Convex Optimization

Linear Programming Applications
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Today

m This is the “What's the point?” lecture. . .

m What can be solved using linear programs?

Just an introduction. . .

ENSAE: Optimisation 2/40



Linear Programs

A linear program is written

minimize clzx

subject to Ax =1b
x > 0,

in the variable x € R™. Or in inequality form
Yy

minimize clzx

subject to Az <b.
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Linear Program Applications
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Linear Programming: applications

m Originally, linear programs considered “toy problems”

m Algorithm came first

m LPs could be solved efficiently, some applications were found
m Successful applications meant publicity

m Tons of applications subsequently discovered. . .

m Among the most commonly used optimization results today
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Linear Programming: applications

Today, a quick look at applications of linear programming:

m Finance

m Statistics

m Networks

m Game theory

m Structural design
m Scheduling

= Signal processing, etc
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A bit of history: the diet problem

The diet problem:

m Resource allocation problem
m Could replace, calories & nutrients by parts in a factory, etc
m Classic first example in linear programming classes

m Follow a 50 years old tradition. . .
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The diet problem

Eating fast food optimally, using linear programming. . .
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A bit of history: the diet problem

The diet problem:

m We're given the nutrition facts on burgers, fries, etc

m We need to design our meal so that the quantity of nutrients falls between
certain values

m Objective: minimize costs

= Another possibility: minimize calories (optimally healthy fast-food meal)

Easy: this is a linear program. . .
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A bit of history: the diet problem

Data (fictitious). On prices:
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Quarter Pounder w/ Cheese:

McLean Deluxe w/ Cheese:
Big Mac:

Filet-O-Fish:

McGrilled Chicken:

Fries, small:

Sausage McMuffin:

1% Lowfat Milk:

Orange Juice:

1.84
2.19
1.84
1.44
2.29
0.77
1.29
0.60
0.72
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A bit of history: the diet problem

Minimum and maximum values for some type of nutrients:

Min. Max.
Calories 2000
Carbs 350 375

Protein 55

VitA 100
VitC 100
Calc 100
lron 100
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A bit of history: the diet problem

Nutrition facts:

Cal Carbs Protein VitA VitC Calc Iron

Quarter Pounder 510 34 28 15 6 30 20
McLean Deluxe 370 35 24 15 10 20 20
Big Mac 500 42 25 6 2 25 20
Filet-O-Fish 370 38 14 2 0 15 10
McGrilled Chicken 400 42 31 38 15 15 3
Fries, small 220 26 3 0 15 0 2
Sausage McMuffin 345 27 15 4 0 20 15
1% Lowfat Milk 110 12 ) 10 4 30 0
Orange Juice 80 20 1 2 120 2 2
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A bit of history: the diet problem

We can write this as a linear program:

m [he variables are z;, the quantity of item in the menu we purchase

m We let ¢; be the cost of each item, the total cost of the meal is:

E Ci L

1=1

m Let A;; be the nutrition value for nutrient ¢ in item j, the nutrition constraints

are:
9

min; < E Aijx; < max; for each nutrient ¢
J=1

m And of course: all the quantities x; have to be positive: x; > 0
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A bit of history: the diet problem

Minimum cost meal meeting minimum requirements
Coe . 9
minimize ) .| ¢

subject to mun; < Z?:l Ai;x; < max; for each nutrient ¢
Ti > 07

Solution:

Quarter Pounder w/ Cheese 4.38525
Fries, small 6.14754
1% Lowfat Milk 3.42213

Price: 14.85, but 4000 calories. . .
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A bit of history: the diet problem

2500 calories meal meeting minimum requirements
.. 9
minimize ) ., ¢T;

subject to 2221 Aqx; = 2500
min; < 2?21 Ai;jx; < max; foreach nutrienti=2,...,7
o) Z 07

Solution:

Quarter Pounder w/ Cheese 0.231942
McLean Deluxe w/ Cheese  3.85465
1% Lowfat Milk 2.0433
Orange Juice 9.13408

Price goes up: $16.67. . .
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A bit of history: the diet problem

Can we make a 2000 calories meal meeting minimum requirements?
.. 9
minimize ) ., ¢T;
subject to Z?Zl Ajx; = 2000

min; < 2?21 Ai;jx; < max; for each nutrient:=2,...,7
L Z 07

m No solution!

m What's the best we can do?
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A bit of history: the diet problem

Minimum calories meal meeting minimum requirements

Co. 9
minimize > ., Ay;;

subject to min; < Z?Zl Ai;x; < max; for each nutrient¢=2,...

xzz()?

