Optimisation Combinatoire et Convexe

First Order Methods: Part |l

A. d'Aspremont. M1 ENS. 1/54

Today

First Order Methods: Part Two.

m Centering. Solve a centering problem at each iteration and compute a
subgradient at the center to localize the solution.

s Affine maximization. Solve an affine maximization problem over the feasible
set.

s Partial optimization. Solve the minimization problem over a subset of the
variables.

A. d'Aspremont. M1 ENS. 2/54

Centering: Localization Methods

A. d'Aspremont. M1 ENS. 3/54

Localization methods

= Function f: R™ — R convex (and for now, differentiable)
s problem: minimize f

= oracle model: for any x we can evaluate f and V f(x) (at some cost)

Main assumption: evaluating the gradient is very expensive.

from f(z) > f(xo) + V f(zo)! (z — 20) we conclude
V(o) (x—20) 20 = f(z) = f(z0)

i.e., all points in halfspace V f(zo)? (z — zg9) > 0 are worse than z

A. d’Aspremont. M1 ENS. 4/54

Localization methods

level curves of f

Zo

Vf(x())

Vf(a:o)T(a: —x9) >0

m by evaluating V f we rule out a halfspace in our search for x*:

v* € {x | Vf(xo)! (z — x0) <0}

= idea: get one bit of info (on location of x*) by evaluating V f

= for nondifferentiable f, can replace V f(xg) with any subgradient g € 0f(x¢)

A. d’Aspremont. M1 ENS. 5/54

Localization methods

suppose we have evaluated Vf(x1),...,V f(xx) then we know

o* € {z | Vf(x)! (z — x;) <0}

Vf(x1)

V f(x2)

V f(xk)

on the basis of Vf(x1),...,Vf(zr), we have localized x* to a polyhedron

question: what is a ‘good’ point xx.1 at which to evaluate V f7

A. d’Aspremont. M1 ENS. 6/54

Localization methods

Basic localization (or cutting-plane) algorithm:

1. after iteration £ — 1 we know x* € Pp_1:

2. evaluate Vf(2*) (or g € 0f(2(¥))) for some zF) € Pp_4

3. Ppi=Pr_1N{z | V)T (z — 2F)) <0}

A. d'Aspremont. M1 ENS. 7/54

Localization methods

m P gives our uncertainty of x* at iteration k
= want to pick (¥) so that P, is as small as possible

m clearly want (%) near center of C'(%)

A. d’Aspremont. M1 ENS. 8/54

Example: bisection on R

m f:R—>R

m Py is interval

= obvious choice: z(kt1) .= midpoint(Py)

repeat

2. evaluate f/(
3. if f'(z) <0,

1. 2= (+u)/

bisection algorithm

given interval C' = [l, u| containing z*

2
)
[.=

. else u:=x

A. d'Aspremont. M1 ENS.

9/54

Example: bisection on R

2+ Pk:

Priq:

ur — Ui

length(Prr1) = g1 — lps1 = = (1/2)length(Py)

and so length(Py) = 2_k|ength(730)

A. d'Aspremont. M1 ENS. 10/54

Example: bisection on R

interpretation:

= length(P;) measures our uncertainty in x*

m uncertainty is halved at each iteration; get exactly one bit of info about ™ per
iteration

m # steps required for uncertainty (in 2*) < e:

length(Py) initial uncertainty

log, = log,

final uncertainty

question:

m can bisection be extended to R"?

m or is it special since R is linear ordering?

