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Lagrangian

standard form problem (not necessarily convex)

minimize  fo(x)
subject to  fi(x) <

0,
hi(z) =0,

variable x € R", domain D, optimal value p*

Lagrangian: L : R" x R™ x R - R, with dom L =D x R™ x R?,

p
L(z, A\, v) —I—Z)\ fi(x —I—thi(x)
i=1

m weighted sum of objective and constraint functions
= \; is Lagrange multiplier associated with f;(x) <0

= v; is Lagrange multiplier associated with h;(x) =0
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Lagrange dual function

Lagrange dual function: g : R™ x R” — R,

glhv) = inf L(z,Av)

= xlg% (fo(m) + Z Aifi(w) + Z Vihi(x)>

g is concave, can be —oo for some A, v

*

lower bound property: if A > 0, then g(\,v) <p

proof: if x is feasible and A > 0, then

fo(x) > Lz, \,v) > in%L(x,)\, v) =g\, v)
e

minimizing over all feasible x gives p* > g(\,v)
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Least-norm solution of linear equations

minimize zlz

subject to Az =1b
dual function

s Lagrangian is L(z,v) = 2'x + v (Az — D)

m to minimize L over x, set gradient equal to zero:

Vol(z,v) =204+ A'v=0 = 2=—(1/2)A%v

m plug in in L to obtain g:

1

g(v) = L((-1/2)A v, v) = —ZVTAATV —bly

a concave function of v

lower bound property: p* > —(1/4)v AATv — bv for all v
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Standard form LP

minimize ¢!z

subjectto Ax=0b, x>0
dual function

m Lagrangian is

Lz, \v) = cao+vi(Az—b) -z
= —bv+(c+ATv N2

m L is linear in x, hence

. by ATy —X+¢c=0
g\ v) = 12fL(:1;,)\,V) — { —0o0  otherwise

g is linear on affine domain {(\,v) | ATv — XA+ ¢ = 0}, hence concave

lower bound property: p* > —blvif ATv+¢c>0
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Equality constrained norm minimization

minimize  ||z||
subject to Az =0

dual function

vlv || ATy < 1

g(v) = 12f(\|azH — v Az + bTV) - { —o0 otherwise

where ||v]], = SupHulISluTU is dual norm of || - ||

proof: follows from inf,(||z|| — y'z) = 0 if ||y||. < 1, —oo otherwise
m if |ly|l« <1, then ||z]] — yT2 > 0 for all z, with equality if z =0

m if ||y||« > 1, choose x = tu where ||u|| <1, uly = ||y||« > 1:

|zl = y" & = t(|Jull = yll.) = —00 ast—oc

lower bound property: p* > by if [|[ATy|, <1
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Two-way partitioning

minimize z!Wzx
subjectto z?=1, i=1,...,n

m a nonconvex problem; feasible set contains 2" discrete points

= interpretation: partition {1,...,n} in two sets; W;; is cost of assigning ¢, j to
the same set; —W;; is cost of assigning to different sets

dual function

x

g(v) = inf(z? Wz + Z vi(z? — 1)) = infa? (W + diag(v))z — 11w

B —11Ty W +diag(v) = 0
o —o0  otherwise

lower bound property: p* > —11v if W + diag(v) = 0

example: v = —Apin(W)1 gives bound p* > nApin (W)
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The dual problem

Lagrange dual problem
maximize g(\,v)
subjectto A >0

m finds best lower bound on p*, obtained from Lagrange dual function
m a convex optimization problem; optimal value denoted d*

m A, v are dual feasible if A = 0, (A, ) € dom g

= often simplified by making implicit constraint (\,v) € dom g explicit

example: standard form LP and its dual (page 6)

minimize ¢’z maximize —blv
subject to Ax =0b subject to ATv+c¢>0
x =0
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Weak and strong duality

weak duality: d* < p*

= always holds (for convex and nonconvex problems)
m can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize —1Tv
subject to W 4 diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 8

strong duality: d* = p*

m does not hold in general
= (usually) holds for convex problems

m conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem
minimize

fo()
subject to  fi(x) <0, i=1,...,m
Ax =b

if it is strictly feasible, i.e.,

dr € int D : filr) <0, 1=1,...,m, Ax =b

= also guarantees that the dual optimum is attained (if p* > —o0)

m can be sharpened: e.g., can replace int D with relint D (interior relative to
affine hull); linear inequalities do not need to hold with strict inequality, . . .

