Convex Optimization

Newton’s method
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Unconstrained minimization

minimize f(x)

= f convex, twice continuously differentiable (hence dom f open)

= we assume optimal value p* = inf, f(x) is attained (and finite)

unconstrained minimization methods

= produce sequence of points z(*) € dom f, k= 0,1, ... with

f(z®) — p*

m can be interpreted as iterative methods for solving optimality condition

Vflx*)=0
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

V2f(x) = ml for all z € S

implications

m forx,y €5,
f) 2 @)+ V@) (g — ) + Sl =yl

hence, S is bounded

mp* > —00, and for z € S,

F(z) - p" < IV ()]

- 2m

useful as stopping criterion (if you know m)
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Descent methods

2D = o) WAL it FaD) < f(20)

m other notations: ™ =z + tAx, ¢ := x + tAx

m Ax is the step, or search direction; t is the step size, or step length

= from convexity, f(z%) < f(x) implies V f(z)T Az < 0
(i.e., Ax is a descent direction)

General descent method.

given a starting point x € dom f.

repeat
1. Determine a descent direction Ax.
2. Line search. Choose a step size t > 0.
3. Update. z := x + tAx.

until stopping criterion is satisfied.
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Line search types

exact line search: ¢t = argmin,., f(x + tAz)

backtracking line search (with parameters a € (0,1/2), 8 € (0,1))

m starting at ¢t = 1, repeat t := St until

flz 4+ tAz) < f(z) + atVf(z) Az

m graphical interpretation: backtrack until ¢ < %

f(x + tAx)

@) 4 V@A f@) + atV (@) Ae
f | /
t=20 to
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Gradient descent method

general descent method with Az = —V f(x)

given a starting point x € dom f.

repeat
1. Az := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. = := x4+ tAx.

until stopping criterion is satisfied.

= stopping criterion usually of the form ||V f(x)|2 <€

m convergence result: for strongly convex f,

f@®) —p* < F(f() - pY)

c € (0,1) depends on m, 2(9)| line search type

m very simple, but often very slow; rarely used in practice
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quadratic problem in R?

flz) = (1/2)(a] + yx3) (v > 0)

with exact line search, starting at 2(?) = (v, 1):
k k
k) _(y—1 k) _( =1
33’1 =Y\ ’ 372 — - -
v+ 1 v+ 1

m very slow if y>1orv<1

m example for v = 10:

4,
S 0
— 4}
—10 0 10
o
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a problem in R'®

104 T T T

102

f(z®) — p*

102

\ backtracking |.s.

—4 | ‘ ‘
10 0 50 100 150 200

‘linear’ convergence, i.e., a straight line on a semilog plot
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Steepest descent method

normalized steepest descent direction (at x, for norm || - ||):

Aznsq = argmin{f(z) + Vf(z)"v | [[v] = 1}

interpretation: for small v, f(z +v) ~ f(z) + Vf(x)lv;
direction Ax,sq is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction
Argg = [|[Vf(2)[|+A%nsa

satisfies V f(2)T Asa = —||V f(2)||?

steepest descent method

m general descent method with Ax = Axyg

m convergence properties similar to gradient descent
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examples

s Euclidean norm: Axzgq = —V f(x)
s quadratic norm ||z||p = (2T Px)Y/2 (P € S1.): Azgg = —P7 1V f(2)
m (1-norm: Axgq = —(0f(x)/0x;)e;, where |0f(x)/0x;| = |V f(2)|s0

unit balls and normalized steepest descent directions for a quadratic norm and the
¢1-norm:

—V f(x)

—Vf(z)

Ax
nsd Axnsd
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choice of norm for steepest descent

m steepest descent with backtracking line search for two quadratic norms
s ellipses show {z | ||z — 2¥)||p = 1}

= equivalent interpretation of steepest descent with quadratic norm || - || p:
gradient descent after change of variables z = P1/2z

shows choice of P has strong effect on speed of convergence
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Newton step

Azy = —V2f(x) 'V f(x)
interpretations

s x + Ax,, minimizes second order approximation

AN

Fla +v) = f(@) + VI @) 0+ 50"V f(x)o

m x + Ax, solves linearized optimality condition

AN

Vi@+v) = Vf(x+v)=Vf(r)+Vif(zr)o=0

‘F/

(z, f(x))