Solution:

McLean Deluxe w/ Cheese 4.08805
1% Lowfat Milk 2.04403
Orange Juice 9.1195

Price is $16.75, minimum calories: 2467
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A bit of history: the diet problem

A few interesting results from this experiment:

m Some problems are infeasible, how do we detect that?
m We can't ask for integer results
= Solution: rounding

m But we can't be certain to get the optimal integer solution. . .
(more on this later)
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Finance

Portfolio theory.

m Classic view: mean-variance tradeoff
= Portfolio management: a quadratic program (later)
= Variance is (by far) not the only measure of risk

m Other possibility: mean absolute deviation:

| T
msk’:thzl\m—fF\

where r; = S; — S;_q is the return at time ¢ and 7 the mean return.
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Portfolio Optimization

Year usS US S&P Wilshire  NASDAQ Lehman EAFE  Gold

3-Month Gov. 500 5000 Composite Bros.

T-Bills Long Corp.

Bonds Bonds
1973 1.075 0.942 0.852 0.815 0.698 1.023 0.851 1.677
1974 1.084 1.020 0.735 0.716 0.662 1.002 0.768 1.722
1975 1.061 1.056 1.371 1.385 1.318 1.123 1.354 0.760
1976 1.052 1.175 1.236 1.266 1.280 1.156 1.025 0.960
1977 1.055 1.002 0.926 0.974 1.093 1.030 1.181 1.200
1978 1.077 0.982 1.064 1.093 1.146 1.012 1326 1.295
1979 1.109 0.978 1.184 1.256 1.307 1.023 1.048 2.212
1980 1.127 0.947 1.323 1.337 1.367 1.031 1226 1.296
1981 1.156 1.003 0.949 0.963 0.990 1.073 0.977 0.688
1982 1.117 1.465 1.215 1.187 1.213 1.311 0981 1.084
1983 1.092 0.985 1.224 1.235 1.217 1.080 1.237 0.872
1984 1.103 1.159 1.061 1.030 0.903 1.150 1.074 0.825
1985 1.080 1.366 1.316 1.326 1.333 1.213 1562 1.006
1986 1.063 1.309 1.186 1.161 1.086 1.156 1.694 1.216
1987 1.061 0.925 1.052 1.023 0.959 1.023 1.246 1.244
1988 1.071 1.086 1.165 1.179 1.165 1.076 1.283 0.861
1989 1.087 1.212 1.316 1.292 1.204 1.142 1.105 0.977
1990 1.080 1.054 0.968 0.938 0.830 1.083 0.766 0.922
1991 1.057 1.193 1.304 1.342 1.594 1.161 1.121 0.958
1992 1.036 1.079 1.076 1.090 1.174 1.076 0.878 0.926
1993 1.031 1.217 1.100 1.113 1.162 1.110 1.326 1.146
1994 1.045 0.889 1.012 0.999 0.968 0.965 1.078 0.990

Historical (relative) returns S;/S;_1 on a few investments. . .
(EAFE: Europe, Australia, and Far East).
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Portfolio Optimization

Markovitz type model:

m We look for a portfolio of NV assets with coefficients x;
s We have an initial budget of $1
m For a given level of risk, we seek to maximize return

s When the level of risk (1) varies, the maximum return defines a set of optimal
risk /return tradeoffs: the efficient frontier

m We consider aboslute returns r, = Sy — S;_1.
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Portfolio Optimization

The program to be solved can be written:

maximize

subject to

1 N T
TZ sz‘rz’,t

1=1 t=1

Is this a linear program?
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(portfolio return)

(portfolio risk bounded)

(initial budget)

(no short sale)
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Portfolio Optimization

m [ he following constraint on the absolute value:
x| <y

is equivalent to:
—y<xr <y

m This means that we can replace each inequality on an absolute value by to
inequalities

m We have to introduce additional variables in the original program. . .
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Portfolio Optimization

The new program is written:

| NI
maximize — E E TiTit
T )

1=1 t=1

subject to TZyt < U
N
—Yr < (Zizl XTiTit —

N
1=1

33¢>0

This is now a linear program!
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D i1 337;7“@') < Yt

(portfolio return)

(portfolio risk bounded)

(initial budget)

(no short sale)
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Portfolio Optimization
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Efficient frontier for a few reference assets (N = 8).
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Portfolio Optimization

7 US Lehman NASDAQ Wilshire Gold EAFE | Reward Risk
3-Month Bros. Comp. 5000

T-Bills Corp.