m there exist many other types of constraint qualifications
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Inequality form LP

primal problem

minimize clzx

subject to Az <b

dual function

g(A) =inf ((c+ A" X))z —b"\) =

x

{ —bIN ATA+c=0

— 00 otherwise

dual problem
maximize —bl )\
subject to A'A+c=0, A>0

m from Slater's condition: p* = d* if Ax < b for some x

m in fact, p* = d* except when primal and dual are infeasible
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Quadratic program

primal problem (assume P € S”} )

minimize z! Px
subject to Az <b

dual function

1
g(A) =inf (z" Pz + X" (Az — b)) = —ZATAP_lATA — bl A

T

dual problem maximize —(1/4H)NTAP7TAT)N — b1\

subjectto A >0

m from Slater's condition: p* = d* if Ax < b for some x

m in fact, p* = d* always
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A nonconvex problem with strong duality

minimize ' Ax + 2b7x
subject to z'z <1
nonconvex if A % 0

dual function: g()\) = inf, (27 (A + M)z + 2072 — \)

= unbounded below if A+ A 4 0orif A+ X[ =0and b€ R(A+ \I)
= minimized by = —(A + \I)Th otherwise: g(\) = —bT (A + \I)Th — \

dual problem and equivalent SDP:
maximize —bT (A + \I)Tb — ) maximize —t — A
subjectto A+ A >0 : A+ X b
b e R(A+ ) subject to [ Ty ] =0

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation

For simplicity, consider problem with one constraint fi(x) <0

interpretation of dual function:

g(A) = (ui,gfeg(t +Au),  where G ={(fi(z), folz)) |z cDj

s \u+t=g(A)is (non-vertical) supporting hyperplane to G

= hyperplane intersects t-axis at t = g(\)
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epigraph variation: same interpretation if G is replaced with

A= {(u,t) | fi(x) <wu, fo(xr) <t for some x € D}

Au—+t:::g(A)\\\\\\\\\\\jiﬂ

g(A)

strong duality

= holds if there is a non-vertical supporting hyperplane to A at (0, p*)

= for convex problem, A is convex, hence has supp. hyperplane at (0, p*)

~

= Slater’s condition: if there exist (4,t) € A with @ < 0, then supporting
hyperplanes at (0, p*) must be non-vertical
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Complementary slackness

*

Assume strong duality holds, z* is primal optimal, (\*,v*) is dual optimal

fole*) = g(\*,v*) = inf ( folx) + Z ASfi(x) + Z thz-(a:))

=1 1 =1
fo(z™)

I

hence, the two inequalities hold with equality

= ¥ minimizes L(x, \*, ")

s A fi(z*) =0fori=1,...,m (known as complementary slackness):

)\: > 0= fz(ilf*) = 0, fz(ilf*) < 0= )\: =0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

1. Primal feasibility: f;(x) <0,i=1,...,m, hi(x)=0,1=1,...,p
2. Dual feasibility: A >~ 0

3. Complementary slackness: \;f;(zr) =0,i=1,....m

4

. Gradient of Lagrangian with respect to x vanishes (first order condition):

V fo(z +§:AVﬁ +§:th

If strong duality holds and z, A, v are optimal, then they must satisfy the KKT
conditions
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KKT conditions for convex problem

~

If x, \, U satisfy KKT for a convex problem, then they are optimal:

s from complementary slackness: fo(&) = L(%, \, D)

hence, fo(Z) = g(A, )

If Slater’s condition is satisfied, x is optimal if and only if there exist A\, v that
satisfy KK'T conditions

m recall that Slater implies strong duality, and dual optimum is attained

= generalizes optimality condition V fo(x) = 0 for unconstrained problem

Summary:

m When strong duality holds, the KKT conditions are necessary conditions for
optimality

m If the problem is convex, they are also sufficient
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example: water-filling (assume a; > 0)

minimize  — 2?21 log(z; + o)
subjectto x>0, 17z =1

z is optimal iff z = 0, 17z = 1, and there exist A € R", v € R such that

1

+ N =V
T; + o

s ifv<l/a; \ij=0and z; =1/v — o
s ifv>1/a; iy=v—1/a;and 2; =0

s determine v from 172 =" max{0,1/v —a;} =1

interpretation

m n patches; level of patch 7 is «; .
1/v

m flood area with unit amount of water

= resulting level is 1/v*
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Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize  fy(x) maximize g(\,v)
subject to  fi(x) <0, ¢=1,...,m subject to A >0
hi(x) =0, i=1,...,p

perturbed problem and its dual

min. fo(x) max. g\ v)—ulX—vlv
S.t. fz(x) <u;, 1=1,...,m S.T. A>=0
hz(w) — Uy, 1= 17 cees P

m x is primal variable; u, v are parameters
= p*(u,v) is optimal value as a function of u, v

