Convex Optimization

Convex Functions
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Duality: applications in finance

Duality in finance & economics

m Shadow prices: an economic interpretation of duality

m Duality and arbitrage
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Shadow prices

m Consider resource assignment problem
s We can form its dual. . .
m T[he dual gives information on the sensitivity of the solution

m This has a particular interpretation here
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Shadow prices

Suppose that we want to solve a minimum cost resource allocation problem:

minimize clx
. T .
subjectto a;z <b;, 1=1,...,m
x>0

m Here ¢ is a vector of costs
m The variables z; represent goods, calories, etc

= The constraints a! x < b; account for limiting factors in the problem
(warehouse space, labor, CO5 emissions, etc)
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Shadow prices

Suppose there is a twist:

m | he constraints can be violated

m [he cost of violating constraint ¢ is linear in the amount of violation and given
by —Xi(al'z — b;)

= If the constraint is not tight (some resources are left) then a payment to the
firm is made —\;(al z — b;)

)

m Of course, we assume that the prices must be positive \; > 0

X , Su a; r — b; W u Int.
As an example, suppose a! x — b; represents a warehouse space constraint. The

firm can rent additional space at a price of \; per square foot. It can also rent out
the unused space at the same rate.
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Shadow prices

The total cost of the firm, when the constraints can be violated is given by:

m

'z + Z \i(al z — b;)

i=1

And the firm will operate to minimize that cost, the final cost being given by:
g(A\) =infc"z 4+ ) Ni(aj z — b;)
i=1

So the Lagrange dual function gives the production cost as a function of the

constraint price vector A.
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Shadow prices

The dual problem is written:

maximize g(\)
subjectto x>0

m This can be interpreted as the computing the production costs under the least
favorable set of prices. At equilibrium

o the resources you would need (saturated constraints) are too expensive,

o the resources you have too much of are worthless.

= This is just another (pessimistic) way to describe complementary slackness (in
the KKT conditions).
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Shadow prices

An economic interpretation for weak duality:

Weak duality simply means that the production costs when the constraints cannot
be violated is always higher than the cost when constraints can be violated

This is very intuitive:

m Suppose we start from the optimal solution x* without violation
m Suppose now that we can buy and sell resources

m Even when the resources we need are too expensive, we can directly improve
our existing solution by selling those resources for which a! z* — b; is not
saturated.
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Shadow prices

Suppose now that strong duality holds and the dual objective is attained.

m We then have d* = p~*

m [he production cost for the resource prices \* is the same when the
constraints cannot be violated

m This means that, at these prices, the firm is indifferent between violating the
constraints or not

m In other words, A\* are fair prices for the additional resources 7.

Direct interpretation for sensitivity analysis. . .
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Duality and Arbitrage
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Duality and Arbitrage

m Another economic interpretation of duality
m Due to the same crowd: Arrow, Debreu, in the 50's. . .
= Used every day on financial markets (sometimes unknowingly)

m Simple LP duality result, but underpins most of modern finance theory. . .
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One period model

m Basic discrete, one period model on an asset z.

m [he asset takes the following values
r=Ax1,...,2,}

at a maturity date I’, with probabilities

p=1DP1,---,Pn}

m We can only trade today and at maturity

m There is a cash security worth $1 today, that pays $1 at maturity
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One period model

A few other prices are available for products that are actively traded in the market:

m The forward contract, i.e. the price of getting the security x at maturity is
tradeable.

m No interest rates means this is equal to the price ¢q; of the asset today.

m There are also m — 1 other securities with payoffs at maturity given by:

hi(x;) ifx=ux; at time T

= We denote by gj the price of security with payoff A (x).

All these securities are tradeable, can we use them to get information on the price
of another security with payoff ho(x)?
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Static Arbitrage

Remember:

m We can only trade today and at maturity.

s We can only trade in securities which are priced by the market.

We want to exclude arbitrage strategies
= If the payoff of a portfolio A is always larger than that of a portfolio B then
Price(A) > Price(B).

m [he price of the sum of two products is equal to the sum of the prices.
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Simplest Example: Put Call Parity

payoff
\ \K
K K S
Put — Call = K-5
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Price bounds

Suppose that we form a portfolio of cash, stocks and securities hy(x) with
coefficients Ag:
Ao In cash

A1 In stock
Ak in security hy(x)

m All portfolios that satisfy
)\0 + )\15137; -+ Z )\khk(ﬂfz) Z ho(xz) I:]., .. ,N
k=2

must be more expensive than the security hg(z)
m All portfolios that satisfy the opposite inequality must be cheaper

m For portfolios that satisfy neither of these, nothing can be said. . .
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Price bounds

m For each of these portfolios, we get an upper/lower bound on the price today
of the security ho(x).

m We can look for optimal bounds. . .