Bonds
0.1800 0.017 0.983 1.141 0.180
0.1538 0.191 0.809 1.139 0.154
0.1275 0.119 0.321 0.560 1.135 0.128
0.1013 0.407 0.355 0.238 1.130 0.101
0.0751 0.340 0.180 0.260 0.220 1.118 0.075
0.0488 0.172 0.492 0.144 0.008 1.104 0.049
0.0226 0.815 0.100 0.037 0.041 0.008 1.084 0.022

Composition, risk and return of optimal portfolios for various values of L.
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Portfolio Optimization
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Efficient frontier for 719 stocks.
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Statistics: Regression

How far is this from the standard mean variance analysis?

m We replace the variance by the deviation

m How do these two measures of “error’” compare?

Let's pick an example from statistics:

m Regress a set of data points on a few variables

m Compare least squares regression with least absolute deviation regression
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Statistics: Regression

Given N data points y; and x;, we look for parameters a and b and compute the

“best” linear model y = ax + b

m The usual least squares regression is written:
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Portfolio Optimization
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Not that different here. . .
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Game Theory

Two person game.

m Count to three and declare:
Paper Scissors Rock
m Winner selected according to:

Rock beats Scissors
Paper beats Rock
Scissors beats Paper

m We can arrange this in a payoff matrix:

P S R
P [ 0 1 —1]
S -1 0 1
R | 1 -1 0
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Game Theory

= Playing a fixed (deterministic, pure) strategy is bad: “always stone” is always
beaten by paper. . .

s We know from game theory that there is always a Nash equilibrium involving
random (mixed) strategies.

m How do we find these?

m A random strategy is simply a probability vector:

3
ZZCZ:1andZEZZO
1=1

= Solving for the equilibrium strategy for both players is a linear program (more
details later).
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Signal Processing

FIR filter design.

s Finite Impulse Response filter:

n—1
Yt — E hTut—T
7=0

where u; is the input signal and h; are the filter coefficients

m [he magnitude of the frequency response of the filter can be written:

|H(w)| = 2ho cos(Nw) + 2hq cos((N — Dw) + ... + hy

m For each particular frequency w, this a linear function of the filter coefficients A

Designing a custom filter is just a linear program . . .
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Signal Processing

Response

0 0.5 1 1.5 2 2.5 3 3.5

Frequency
This filter lets bass go through and filters out higher frequencies (low-pass)
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Wifi

&

= Wifi (802.11) is another example. . .

s Maximum allowed radiated power (EIRP) is 100mW

s Why? So you don't fry your friend next door, also avoids interferences. . .
m This power is dissipated in all directions. . .

m Increase the range: focus most of this power in one direction
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Wifi

Professional solution.

m Use multiple antennas
m Use interference patterns to focus most of the power in a particular direction

m Problem is similar to filter design: linear program

ENSAE: Optimisation 37/40



Wifi

270 270 270

Dream Reality Reality
Nno errors 0.1% errors 2% errors
| Dy — D||2 = 0.014 | D« — D||2 € [0.17,0.89] |Dx — D||2 € [2.9,19.6]

Nominal Least Squares design: dream and reality
Data over a 100-diagram sample

Implementation is tricky. . .
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Wifi

270 270 270

Dream Reality Reality
Nno errors 0.1% errors 2% errors
| Dy« — Dll2 = 0.025 |Dx — Dl|2 =~ 0.025 |Dsx — D2 = 0.025

Robust Least Squares design: dream and reality
Data over a 100-diagram sample
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Convex interpolation

What's next? We will study convex problems.

m Much more general class of problems
m Complexity similar to linear programming
m Similar solvers

m Very very very long list of applications in statistics, engineering, finance, etc.
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