= we are interested in information about p*(u,v) that we can obtain from the
solution of the unperturbed problem and its dual
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Perturbation and sensitivity analysis

global sensitivity result Strong duality holds for unperturbed problem and \*, v*

are dual optimal for unperturbed problem. Apply weak duality to perturbed

problem:

p*(u,v) > g\ v*) —ut A —olv*

= p*(0,0) —u' X\ —o'V*

local sensitivity: if (in addition) p*(u, v) is differentiable at (0,0), then

~ 9p*(0,0) x ~ 9p*(0,0)

A —
¢ (%Z-

¢ 8uz ’
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Duality and problem reformulations

m equivalent formulations of a problem can lead to very different duals

m reformulating the primal problem can be useful when the dual is difficult to
derive, or uninteresting

common reformulations

m introduce new variables and equality constraints
m make explicit constraints implicit or vice-versa

m transform objective or constraint functions

e.g., replace fo(x) by ¢(fo(x)) with ¢ convex, increasing
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Introducing new variables and equality constraints

minimize  fo(Ax + b)

= dual function is constant: g = inf, L(x) = inf, fo(Ax 4+ b) = p*

m we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize  fo(y) maximize blv — f3(v)
subject to Ax +b—y =0 subject to A'v =0

dual function follows from

g(v) = inf(foly) —viy+viAz +blv)
z,y

—00 otherwise

_ {—fék(v)—l—bTV ATy =0
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norm approximation problem: minimize ||Ax — b

minimize  ||y||
subjectto y=Ax —b

can look up conjugate of || - ||, or derive dual directly
g(v) = mf(|lyl+v'y — v Az +b'v)
z,y

[ Vo tint,(lyl +07y) ATy =0
—00 otherwise

B vlv Alv =0, |v].<1
- —oo  otherwise

(see page 5)

dual of norm approximation problem

maximize by
subject to Alv =0, v, <1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize c¢lx maximize —blv—1TX; —11),
subject to Az =1b subjectto c+ ATv+ X — X2 =0
-1=z=X1 A1=0, A2=0

reformulation with box constraints made implicit

le —1<2x=<1
00 otherwise

minimize  fo(z) = {

subject to Az =1b

dual function

g(v) = inf (c'z+v'(Az —D))

—1=<x=<1

= —blv—||ATv + s

dual problem: maximize —bIv — ||ATv + ¢||;
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Problems with generalized inequalities

minimize  fo(z)

subject to  fi(x) Xk, 0, i=1,....m

K;
0, 2=1,...,p
<k, I1s generalized inequality on R

definitions are parallel to scalar case:

= Lagrange multiplier for f;(x) <x, 0 is vector \; € R"

s Lagrangian L: R” x R" x ... x R*™ x R — R, is defined as

L(:Cv ALy s Am, V) — fO(x) + ZA?fZ(m) + Zy’ih’i(x)
=1 1=1

= dual function ¢ : R* x --- x R"™ x R — R, is defined as

gAML,y A, V) = gglf)l}(:v,)\l,--- s Ay V)
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lower bound property: if \; ~ K 0, then g(A1,..., A\, v) < p*

proof: if T is feasible and A EK; 0, then

SR

fo(z)

Vv

fo(@) + > A fi®) + > wihi(&)
1 =1 1=1

> inf L(x, A1,..., Am, V)

xeD
= g(>\1,...,)\m,V)
minimizing over all feasible = gives p* > g(A1,..., A, )
dual problem
maximize  g(A1, ..., Am, V)
subject to  \; ~ K 0, 2=1,....m

m weak duality: p* > d* always

m strong duality: p* = d* for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)
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Semidefinite program

primal SDP (F;, G € S¥)
minimize c¢l'x
subjectto =1 Fi+ -+ x,F, G

m Lagrange multiplier is matrix Z &€ Sk
» Lagrangian L(z,Z) = clao + Tr (Z(x Fy + - - + 2, F, — GQ))

m dual function

~Tr(GZ) Tr(FZ)+¢ =0, i=1,...,n

9(Z) = igfL(xv Z) = { — 00 otherwise

dual SDP

maximize —Tr(GZ)
subjectto Z >0, Tr(FZ)+c¢ =0, i=1,...,n

p* = d* if primal SDP is strictly feasible (dz with x1Fy + -+ + z,F, < G)
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