We can solve:
minimize Ao + A\1q1 + ZZL:1 Akk

subject to Ao + Mx; + D>, Akhi(zi) > ho(x;), i=1,...,n

s Linear program in the variable A € R(™*1)

= Produces an optimal upper bound on the price today of the security hg(x)
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Linear Programming Duality

The original linear program looks like:

minimize  ¢f')\
subject to AAN > b

which is a linear program in the variable A € R™.

We can form the Lagrangian
LA p)=c"X+y"(b— AX)

in the variables A € R™ and y € R", with y > 0.
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Linear Programming Duality

We then minimize in A to get the dual function

g(y) =infc'A+y" (b— AN)
for y > 0, which is again

g(y) =infy"b+ A\ (c— A'y)

and we get:

Ty T
_Jy'b fc=A"y=0
9(y) _{ —oo if not.
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Linear Programming Duality

it Th ife— ATy =0
|y ifc— Ay =
9(y) = { —oo if not.

we get the dual linear program as:

maximize bly
subject to Aly =c
y =0

which is also a linear program in x € R".
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LP duality: summary

The primal LP is the original linear program looks like:

minimize ¢\
subject to A\ > b

its dual is then given by:

maximize by
subject to Aly =c
y =0

Strong duality: both optimal values are equal*®

* Except in some pathological cases
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LP duality & arbitrage

Let's look at what this produces for the portfolio problem. . .

m The primal problem in the variable A € R™ is given by:

P = min. Ao+ A\q1 + 2?22 ALQE

st. Ao+ Mz + > o Aehi(i) > ho(z:),

s The dual in the variable y € R" is then

max

D — MmaxX. Z?:lyzh()(x%)

st. > yihe(x) =qr, E=2,...

Zgzl YiZi; = q1
Zq;zl yi =1
y =0
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LP duality & arbitrage

= The last two constraints {>_" ,v; =1, y = 0} mean that y is a probability
measure.

m We can rewrite the previous program as:
pr = max. E,[ho(x)]
st.  Eylhg(z) =gk, k=2,...,m

Ey[m] = q1
y is a probability

= We can compute p™® by minimizing instead.
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LP duality & arbitrage

What does this mean?

There are three ranges of prices for the security with payoff hg(x):

m Prices above p™®*: these are not viable, you can get a cheaper portfolio with
a payoff that always dominates ho(x).

= Prices in [p™®, p™3X]: prices are viable, i.e. compatible with the absence of
arbitrage.

m Prices below p™™: these are not viable, you can get a portfolio that is more
expensive than hg(x) with a payoff that is always dominated by hAg(z).
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Price bounds

Example:
m Suppose the product in the objective is a call option:
ho(z) = (v — K)7

where K is called the strike price.
m Suppose also that we know the prices of some other instruments

m We get upper and lower price bounds on the price of this call for each strike K

On a graphic. ..
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Price Bounds

arbitrage

model prices

option price

arbitrage

strike price
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LP duality & arbitrage

What if there is no solution y and the linear program is infeasible?

m Then the original data set ¢ must contain an arbitrage.
m Start with one product, stock and cash. . . and test.

m Increase the number of products. . .
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LP duality & arbitrage

Fundamental theorem of asset pricing

In the one period model, there is not arbitrage between the prices {qo, - . .

securities with payoff at maturity {hg(z), ..., hn(x)}

There exists a probability y (with >, y; = 1 and y > 0) such that

g = Eylhix(x)], k=0,...,m
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LP duality & arbitrage

= Because prices are computed using expectations under y (and not expected
utility /certain equivalent), we call the probability y risk-neutral.

= In particular, it satisfies ¢; = E,|2]
m If there are constant interest rates, simply use discounted values. . .

m This probability ¥ has nothing to do with the observed distribution of the
asset x or its past distribution! (Very common mistake)
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LP duality & arbitrage

m Because you can trade in the asset and its derivatives to form portfolios to
hedge/replicate other products, it is possible to evaluate these products using
expected value under an appropriate choice of probability.

m This risk-neutral probability y is a tool, it has nothing to do with the statistical
properties of the underlying asset x.

m Linear programming duality is interpreted as a duality between portfolio
problems and models (probabilities)

ENSAE: Optimisation 30/30



