Optimisation Combinatoire et Convexe.

Low complexity models, ℓ_1 penalties.
Today

- Sparsity, low complexity models.
- \(1\)-recovery results: three approaches.
- Extensions: matrix completion, atomic norms.
- Algorithmic implications.
Consider the following underdetermined linear system

\[A \times x = b \]

where \(A \in \mathbb{R}^{m \times n} \), with \(n \gg m \).

Can we find the **sparsest** solution?
Introduction

- **Signal processing:** We make a few measurements of a high dimensional signal, which admits a sparse representation in a well chosen basis (e.g. Fourier, wavelet). Can we reconstruct the signal exactly?

- **Coding:** Suppose we transmit a message which is corrupted by a few errors. How many errors does it take to start losing the signal?

- **Statistics:** Variable selection in regression (LASSO, etc).
Why sparsity?

- Sparsity is a proxy for power laws. Most results stated here on sparse vectors apply to vectors with a power law decay in coefficient magnitude.
- Power laws appear everywhere.
 - Zipf law: word frequencies in natural language follow a power law.
 - Ranking: pagerank coefficients follow a power law.
 - Signal processing: $1/f$ signals
 - Social networks: node degrees follow a power law.
 - Earthquakes: Gutenberg-Richter power laws
 - River systems, cities, net worth, etc.
Introduction

Frequency vs. word in Wikipedia (from Wikipedia).
Frequency vs. magnitude for earthquakes worldwide. Christensen et al. [2002]
Pages vs. Pagerank on web sample. Pandurangan et al. [2006]
Getting the sparsest solution means solving

\[
\begin{align*}
\text{minimize} & \quad \text{Card}(x) \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

which is a (hard) combinatorial problem in \(x \in \mathbb{R}^n \).

A classic heuristic is to solve instead

\[
\begin{align*}
\text{minimize} & \quad \|x\|_1 \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

which is equivalent to an (easy) linear program.
Assuming $|X| \leq 1$, we can replace:

$$\text{Card}(x) = \sum_{i=1}^{n} 1\{x_i \neq 0\}$$

with

$$\|x\|_1 = \sum_{i=1}^{n} |x_i|$$

Graphically, assuming $x \in [-1, 1]$ this is:

The l_1 norm is the **largest convex lower bound** on $\text{Card}(x)$ in $[-1, 1]$.
Example: we fix A, we draw many sparse signals e and plot the probability of perfectly recovering e by solving

\[
\begin{align*}
\text{minimize} & \quad kx_k \\
\text{subject to} & \quad Ax = Ae
\end{align*}
\]

in $x \in \mathbb{R}^n$, with $n = 50$ and $m = 30$.
Donoho and Tanner [2005] and Candès and Tao [2005] show that for certain classes of matrices, when the solution \(\mathbf{e} \) is sparse enough, the solution of the \(\ell_1 \)-minimization problem is also the \textbf{sparsest} solution to \(\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{e} \).

Let \(k = \text{Card}(\mathbf{e}) \), this happens even when \(k = \mathcal{O}(m) \) asymptotically, which is provably optimal.

Also obtain bounds on reconstruction error outside of this range.
Similar results exist for rank minimization.

- The ℓ_1 norm is replaced by the trace norm on matrices.
- Exact recovery results are detailed in Recht et al. [2007], Candes and Recht [2008], ...
\[1 \] \text{recovery}
Kashin and Temlyakov [2007]: Simple relationship between the diameter of a section of the ℓ_1 ball and the size of signals recovered by ℓ_1-minimization.