A. d'Aspremont. M1 ENS. 11/54

Center of gravity algorithm

Take z(**t1) = CG(Py;,) (center of gravity)

CG(Pk)kadx/Lkdx

theorem. if C' C R" convex, z., = CG(C), g # 0,
vol (CN{z | g"(z —xe) <0}) < (1—1/€) vol(C) ~ 0.63 vol(C)

(independent of dimension n)

hence in CG algorithm, vol(P;) < 0.63* vol(P)

A. d'Aspremont. M1 ENS. 12/54

Center of gravity algorithm

s vol(P;)!/™ measures uncertainty (in z*) at iteration &
= uncertainty reduced at least by 0.63'/™ each iteration
s from this can prove f(z(*)) — f(z*) (later)

m max. # steps required for uncertainty < e:

initial uncertainty

1.51nl : .
12082 final uncertainty

(cf. bisection on R)

A. d'Aspremont. M1 ENS. 13/54

Center of gravity algorithm

advantages of CG-method

m guaranteed convergence

m number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

s finding (¥ = CG(Py,) is harder than original problem

m P, becomes more complex as k increases
(removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)

A. d'Aspremont. M1 ENS. 14/54

Analytic center cutting-plane method

analytic center of polyhedron P = {z |alz <b;, i=1,...,m} is

AC(P) = argmin — Z log(b; — a; z)

1=1

ACCPM is localization method with next query point 2(*+1) = AC(P},) (found
by Newton's method)

A. d'Aspremont. M1 ENS. 15/54

Outer ellipsoid from analytic center

= let o* be analytic center of P ={z |al 2z <b;, i=1,...,m}

m let H* be Hessian of barrier at =™,

m m r
. auj,a/?:
H* = —-V? Zlog(bi - atz'rz) - Z (b; — aT:C*)2

m then, PCE={z| (2 —2*) ' H*(2 — 2*) < m?} (not hard to show)

A. d'Aspremont. M1 ENS. 16/54

Lower bound in ACCPM

s let £%) be outer ellipsoid associated with z(*)

= a lower bound on optimal value p* is

po> b (@) 4 g®T -2 ®))
zc&(k)

— (&™) — mpSgOT HR~14(k)

(my is number of inequalities in Py)

s gives simple stopping criterion \/g(FTH®) =1g(k) < ¢/my,

A. d'Aspremont. M1 ENS. 17/54

Best objective and lower bound

since ACCPM isn't a descent a method, we keep track of best point found, and
best lower bound

best function value so far: up = nlflinkf(:c(k))
1=1,...,

best lower bound so far: [= '_rrllaxkf(a:(k)) — mp/ g H k) =1g(k)

can stop when up — [, < €

A. d'Aspremont. M1 ENS. 18/54

Basic ACCPM

given polyhedron P containing x*

repeat
1. compute x*, the analytic center of P, and H*
2. compute f(x*) and g € df(x*)
3. u:=min{u, f(xz*)}
= max{l, f(a*) — my/gTH" g}
4. add inequality g’ (z —2*) <0 to P
until u — [< ¢

here m is number of inequalities in P

A. d'Aspremont. M1 ENS. 19/54

Dropping constraints

ACCPM adds an inequality to P each iteration, so centering gets harder, more
storage as algorithm progresses

schemes for dropping constraints from P).

= remove all redundant constraints (expensive)
m remove some constraints known to be redundant

m remove constraints based on some relevance ranking

A. d'Aspremont. M1 ENS. 20/54

Dropping constraints in ACCPM

z*is ACof P={z|alx<b; i=1,...,m}, H* is barrier Hessian at z*

T %
bi —a; x

Trr«—1,.
(]

define (ir)relevance measure 7; =

T

= 7;/m is normalized distance from hyperplane a; = = b; to outer ellipsoid

m if n; > m, then constraint aiT:I; < b; is redundant

common ACCPM constraint dropping schemes:

= drop all constraints with 7; > m (guaranteed to not change P)

m drop constraints in order of irrelevance, keeping constant number, usually 3n —
5n

A. d'Aspremont. M1 ENS. 21/54

Example

PWL objective, n = 10 variables, m = 100 terms

simple ACCPM: f(z(®)) and lower bound f(z(*))

A. d'Aspremont. M1 ENS.

— /g T H® 1)

fa®)y —p*

myy/ g T H (R =1g(k)

50 100 150

200

22/54

ACCPM with constraint dropping

— no dropping
102 | o ---dropmn; >m |

0 50 100 150 200

A. d'Aspremont. M1 ENS. 23/54

ACCPM with constraint dropping

number of inequalities in P:

2001

1501+ no dropping

100+

dropm; > m

‘SN

SO, R R N T W RV PN
keep 3n
O ! ! !
0 50 100 150 200

.. constraint dropping actually improves convergence (!)