(x + Az, f(x + Axntj\)./
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m Aux, Is steepest descent direction at x in local Hessian norm

1/2
lullv2 @y = (u' V2 f(2)u)

dashed lines are contour lines of f; ellipse is {z + v | v! V2 f(z)v = 1}, arrow
shows —V f(x)
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Newton decrement

1/2

ANz) = (V)" V2 f(2)"'V f(a))
a measure of the proximity of x to x*

properties

*

m gives an estimate of f(x) — p*, using quadratic approximation f

N 1
f(@) = inf Fly) = SA @)’
m equal to the norm of the Newton step in the quadratic Hessian norm
M) = (A V2f (2) Azy)

= directional derivative in the Newton direction: Vf(z)l Az, = —\(x)?

= affine invariant (unlike |V f(x)]2)
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Newton’s method

given a starting point x € dom f, tolerance ¢ > 0.
repeat
1. Compute the Newton step and decrement.

Axy = —V2f(2)"IVf(x); I :=Vf(a)IV2f(z)"IVf().
2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. © := x + tAx,.

affine invariant, 7.e., independent of linear changes of coordinates:

Newton iterates for f(y) = f(Ty) with starting point y(©) = 71z are

Y8 = = 1(k)
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Classical convergence analysis

assumptions

m f strongly convex on S with constant m

s V27 is Lipschitz continuous on S, with constant L > 0:

IV f(z) = V2 f()ll2 < Lllz — y]2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants € (0,m?/L), v > 0 such that

o I [V (@)]l2 >, then f(z0+D) — f(at?) < —
n if [Vf(z)]l2 <n, then

L (k+1) L AN
VD) < (S V)]
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damped Newton phase (||Vf(z)|2 > n)

m most iterations require backtracking steps
m function value decreases by at least ~

m if p* > —o00, this phase ends after at most (f(x(?)) — p*) /~ iterations

quadratically convergent phase (||V f(x)|2 < n)

m all iterations use step size t =1

s |V f(x)||2 converges to zero quadratically: if ||V ()2 < n, then

2l—k 2l—k

L L 1
el VI < (5l Vr6eM) < (5) . iz
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Newton’s method: complexity

conclusion: number of iterations until f(x) — p* < € is bounded above by

f(z?) — p*

+ log, log,(€g/€)

m 7, €o are constants that depend on m, L, 2(%

= second term is small (of the order of 6) and almost constant for practical
purposes

= in practice, constants m, L (hence 7, ¢g) are usually unknown, but we can
show, under different assumptions that the number of iterations is bounded by

375(f(«”) —p*) +6
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Examples

example in R?

m backtracking parameters a = 0.1, 8 = 0.7

m converges in only 5 steps

m quadratic local convergence
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example in R (page 8)

10° 2
exact line search
x 10Y 1.5
o} =
| -+~
backtrackin o
1070 1ng N1t
= n
. o
S exact line search 9
" 1010 0.5 acktracking
—15 w 0 ‘
10- g 2 4 6 8 10 0 2 A 6 8
k k

m backtracking parameters a = 0.01, 8 = 0.5
= backtracking line search almost as fast as exact |.s. (and much simpler)

m clearly shows two phases in algorithm
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RlOOOO (

example in with sparse a;)

10000 100000

Zlogl—a} Zlog . —a) x)

m backtracking parameters a = 0.01, 5 = 0.5.

m performance similar as for small examples
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numerical example: 150 randomly generated instances of

minimize f(z) = —>_" log(b; — a] z)

T T T T
25¢F 00 QOO oo o o

o ®O
% o o o

201 o o© o o o ]
(20 <>D ° O
) O [oX:m}
(7] Q0 & O
S 15 o o o o
O: m = 100, n = 50 = 00 o
9 ®
O: m = 1000, n = 500 2 ® 0