Proposition

Diameter & Recovery threshold. \(\text{Given a coding matrix } A \in \mathbb{R}^{m \times n}, \text{ suppose that there is some } k > 0 \text{ such that} \)

\[
\sup_{A\mathbf{x}=0, \|\mathbf{x}\|_1 \leq 1} k\|\mathbf{x}\|_2 \leq \frac{1}{k} \tag{1}
\]

then sparse recovery \(\mathbf{x}_{\text{LP}} = \mathbf{u} \) is guaranteed if \(\text{Card}(\mathbf{u}) \leq k/4 \), and

\[
ku - \mathbf{x}_{\text{LP}} \leq 4 \min_{\{\text{Card}(\mathbf{y}) \leq k/16\}} ku - y\mathbf{k}_1
\]

where \(\mathbf{x}_{\text{LP}} \) solves the \(\ell_1 \)-minimization LP and \(\mathbf{u} \) is the true signal.
Diameter

Proof. Kashin and Temlyakov [2007]. Suppose

\[
\sup_{\|x\|_1 \leq 1} k \|x\|_2 \leq k^{-1/2}
\]

Let \(u \) be the true signal, with \(\text{Card}(u) \leq k/4 \). If \(x \) satisfies \(Ax = 0 \), for any support set \(\Lambda \) with \(|\Lambda| \leq k/4 \),

\[
\sum_{i \in \Lambda} x_i \leq \sqrt{|\Lambda|} k \|x\|_2 \leq \sqrt{|\Lambda|/k} k \|x\|_1 \leq k \|x\|_1/2,
\]

Now let \(\Lambda = \text{supp}(u) \) and let \(v \not= u \) such that \(x = v - u \) satisfies \(Ax = 0 \), then

\[
k \|v\|_1 = \sum_{i \in \Lambda} |u_i + x_i| + \sum_{i \not\in \Lambda} |x_i| \geq \sum_{i \in \Lambda} |u_i| - \sum_{i \in \Lambda} |x_i| + \sum_{i \not\in \Lambda} |x_i| = k \|u\|_1 + k \|x\|_1 - 2 \sum_{i \in \Lambda} |x_i|
\]

and

\[
k \|x\|_1 - 2 \sum_{i \in \Lambda} |x_i| > 0
\]

means that \(k \|v\|_1 > k \|u\|_1 \), so \(x^{LP} = u \). The error bound follows from similar arg.
Theorem

Low M* estimate. Let $E \subset \mathbb{R}^n$ be a subspace of codimension k chosen uniformly at random w.r.t. to the Haar measure on $G_{n,n-k}$, then

$$\text{diam}(K \cap E) \leq c \sqrt{\frac{n}{k}} M(K^*) = c \sqrt{\frac{n}{k}} \int_{S^{n-1}} kxk_{K^*}d\sigma(x)$$

with probability $1 - e^{-k}$, where c is an absolute constant.

Proof. See [Pajor and Tomczak-Jaegermann, 1986] for example.

We have $M(B_{\infty}^n) \sim \sqrt{\log n/n}$ asymptotically. This means that random sections of the ℓ_1 ball with dimension $n - k$ have diameter bounded by

$$\text{diam}(B_1^n \cap E) \leq c \sqrt{\frac{\log n}{k}}$$

with high probability, where c is an absolute constant (a more precise analysis allows the \log term to be replaced by $\log(n/k)$).
Sections of the ℓ_1 ball

Results guaranteeing near-optimal bounds on the diameter can be traced back to Kashin and Dvoretzky’s theorem.

- **Kashin decomposition** [Kashin, 1977]. Given $n = 2m$, there exists two orthogonal m-dimensional subspaces $E_1, E_2 \subset \mathbb{R}^n$ such that

$$\frac{1}{8} \|x\|_2 \leq \frac{1}{\sqrt{n}} \|x\|_1 \leq \|x\|_2,$$

for all $x \in E_1 \cup E_2$.

- In fact, most m-dimensional subspaces satisfy this relationship.
Atomic norms

We can give another geometric view on the recovery of low complexity models. Once again, we focus on problem (2), namely

\[
\begin{align*}
\text{minimize} & \quad \|x\|_A \\
\text{subject to} & \quad Ax = Ax_0
\end{align*}
\]

and we start by a construction from [Chandrasekaran et al., 2010] on a specific type of norm penalties, which induce simple representations in a generic setting.

