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Duality: applications in finance

Duality in finance & economics

� Shadow prices: an economic interpretation of duality

� Duality and arbitrage
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Shadow prices

� Consider resource assignment problem

� We can form its dual. . .

� The dual gives information on the sensitivity of the solution

� This has a particular interpretation here
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Shadow prices

Suppose that we want to solve a minimum cost resource allocation problem:

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

x ≥ 0

� Here c is a vector of costs

� The variables xi represent goods, calories, etc

� The constraints aTi x ≤ bi account for limiting factors in the problem
(warehouse space, labor, CO2 emissions, etc)
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Shadow prices

Suppose there is a twist:

� The constraints can be violated

� The cost of violating constraint i is linear in the amount of violation and given
by −λi(aTi x− bi)

� If the constraint is not tight (some resources are left) then a payment to the
firm is made −λi(aTi x− bi)

� Of course, we assume that the prices must be positive λi ≥ 0

As an example, suppose aTi x− bi represents a warehouse space constraint. The
firm can rent additional space at a price of λi per square foot. It can also rent out
the unused space at the same rate.
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Shadow prices

The total cost of the firm, when the constraints can be violated is given by:

cTx+

m∑
i=1

λi(a
T
i x− bi)

And the firm will operate to minimize that cost, the final cost being given by:

g(λ) = inf
x
cTx+

m∑
i=1

λi(a
T
i x− bi)

So the Lagrange dual function gives the production cost as a function of the
constraint price vector λ.
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Shadow prices

The dual problem is written:

maximize g(λ)
subject to x ≥ 0

� This can be interpreted as the computing the production costs under the least
favorable set of prices. At equilibrium

◦ the resources you would need (saturated constraints) are too expensive,

◦ the resources you have too much of are worthless.

� This is just another (pessimistic) way to describe complementary slackness (in
the KKT conditions).
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Shadow prices

An economic interpretation for weak duality:

Weak duality simply means that the production costs when the constraints cannot
be violated is always higher than the cost when constraints can be violated

This is very intuitive:

� Suppose we start from the optimal solution x? without violation

� Suppose now that we can buy and sell resources

� Even when the resources we need are too expensive, we can directly improve
our existing solution by selling those resources for which aTi x

? − bi is not
saturated.
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Shadow prices

Suppose now that strong duality holds and the dual objective is attained.

� We then have d? = p?

� The production cost for the resource prices λ? is the same when the
constraints cannot be violated

� This means that, at these prices, the firm is indifferent between violating the
constraints or not

� In other words, λ? are fair prices for the additional resources i.

Direct interpretation for sensitivity analysis. . .
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Duality and Arbitrage
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Duality and Arbitrage

� Another economic interpretation of duality

� Due to the same crowd: Arrow, Debreu, in the 50’s. . .

� Used every day on financial markets (sometimes unknowingly)

� Simple LP duality result, but underpins most of modern finance theory. . .
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One period model

� Basic discrete, one period model on an asset x.

� The asset takes the following values

x = {x1, . . . , xn}

at a maturity date T , with probabilities

p = {p1, . . . , pn}

� We can only trade today and at maturity

� There is a cash security worth $1 today, that pays $1 at maturity
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One period model

A few other prices are available for products that are actively traded in the market:

� The forward contract, i.e. the price of getting the security x at maturity is
tradeable.

� No interest rates means this is equal to the price q1 of the asset today.

� There are also m− 1 other securities with payoffs at maturity given by:

hk(xi) if x = xi at time T

� We denote by qk the price of security with payoff hk(x).

All these securities are tradeable, can we use them to get information on the price
of another security with payoff h0(x)?
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Static Arbitrage

Remember:

� We can only trade today and at maturity.

� We can only trade in securities which are priced by the market.

We want to exclude arbitrage strategies

� If the payoff of a portfolio A is always larger than that of a portfolio B then
Price(A) ≥ Price(B).

� The price of the sum of two products is equal to the sum of the prices.
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Simplest Example: Put Call Parity

payoff

K

KK S

Put Call−

− =

= K − S
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Price bounds

Suppose that we form a portfolio of cash, stocks and securities hk(x) with
coefficients λk:

λ0 in cash
λ1 in stock
λk in security hk(x)

� All portfolios that satisfy

λ0 + λ1xi +

m∑
k=2

λkhk(xi) ≥ h0(xi) i=1,. . . ,n

must be more expensive than the security h0(x)

� All portfolios that satisfy the opposite inequality must be cheaper

� For portfolios that satisfy neither of these, nothing can be said. . .
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Price bounds

� For each of these portfolios, we get an upper/lower bound on the price today
of the security h0(x).