10+ OO0 <O 0 ©BO

<& m = 1000, n = 50 o o o um a

= number of iterations much smaller than 375(f(z(%)) — p*) + 6

s bound of the form c(f(z(?) — p*) 4+ 6 with smaller ¢ (empirically) valid
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Equality Constraints
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Equality constrained minimization

minimize  f(x)
subject to Ax =1b

m [ convex, twice continuously differentiable
s Ac RP*" with Rank A =p

m we assume p~ is finite and attained

optimality conditions: z* is optimal iff there exists a v* such that

Vf(x*)+ ATv* =0, Ax* =b
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equality constrained quadratic minimization (with P € S/)

minimize  (1/2)z! Pz +q'xz +r
subject to Az =1b

o =L

m coefficient matrix is called KKT matrix

optimality condition:
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Eliminating equality constraints

represent solution of {z | Az = b} as

{x| Az =b}={Fz+2|2z€R"}

= T is (any) particular solution

s range of F' € R™("~P) is nullspace of A (Rank F =n — p and AF = 0)

reduced or eliminated problem

minimize f(Fz+ )

m an unconstrained problem with variable z € R"™?

m from solution z*, obtain * and v* as

= Fz"+ 7, v = —(AAT) LAV f(2*)
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example: optimal allocation with resource constraint

minimize  fi(z1) + fa(z2) + - + fu(zn)
subjectto x1+x9+---+x, =0

eliminate x,, =b—x1 —--- — x,,_1, t.e., choose
. I o (1 —
x:ben, F: [ _1T ] GR X( 1>

reduced problem:

minimize  f1(z1) + - + fac1(@n-1) + fu(b— 21—+

(variables z1, . .., xp_1)
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Newton step

Newton step of f at feasible x is given by (1st block) of solution of

710 5% ][

interpretations

s Az, solves second order approximation (with variable v)

minimize jA’(a: +0v) = f(z) + Vf(z)v+ (1/2)vTVif(x)v
subject to A(x +v) =05

m equations follow from linearizing optimality conditions

Vf(x+ Azy) + ATw =0, A(x + Azxyg) = b
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Newton decrement

A@) = (A2h V2 (@) Arw) " = (~Vf (@) Azw)

properties
= gives an estimate of f(x) — p* using quadratic approximation f

fa)— it Fly) = pA(@)

Ay=b

m directional derivative in Newton direction:

d _ 2
Ef(x + tAxyy) = —\(x)

1/2

n in general, A\(z) # (Vf(2)!V2f(z) 'V f(x))
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Newton’s method with equality constraints

given starting point x € dom f with Ax = b, tolerance ¢ > 0.

repeat
1. Compute the Newton step and decrement Az, A(x).

2. Stopping criterion. quit if \?/2 < e.

3. Line search. Choose step size t by backtracking line search.

4. Update. © := x + tAxy.

= a feasible descent method: x(*) feasible and f(x**1)) < f(z(®)

m affine invariant
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Barrier Methods
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Inequality constrained minimization

minimize  fo(x)
subject to fz( )<0, i=1,....m (1)
Az =0

m f; convex, twice continuously differentiable
s Ac RP*" with Rank A = p
m we assume p~ is finite and attained

m we assume problem is strictly feasible: there exists x with
x € dom f, fi(z) <0, i1=1,...,m, AT =0

hence, strong duality holds and dual optimum is attained
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Logarithmic barrier

reformulation of (1) via indicator function:

minimize  fo(z) + ;2 I-(fi(z))

subject to Az =1b

where I_(u) =0 if u <0, I_(u) = oo otherwise (indicator function of R_)

approximation via logarithmic barrier

minimize  fo(z) — (1/1) Y1, log(—fi(x))

subject to Ax =1b

m an equality constrained problem

m fort >0, —(1/t)log(—u) is a smooth
approximation of /_

m approximation improves as t — 00

23 —9 1 0 1
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logarithmic barrier function

— —Zlog(—fi(a;)), dom ¢ = {z | fi(x) <O0,..., fm(z) <0}

= convex (follows from composition rules)

m twice continuously differentiable, with derivatives

Ms

Vo(z) =

V2(z) = Z Vi@V il +Z Vi fi(@)

fz)
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Central path

s for ¢t > 0, define 2*(¢) as the solution of

minimize  tfo(x) + ¢(x)
subject to Ax =1b

(for now, assume x*(t) exists and is unique for each t > 0)

= central path is {x*(¢) | t > 0}

example: central path for an LP

minimize ¢z

subject to alx <b;, i=1,...,6

hyperplane cl'z = cl'2*(t) is tangent to level
curve of ¢ through z*(t)
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Interpretation via KKT conditions

x=ux(t), A=1/(—tf;(x*(t)), v = w/t (with w dual variable from equality
constrained barrier problem) satisfy