Definition

Atomic norm. Let \(A \subset \mathbb{R}^n \) be a set of atoms. Let \(k \cdot k_A \) be the gauge of \(A \), i.e.

\[
k x k_A = \inf \{ t > 0 : x \in t \times \text{Co}(A) \}
\]

The motivation for this definition is simple, if the centroid of \(A \) is at the origin, we have

\[
k x k_A = \inf \left\{ \sum_{a \in A} \lambda_a : x = \sum_{a \in A} \lambda_a a, \lambda_a \geq 0 \right\}
\]
Atomic norms

Depending on A, atomic norms look very familiar.

- **Suppose** $A = \{\pm e_i\}_{i=1,...,n}$ where e_i is the Euclidean basis of \mathbb{R}^n. Then $\text{Co}(A)$ is the ℓ_1 ball and $kxk_A = kxk_1$.

- **Suppose** $A = \{uv^T : u, v \in \mathbb{R}^n, ku_k_2 = kv_k_2 = 1\}$, then $\text{Co}(A)$ is the unit ball of the trace norm and $kXk_A = kXk_*$ when $X \in \mathbb{R}^{n \times n}$.

- **Suppose** A is the set of all orthogonal matrices of dimension n. Its convex hull is the unit ball of the spectral norm, and $kXk_A = kXk_2$ when $X \in \mathbb{R}^{n \times n}$.

- **Suppose** A is the set of all permutations of the list $\{1, 2, \ldots, n\}$, its convex hull is called the is the permutahedron (it needs to be recentered) and kxk_A is hard to compute (but can be used as a penalty).
Atomic norms

Suppose $k \cdot k_A$ is an atomic norm, focus on

$$
\begin{align*}
\text{minimize} & \quad k x k_A \\
\text{subject to} & \quad A x = A x_0
\end{align*}
$$

Proposition

Optimality & recovery. We write

$$
T_A(x_0) = \text{Cone}\{z - x_0 : k z k_A \leq k x_0 k_A\}
$$

the tangent cone at x_0. Then x_0 is the unique optimal solution of (3) iff

$$
T_A(x_0) \cap N(A) = \{0\}$$
Atomic norms

- Perfect recovery of x_0 by minimizing the atomic norm kxk_A occurs when the intersection of the **subspace** $N(A)$ and the **cone** $T_A(x_0)$ is empty.

- When A is i.i.d. Gaussian with variance $1/m$, the probability of the event $T_A(x_0) \cap N(A) = \{0\}$ can be bounded explicitly.

Proposition

[Gordon, 1988] Let $A \in \mathbb{R}^{m \times n}$, be i.i.d. Gaussian with $A_{i,j} \sim \mathcal{N}(0, 1/m)$, let

$\Omega = T_A(x_0) \cap B_2^p$ be the intersection of the cone $T_A(x_0)$ with the unit sphere, x_0 is the unique minimizer of (3) with probability $1 - \exp(-(\lambda_n - \omega(\Omega))^2/2)$ if

$$m \geq \omega(\Omega)^2 + 1$$

where

$$\omega(\Omega) = \mathbb{E} \left[\sup_{y \in \Omega} y^T g \right] \quad \text{and} \quad \lambda_m = \frac{\sqrt{2} \Gamma((m+1)/2)}{\Gamma(m/2)}$$
Atomic norms

The previous result shows that computing the recovery threshold n (number of samples required to reconstruct the signal x_0), it suffices to estimate

$$\omega(\Omega) = \mathbb{E} \left[\sup_{y \in T_A(x_0), \|y\|_2 = 1} y^T g \right]$$

This quantity can be computed for many atomic norms $\| \cdot \|_A$.

- Suppose x_0 is a k-sparse vector, $k \times k_A = k \times k_1$ and
 $$\omega(\Omega)^2 \leq 2k \log(p/k) + 5k/4$$

- Suppose X_0 is a rank r matrix in $\mathbb{R}^{m_1 \times m_2}$, then $kX \times k_A = kX \times k_*$ and
 $$\omega(\Omega)^2 \leq r(m_1 + m_2 - r)$$

- Suppose X_0 is an orthogonal matrix of dimension n, then $kX \times k_A = kX \times k_2$ and
 $$\omega(\Omega)^2 \leq \frac{3n^2 - n}{4}$$
References

