is unbounded below
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Optimal and locally optimal points

x Is feasible if € dom f; and it satisfies the constraints
a feasible x is optimal if fy(x) = p*; X,pt is the set of optimal points

x is locally optimal if there is an R > 0 such that = is optimal for

minimize (over z) fo(2)

subject to fi(z) <0, i=1,....,m, hi(z)=0, i1=1,...

Iz ==zla < R

examples (with n =1, m = p = 0)
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Implicit constraints

the standard form optimization problem has an implicit constraint

m p
xeD:ﬂdomfi N ﬂdomhz‘,

m we call D the domain of the problem
m the constraints f;(z) < 0, h;(x) = 0 are the explicit constraints

= a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Zle log(b; — al'x)

is an unconstrained problem with implicit constraints a! z < b;
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Feasibility problem

find T
subject to  f;(xz) <0, i=1,...,m
hi(x) =0, i=1,...,p

can be considered a special case of the general problem with fy(x) = 0:

minimize (

m p* = 0 if constraints are feasible; any feasible = is optimal

m p* = oo If constraints are infeasible
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Convex optimization problem

standard form convex optimization problem

minimize  fo(x)
subject to  fi(x) < i=1,...,m
al'r = bz, =1 P
m fo, f1, ..., fm are convex; equality constraints are affine
= problem is quasiconvex if fj is quasiconvex (and f1, ..., fm convex)

often written as o
minimize  fo(x)
subject to fz( )<0, i=1,....m
Axr =0

important property: feasible set of a convex optimization problem is convex
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example

minimize  fo(r) = 27 + 23
subject to  fi(z) = z1/(1+x3) <0
hl(ﬂj) — (331 + 2132)2 =0

= fo is convex; feasible set {(x1,z2) | x1 = —x2 < 0} is convex

= not a convex problem (according to our definition): f; is not convex, h; is not
affine

= equivalent (but not identical) to the convex problem
minimize  z% + 13

subject to x1 <0
r1+ Iy = 0

ENSAE: Optimisation 8/35



Local and global optima

any locally optimal point of a convex problem is (globally) optimal
proof: suppose z is locally optimal and y is optimal with fo(y) < fo(z)

x locally optimal means there is an R > 0 such that

z feasible, |z—z|o <R = fo(z) > fo(x)

consider z = 0y + (1 — 0)x with 0 = R/(2|ly — z||2)

m|ly—z|o >R, s00<60<1/2

m 2 is a convex combination of two feasible points, hence also feasible

s ||z —2x|2 = R/2 and
fo(z) < 0fo(x) + (1 —0)fo(y) < fo(z)
which contradicts our assumption that «x is locally optimal
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Optimality criterion for differentiable f

x is optimal if and only if it is feasible and

Vfolx)! (y —x) >0 for all feasible y

Vfo(x)T(y — x) for all y € X, means that V fy(x) # 0 defines a supporting
hyperplane to feasible set X at x
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= unconstrained problem: z is optimal if and only if

r € dom fo, Vfo(x)=0

= equality constrained problem
minimize fo(x) subjectto Az =10
x is optimal if and only if there exists a v such that

xr € dom fy, Az = b, Violx)+A"v =0

= minimization over nonnegative orthant
minimize fo(z) subjectto x>0

x is optimal if and only if

-
QZEdomf07 r = 0, { Vfo(x)zzo x; >0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily obtained
from the solution of the other, and vice-versa

some common transformations that preserve convexity:

= eliminating equality constraints
minimize  fo(x)
subject to fz( )<0, i=1,....m
Ax =b
Is equivalent to

minimize (over 2) fo(Fz + x)
subject to filFz4+x9) <0, i=1,...,m

where F' and z( are such that

Ar=b <= x = Fz+ xo for some z
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m introducing equality constraints

minimize  fo(Aox + bo)
subject to  f;(A;x+b;) <0, i=1,...

IS equivalent to

minimize (over z, ;)  fo(yo)

subject to fily;) <0, i=1,...,m
yZ:AzCIJ—I—bz, i:O,l,...,’m

m introducing slack variables for linear inequalities

minimize  fo(x)
subject to alx <b;, i=1,...,m

IS equivalent to

minimize (over z, s) fo(x)

subject to alr+s;=0b;, i=1,...