1. primal constraints: f;(z) <0,i=1,...,m, Ax =0
2. dual constraints: A = 0
3. approximate complementary slackness: —\;f;(x) =1/t,i=1,...,m

4. gradient of Lagrangian with respect to = vanishes:

V fo(x) + Z ANV fi(z) + ATy =0
i=1

difference with KKT is that condition 3 replaces \; f;(z) =0
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Barrier method

given strictly feasible x, t := t(0) >0, 1 > 1, tolerance ¢ > 0.
repeat

1. Centering step. Compute x*(t) by minimizing tfy + ¢, subject to Ax = b.
2. Update. x := x*(t).

3. Stopping criterion. quit if m/t < e.

4. Increaset. t := ut.

= terminates with fo(x) — p* < € (stopping criterion follows from
fo(z*(t)) — p* < m/t)

m centering usually done using Newton's method, starting at current x

m choice of i involves a trade-off: large 1 means fewer outer iterations, more
inner (Newton) iterations; typical values: p = 10-20

» several heuristics for choice of (9

ENSAE: Optimisation 37/44



Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

102
0

o 10
[g]
o0
210777
"
=
© 1074

106 =50 p=150 p=2

0 20 40 60 80

Newton iterations

m starts with x on central path (t(o) = 1, duality gap 100)

= terminates when ¢t = 10° (gap 10_6)

m centering uses Newton's method with backtracking

Newton iterations

1407
120
100y,
804
607
407
20¢

40

80

120

m total number of Newton iterations not very sensitive for © > 10
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geometric program (m = 100 inequalities and n = 50 variables)

minimize log 2221 exp(ad,x + bOk))

subject to log 2221 exp(alx + bzk)) <0, 71=1,....m

duality gap
>

10_4 -

0 20 40 60 &80 100 120
Newton iterations
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family of standard LPs (A € R™*?™)

minimize ¢z

subjectto Ar=0b, x>0

m = 10, ...,1000; for each m, solve 100 randomly generated instances
351
(V2]
c
e
4
o
=
c
(@)
4
=
()
=
10t 102 103

number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Polynomial-time complexity of barrier method

m for y=14+1//m:

o ()

= number of Newton iterations for fixed gap reduction is O(y/m)

= multiply with cost of one Newton iteration (a polynomial function of problem
dimensions), to get bound on number of flops

this choice of u optimizes worst-case complexity; in practice we choose u fixed
(u=10,...,20)
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Feasibility and phase | methods

feasibility problem: find x such that

file) <0, i=1,...,m, Ax =b (2)
phase |: computes strictly feasible starting point for barrier method
basic phase | method

minimize (over x, s) s
subject to file)<s, i=1,....m (3)
Ax =b

m if z, s feasible, with s < 0, then x is strictly feasible for (2)
= if optimal value p* of (3) is positive, then problem (2) is infeasible

m if p* = 0 and attained, then problem (2) is feasible (but not strictly);
if p* = 0 and not attained, then problem (2) is infeasible
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sum of infeasibilities phase | method
minimize 17s
subjectto s>=0, fi(x)<s;, i=1,....m
Axr =10

for infeasible problems, produces a solution that satisfies many more inequalities
than basic phase | method

example (infeasible set of 100 linear inequalities in 50 variables)

60 ‘ ‘ ‘ ‘ 60
5 40} S5 40}
0 0
& £
>3 =)
c 20" c 20¢
0 Jﬂ_ﬂ—mm mmmmm O 0 fee O HH e e 0
—1 —0.5 0 TO.5 1 1.5 —1 —0.5 0 0.5 1 1.5

T
bi — A; Tmax bz — A; Lsum

left: basic phase | solution; satisfies 39 inequalities
right: sum of infeasibilities phase | solution; satisfies 79 inequalities
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example: family of linear inequalities Az < b+ vAb
m data chosen to be strictly feasible for v > 0, infeasible for v <0

m use basic phase |, terminate when s < 0 or dual objective is positive

100! 3
8071 Infeasible Feasible

Newton iterations

n n 100+

c c

.0 RS

+ +

© ©

(D] (]

2 e

[ c

o o

E s

o 20t ()

= =
05 9 ~—4 6 0% 4 —2 0
—10 —10 ~ —10 —10 10 10 ~ 10 10

number of iterations roughly proportional to log(1/|v])
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