� We can look for optimal bounds. . .

We can solve:

minimize λ0 + λ1q1 +
∑m
k=1 λkqk

subject to λ0 + λ1xi +
∑m
k=2 λkhk(xi) ≥ h0(xi), i = 1, . . . , n

� Linear program in the variable λ ∈ R(m+1)

� Produces an optimal upper bound on the price today of the security h0(x)

ENSAE: Optimisation 17/30



Linear Programming Duality

The original linear program looks like:

minimize cTλ
subject to Aλ � b

which is a linear program in the variable λ ∈ Rm.

We can form the Lagrangian

L(λ, p) = cTλ+ yT (b−Aλ)

in the variables λ ∈ Rm and y ∈ Rn, with y � 0.
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Linear Programming Duality

We then minimize in λ to get the dual function

g(y) = inf
λ
cTλ+ yT (b−Aλ)

for y � 0, which is again

g(y) = inf
λ
yT b+ λT (c−ATy)

and we get:

g(y) =

{
yT b if c−ATy = 0
−∞ if not.
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Linear Programming Duality

With

g(y) =

{
yT b if c−ATy = 0
−∞ if not.

we get the dual linear program as:

maximize bTy
subject to ATy = c

y � 0

which is also a linear program in x ∈ Rn.
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LP duality: summary

The primal LP is the original linear program looks like:

minimize cTλ
subject to Aλ � b

its dual is then given by:

maximize bTy
subject to ATy = c

y � 0

Strong duality: both optimal values are equal*

* Except in some pathological cases
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LP duality & arbitrage

Let’s look at what this produces for the portfolio problem. . .

� The primal problem in the variable λ ∈ Rm is given by:

pmax := min. λ0 + λ1q1 +
∑m
k=2 λkqk

s.t. λ0 + λ1xi +
∑m
k=2 λkhk(xi) ≥ h0(xi), i = 1, . . . , n

� The dual in the variable y ∈ Rn is then

pmax := max.
∑n
i=1 yih0(xi)

s.t.
∑n
i=1 yihk(xi) = qk, k = 2, . . . ,m∑n
i=1 yixi = q1∑n
i=1 yi = 1

y � 0
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LP duality & arbitrage

� The last two constraints {
∑n
i=1 yi = 1, y � 0} mean that y is a probability

measure.

� We can rewrite the previous program as:

pmax := max. Ey[h0(x)]

s.t. Ey[hk(x)] = qk, k = 2, . . . ,m
Ey[x] = q1
y is a probability

� We can compute pmin by minimizing instead.
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LP duality & arbitrage

What does this mean?

There are three ranges of prices for the security with payoff h0(x):

� Prices above pmax: these are not viable, you can get a cheaper portfolio with
a payoff that always dominates h0(x).

� Prices in [pmin, pmax]: prices are viable, i.e. compatible with the absence of
arbitrage.

� Prices below pmin: these are not viable, you can get a portfolio that is more
expensive than h0(x) with a payoff that is always dominated by h0(x).
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Price bounds

Example:

� Suppose the product in the objective is a call option:

h0(x) = (x−K)+

where K is called the strike price.

� Suppose also that we know the prices of some other instruments

� We get upper and lower price bounds on the price of this call for each strike K

On a graphic. . .
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Price Bounds
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LP duality & arbitrage

What if there is no solution y and the linear program is infeasible?

� Then the original data set q must contain an arbitrage.

� Start with one product, stock and cash. . . and test.

� Increase the number of products. . .
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LP duality & arbitrage

Fundamental theorem of asset pricing

In the one period model, there is not arbitrage between the prices {q0, . . . , qm} of
securities with payoff at maturity {h0(x), . . . , hm(x)}

m

There exists a probability y (with
∑n
i=1 yi = 1 and y � 0) such that

qk = Ey[hk(x)], k = 0, . . . ,m
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LP duality & arbitrage

� Because prices are computed using expectations under y (and not expected
utility/certain equivalent), we call the probability y risk-neutral.

� In particular, it satisfies q1 = Ey[x]

� If there are constant interest rates, simply use discounted values. . .

� This probability y has nothing to do with the observed distribution of the
asset x or its past distribution! (Very common mistake)
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LP duality & arbitrage

� Because you can trade in the asset and its derivatives to form portfolios to
hedge/replicate other products, it is possible to evaluate these products using
expected value under an appropriate choice of probability.

� This risk-neutral probability y is a tool, it has nothing to do with the statistical
properties of the underlying asset x.

� Linear programming duality is interpreted as a duality between portfolio
problems and models (probabilities)
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