SiZO, Zzl,m
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m epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t

subject to fo(z) =t <0
fz( ) <0, i=
Az =0
= minimizing over some variables
minimize  fo(z1,22)
subject to  fi(z1) <0, =

Is equivalent to

minimize  fo(x1)

subject to  fi(z1) <0, i=1,..

where fo(x1) = infa, fo(z1, 22)
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Quasiconvex optimization

minimize  fo(z)
subject to  fi(xz) <0, i=1,...,m
Ax =b

with fy : R — R quasiconvex, f1, ..., fm convex

can have locally optimal points that are not (globally) optimal
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convex representation of sublevel sets of f

if fo Is quasiconvex, there exists a family of functions ¢; such that:
= ¢(x) is convex in x for fixed ¢

m t-sublevel set of fy is O-sublevel set of ¢y, i.e.,

folz) <t <= &(z) <0

example

with p convex, ¢ concave, and p(z) > 0, g(x) > 0 on dom f;

can take ¢ () = p(x) — tq(x):
m fort >0, ¢, convex in x

s p(z)/q(x) <tif and only if ¢(x) <O
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quasiconvex optimization via convex feasibility problems

() <0, filr) <0, i=1,...,m, Axr =10 (1)

m for fixed ¢, a convex feasibility problem in x

m if feasible, we can conclude that ¢t > p*; if infeasible, ¢t < p*

Bisection method for quasiconvex optimization

given [ < p*, u > p*, tolerance ¢ > 0.
repeat

L.t:=(+u)/2.

2. Solve the convex feasibility problem (1).

3.if (1) is feasible, u :=t; else !l :=t.
until v — [ < e.

requires exactly [log,((u —1)/€)] iterations (where w, [ are initial values)
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Linear program (LP)

minimize c¢lz+d
subject to Gx = h
Axr =0b

m convex problem with affine objective and constraint functions

m feasible set is a polyhedron
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Examples

diet problem: choose quantities =1, ..., x, of n foods

= one unit of food j costs c¢;, contains amount a;; of nutrient ;

m healthy diet requires nutrient ¢ in quantity at least b;

to find cheapest healthy diet,

minimize clx

subjectto Ax>b, x>0

piecewise-linear minimization
minimize max;—1 . n(alx + b;)
equivalent to an LP

minimize
subject to alx +b; <t, i=1,...,m
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Chebyshev center of a polyhedron

Chebyshev center of
P:{x ‘ a;'rfcgbia Zzlavm}
Is center of largest inscribed ball

B={zc+ulllullz <7}

m alx < b; for all x € B if and only if

sup{a; (zc +u) | [lull2 <7} = aj @c + rllaill2 < b;

m hence, x., r can be determined by solving the LP

maximize 7
subject to  alx.+rllailla < b, i=1,....,m
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(Generalized) linear-fractional program

minimize  fo(x)
subject to Gx X h

Ax =0
linear-fractional program
T d
folz) = %, dom fy(z) = {z | e’z + f > 0}

m a quasiconvex optimization problem; can be solved by bisection

= also equivalent to the LP (variables y, 2)

minimize cly + dz
subject to Gy =< hz
Ay = bz
ely+ fz=1
z >0
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generalized linear-fractional program

To 1 d.
fo(x) = max C}ij - dom fo(z) ={z|ejz+fi >0, i=1,...,7}
1=1,...,r 67: €ZT —I— f’L

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy

maximize (over z, %) min,—; .,z /z;
subject to xt =0, Bzt <Az

s z,zT € R™: activity levels of n sectors, in current and next period
s (Ax);, (Bx™);: produced, resp. consumed, amounts of good i

sz /x;: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector
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Quadratic program (QP)

minimize (1/2)xl Pz +q¢lz+r
subjectto Gx <X h
Ax =10

m P €S, so objective is convex quadratic

m minimize a convex quadratic function over a polyhedron
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Examples

least-squares
minimize || Az — b||3

= analytical solution x* = ATb (AT is pseudo-inverse)

m can add linear constraints, e.g., [ < x < u

linear program with random cost

minimize ¢lz + 2l Yr = Eclz + yvar(c! )
subject to Gx <X h, Ax=b

m c is random vector with mean ¢ and covariance X

T T

= hence, ¢!z is random variable with mean &'z and variance z' Xz

m v > 0 is risk aversion parameter; controls the trade-off between expected cost
and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize  (1/2)z! Pox + ¢z + 79
subject to  (1/2)z' Pz +qlz+7; <0, i=1,...,m
Ar =0

m P; € S; objective and constraints are convex quadratic

w if Pi,..., P, €S}, feasible region is intersection of m ellipsoids and an
affine set
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Second-order cone programming

minimize 1z
subject to  ||Asx +bills < clx+d;, i=1,....,m
Fr=g
(A; € R"*" F € RP™™)

