Convex Optimization

Networks
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Today

m Duality at work: network applications. . .
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Convex Optimization

m Most duals have a very natural interpretation

= Numerical software generally solve both at the same time (more later)
m Provide a lot of information beyond sensitivity

m Also give a definitive proof of convergence

s Many duals for one problem
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Duality: applications
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Duality: network flow problems

Let start with a simple network:

AT
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capacity 7 N\ V

source (s 5
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Network flow problems

Network characteristics:

m Flow through each arc in one direction only
m Source s, sink in t.

m Each link has a fixed capacity

m No parallel edges, self-loops, etc

m No edges leading to s, no edges leaving ¢

Simple question: What is the maximum throughput in this network?
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Network flow problems

Model formulation:

m We can define the network’s incidence matrix:

1 if arc j starts at node ¢
A;; =< —1 if arc j ends at node i
0 otherwise

= By construction, we have 174 = 0.

s We note z; the flow through arc 7. Could be negative if the flow is going
against the direction of the arc.
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Network flow problems

example (m =6, n = 8)

~1 -1 -1

0
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Network flow problems

We can compute the total flow leaving node ¢ as:

Z Az‘jZUj = (AZU)Z
71=1
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Network flow problems

We define the supply vector b € R™:

m b; > 0: external flow entering the network at node ¢
m b; < 0: flow leaving the network at node 1

= We have a balanced flow: 176 = 0 (inflow = outflow)

The balance equations are written: Ax = b
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Network flow problems

We consider minimum cost network flow problems:

minimize ey

subject to Ax =1b
[ <z <u

m c; is the cost of one unit of flow going through node i

m [; and u; are upper and lower bounds on thee flow through arc j

This problem class includes maximum flow problems, and many others. . .
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Network flow problems

We introduce an artificial arc in the network, from the sink to the source:

artificial arc n + 1

To maximize the flow from 1 to m, we simply attach a negative cost to this
artificial arc, and solve the following minimum cost network flow problem:

with e = (1,0, ...

ENSAE: Optimisation

minimize ey

subject to [A |, —¢] [ f ] =0

0<zx<u

,0,—1). This is a maximum flow problem.
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Network flow problems

We can also define cuts in the network:

= An (s,t) cut of the network is a partition of the nodes in two sets U and V

such that s € U and t € V.

= The capacity of a cut (U, V) is computed as:

cap(U, V) = Z Uj

{arc j leaves U}

S0
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5 H%\\ 8 >ﬁ,} 10 /99
A 15 i 6 15 10
\‘% 30 > 7 Capacity =10 + 8 + 10 = 28
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Network flow problems

In this problem, an admissible flow satisfies:

m Capacity constraints: 0 < x; < u;

= Conservation constraints: (Ax); = 0, when ¢ # s,

The value of a flow z is the total flow coming out of the source node s:

val(x) = Z T;

{arc j leaves s}

We write cut(U, V') the net flow coming out of a cut (U, V):

cut(U, V) = Z x; — Z L j

{arc j leaves U} {arc j enters U}
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Network flow problems

We have the following flow value lemma. If s € U and £ € V then
val(x) = cut(U, V)

which means that the net flow across the cut is equal to the flow leaving s
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Network flow problems

Proof is easy. . . By conservation (only the terms below with ¢ = s are nonzero)
we have:

val(x) = Z T;

{arc j leaves s}
P> X 4 Y
{node 7 in U} \{arc j leaves i} {arc j enters i}

Which is, after simplification:

- Y 4 ¥ s

{arc j leaves U} {arc j enters U}

= cut(U,V)
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Network flow problems

We can get another result: val(x) < cap(U, V') which says that the value of the
flow x cannot exceed the capacity of the cut

Proof also simple:

val(x) = Z T — Z T;

{arc j leaves U} {arc j enters U}

< Z X

{arc j leaves U}

< Z U

{arc j leaves U}

= cap(U, V')
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Network flow problems

lllustration:
Cut capacity = 30 = Flow value < 30
10 4 15 15 10
5 ep(3) 8 (6) 10 (1)
A

Capacity = 30
\@ 0 @ pacity
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Network flow problems

Theorem (Max Flow - Min Cut): The value of the maximum flow is equal to
the capacity of the minimum cut.

e

15 0
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Network flow problems

Intuition:

m Each cut (U,V) such that s € U and t € V gives an upper bound on the
maximum flow through the network

m Similarly, each flow through the network gives a lower bound on the capacity of
such cuts (U, V)

= If we find a flow x and a cut (U, V) such that val(z) = cap(U, V') we know
that both are necessarily optimal
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Network flow problems

This means that the two following problems are closely related:

Maximum Flow: o
maximize wval(x)

subject to Az =0
0<z<u

Minimum Cut:
minimize  cap(U, V)

subjectto se U, teV
U+V =[1,m]

In particular, both problems have the same optimal value
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Network flow problems

Can we write the minimum cut as a linear program? Consider:

minimize Z YijUij
(4,5)€V
subject to  y;; +2; — 2 >0 (¢,7) €V
yij > 0

in the variables y and z, where (¢, j) € V means that there is a link going from i
to j, with capacity given by u;;.

Using y and z we define the following cut (U, V) with s € U and t € V:

nodezin U if z; >0
nodezinVifz;=0

We have of course z, = 1 and z; = 0.
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Network flow problems

m By construction z; = 1 so the first constraints are:

ysj‘i_zjzla (S,])EV

m Then, two things can happen at a solution:

o ys; = 1 with z; = 0 and all the following y,z and z; can be zero

o ys; = 0 with z; = 1 and we get the same equation for the next node:

yik +2>1, (j,k)eV

m This means that the set of nodes such that z; = 1 defines a cut.

m Because of the objective, it will be the minimum cut.
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Max flow - min cut

The maximum flow problem was:

minimize ey

subject to [A , —e] [ X ] =0

0<zx<u

with e = (1,0,...,0,—1). Its Lagrangian was:

L(z,y,2) =cTe+ 2T [A —¢] [ . ] +y7(z — u)

for x > 0. The Lagrange dual function is then defined as

9(y,2) = ;IZI%L(:L’, Y, %)

AT T
:inf:cT<c—|—y—|— [ e ]z) —u Y

x>0
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This minimization yields either —oo or —u!'y, so:

T
—uly if (c—l—y-k[il ]Z)ZO

9(y,z) =
—00 otherwise

This means that the dual of the maximum flow problem is written:

—  minimize u'ly

AT
subject to c+y+ [ B ] 2 >0
Compare to the minimum cut problem:
minimize Z YijUiy
(4,5)€V
subject to  y;; +2;— 2 >0, (i,7) €V
yij > 0

The two problems are identical. . .
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Duality: examples

m The max flow - min cut result is a particular case of linear programming
duality

m Both primal and dual solutions have direct interpretations
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