= inequalities are called second-order cone (SOC) constraints:

(Asz + bs, Cz'TZU + d;) € second-order cone in R7iT1

m for n; = 0, reduces to an LP; if ¢; = 0, reduces to a QCQP
s more general than QCQP and LP
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Generalized inequality constraints

convex problem with generalized inequality constraints

minimize  fo(x)
subject to fz( ) 2K, i=1,....,m
Az =b

= fo: R" = R convex; f; : R® = R" K;-convex w.r.t. proper cone K;

m same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize clzx

subject to Fzr+ g <k 0
Ax =b

extends linear programming (K = R’") to nonpolyhedral cones
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Semidefinite program (SDP)

minimize ¢!z

subject to x1Fy + a0l + -+ 2, F, + G X0
Ax =0

with F;. G ¢ SF

= inequality constraint is called linear matrix inequality (LMI)

m includes problems with multiple LMI constraints: for example,

A ~ ~

B+t a,F,+G=0,  xF+-+z,F,+G=<0

is equivalent to single LMI

A

F 0 F, 0 E 0 G 0
y - etz y ~ |1 =<0
xl[o F1]+$2[0 F2]+ J”U[o Fn]+[0 G]_
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LP and SOCP as SDP

LP and equivalent SDP

LP: minimize clx SDP: minimize cl'z

subject to Ax <b subject to diag(Ax —b) <0

(note different interpretation of generalized inequality <)

SOCP and equivalent SDP

SOCP:  minimize f'x
subject to  ||Asz + il < clz+d;, i=1,...,m

SDP: minimize 1z
T . . .
(c;x+d;)l Ax+b; 0. i=1.....m

subject to (Aiz +b)7 o vd; | =
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Eigenvalue minimization

minimize Apax(A(x))

where A(x) = Ag + 141 + - + x, Ay, (with given A; € Sk)

equivalent SDP

minimize t

subject to A(z) <t
m variablesx € R", t € R

m follows from
Amax(A) <t <= A=t

ENSAE: Optimisation 30/35



Matrix norm minimization

minimize  [|A(z)]l2 = (Amax(A(z)TA(z))) "

where A(z) = Ag + x1 A1 + -+ + x, A, (with given A; € SP*9)

equivalent SDP
minimize t

~ 0

biect t tI  A(x)
subject to ATt

m variables z € R", t € R

m constraint follows from

[Alls <t < A"A<tI, t>0

tI A
[AT tI]tO
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Multicriterion optimization

vector optimization problem with K = Ri

folz) = (Fi(z), ..., Fy(z))

m ¢ different objectives Fj; roughly speaking we want all F}'s to be small

m feasible x* is optimal if
y feasible =  fo(z™) < fo(y)

if there exists an optimal point, the objectives are noncompeting

m feasible xP° is Pareto optimal if

y feasible,  fo(y) = fo(2*°) = fo(z"°) = fo(y)

if there are multiple Pareto optimal values, there is a trade-off between the
objectives

ENSAE: Optimisation 32/35



Regularized least-squares

multicriterion problem with two objectives

Fi(z) = | Az — b3,

s example with A € R100x10
m shaded region is O

m heavy line is formed by Pareto
optimal points
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Risk return trade-off in portfolio optimization

1z, 2l )

minimize (w.r.t. R7) (—pTx,z
1T2=1, x>0

subject to =
m = € R" is investment portfolio; x; is fraction invested in asset i

m p € R" is vector of relative asset price changes; modeled as a random variable
with mean p, covariance X

s p'x = Er is expected return; ! Xx = varr is return variance

example
15%— ‘ ‘ 1 |
x(4) =(3) x(2)
c 8
% 10%+ 5
v S 0.5
: ; z(1)
I O
GE) 5% =
O,
0% o 10% 20% 0% 10% 0%
standard deviation of return standard deviation of return

ENSAE: Optimisation 34/35



Scalarization

to find Pareto optimal points: choose A\ >+ 0 and solve scalar problem

minimize A fo(x)
subject to  fi(x) <0, i=1,...,m
hz(at):O, izl,...,p

if x is optimal for scalar problem, then
it is Pareto-optimal for vector
optimization problem

for convex vector optimization problems, can find (almost) all Pareto optimal
points by varying A > g+ 0
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