A. d'Aspremont. M1 ENS. 24 /54

The Ellipsoid Method

Challenges in cutting-plane methods:

m can be difficult to compute appropriate next query point

m localization polyhedron grows in complexity as algorithm progresses

can get around these challenges . . .

ellipsoid method is another approach

s developed in 70s by Shor and Yudin
m used in 1979 by Khachian to give polynomial time algorithm for LP

A. d'Aspremont. M1 ENS. 25/54

Ellipsoid algorithm

idea: localize 2™ in an ellipsoid instead of a polyhedron

1. at iteration k we know z* € &)
2. set (k1) := center(£(*)); evaluate V f(2x**tD) (or g*) € 9 f (D))
3. hence we know
e ERWN{z| VP)T(z — kD) <}
(a half-ellipsoid)

4. set £, .= minimum volume ellipsoid covering
EW N {z | VfaB+D)T (2 —2F+D)) < 0}

A. d'Aspremont. M1 ENS. 26/54

Ellipsoid algorithm

(k)

compared to cutting-plane method:

m localization set doesn’'t grow more complicated
m easy to compute query point

m but, we add unnecessary points in step 4

A. d'Aspremont. M1 ENS. 27/54

Properties of ellipsoid method

m reduces to bisection for n =1
s simple formula for £+ given £F), v f(x(F+D)

s £¥#F1 can be larger than £%) in diameter (max semi-axis length), but is
always smaller in volume

s vol(E* D)) < e=2a vol(EX)
(note that volume reduction factor depends on n)

A. d'Aspremont. M1 ENS. 28/54

Example

-

/
/
/

7/
/
/

A. d'Aspremont. M1 ENS.

29/54

Updating the ellipsoid

A. d'Aspremont. M1 ENS. 30/54

Updating the ellipsoid

(for n > 1) minimum volume ellipsoid containing
EN{zlg'(z—x) <0}

is given by

n 2 .

whereg—g/\/ T'Ag

A. d'Aspremont. M1 ENS.

31/54

Stopping criterion

As in the ACCPM case, we can get error bounds on the current iterate.
x* € &L, so

F®) + V)T (@ = 2®)

=
8

N
WY

> f@®) 4 inf V)T (@ - 2®)
ze&(F)

F@®) = [V (@) T ABV f(20)

simple stopping criterion:

VY F@)TANY f(2®) < ¢

A. d'Aspremont. M1 ENS. 32/54

Stopping criterion

)

F(@®) = /Y f(@®)TABY f ()

A. d'Aspremont. M1 ENS.

5 10 15 20

25

30

33/54

Basic ellipsoid algorithm

ellipsoid described as E(z, A) = {2z | (z —2)TA (2 —2) <1}

given ellipsoid £(x, A) containing x*, accuracy € > 0

repeat
1. evaluate Vf(x) (or g € 9f(x))

2. if \/Vf(2)TAVf(x) < ¢, return(z)
3. update ellipsoid

3a. § = Vf(z /\/Vf(x)TAVf(w)
3b. z:=x — —Ag
3c. A= (A _ —AggTA)

properties:

= can propagate Cholesky factor of A; get O(n?) update
m not a descent method

m often slow but robust in practice

A. d'Aspremont. M1 ENS.

34/54

Interpretation

= change coordinates so uncertainty (£) is unit ball

= take gradient (or subgradient) step with fixed length 1/(n + 1)

properties:

= can propagate Cholesky factor of A; get O(n?) update
m not a descent method

m often slow but robust in practice

A. d'Aspremont. M1 ENS. 35/54

Proof of convergence

assumptions:

= fis Lipschitz: |f(y) — f(z)| < Glly — =]
s £ is ball with radius R

suppose f(z()) > f*+¢€ i=0,...,k, then
f@) < ff+e=axec&W

since at iteration i we only discard points with f > f(2(?)), then from Lipschitz
condition,

|z —2*|| < /G = f(z) < f*+e=x € EF

so B={z||z—2*| <e/G} C E¥), hence vol(B) < Vol(g(k)), SO
Bu(c/GY* < /2 val(£0) = ¢F/2n g,
(Bn is volume of unit ball in R™), therefore k < 2n?log(RG/¢)

A. d'Aspremont. M1 ENS. 36/54

gk)
B=A{z|| | <e/G} .l@
flx) < f"+e

conclusion: for K > 2n?log(RG /¢),

A. d'Aspremont. M1 ENS. 37/54

Interpretation of complexity

since z* € & = {x | ||z — (9| < R}, our prior knowledge of f* is
[*€f@) = GR, (=)

our prior uncertainty in f*is GR

after k iterations our knowledge of f* is

x : i)y _ : (i)
fre i:r&}pykf(w) e,i:r(gl,}p,kf(w)

posterior uncertainty in f*is < €

iterations required:

RG

€

prior uncertainty

2n? log 2n? log

posterior uncertainty

efficiency: 0.72/n? bits per gradient evaluation (degrades with n)

A. d'Aspremont. M1 ENS.

38/54

Inequality constrained problems

minimize fo(z)

subject to fi(x) <0, i =1,.

same idea: maintain ellipsoids £(*) that

m contain &~

m decrease in volume to zero

A. d'Aspremont. M1 ENS.

39/54

case 1: z(®) feasible, i.e., f;(z*)) <0,i=1,...,m

= then do usual update of £%) based on V fy(z*)

m rules out halfspace of points with larger function value than current point

case 2: z¥) infeasible, say, f;(z(¥)) > 0;
a then V£;(z") T (2 — 2) > 0 = f;(x) > 0 = z infeasible so update £*)

based on V f;(z*))

m rules out halfspace of infeasible points

A. d'Aspremont. M1 ENS. 40/54

Affine Maximization: Frank-Wolfe

A. d'Aspremont. M1 ENS. 41/54

Franke-Wolfe

m Classical first order methods for solving

minimize f(x)
subject to z € C,

in z € R™, with C' C R™ convex, relied on the assumption that the following
subproblem could be solved efficiently

minimize ylz + d(z)
subject to z € C,

in the variable x € R", where d(x) is a strongly convex function.

m | he method detailed here assumes instead that the affine minimization

subproblem
minimize d'z
subjectto z € C
can be solved efficiently for any y € R".

A. d'Aspremont. M1 ENS. 42 /54

Franke-Wolfe

Algorithm.

m Choose zq € C.

m For k=1,... kK™ iterate
1. Compute V f(xy)
2. Solve

minimize 1V f(yx)
subjectto z € C

in x € R"™, call the solution x,.
3. Update the current point

2
k+ 2

Tpi1 = T+ (xqg — k)

Note that all iterates are feasible.

A. d'Aspremont. M1 ENS. 43/54

Franke-Wolfe

s Complexity. Assume that f is differentiable. Define the curvature C of the
function f(z) as

Cre s () — f(0) — (y— @ V@),
i

The Franke-Wolfe algorithm will then produce an ¢ solution after

4C
Nmax — —f
€

Iterations.

A. d’Aspremont. M1 ENS. 44 /54

Franke-Wolfe

s Stopping criterion. At each iteration, we get a lower bound on the optimum
as a byproduct of the affine minimization step. By convexity

flxi) + Vf(zp) (xqg — 21) < f(z), forallz eC

and finally, calling f* the optimal value of problem, we obtain

flzr) — £+ < V() (2 —).

This allows us to bound the suboptimality of iterate at no additional cost.

A. d'Aspremont. M1 ENS. 45 /54

Partial Minimization: Coordinate Descent

A. d'Aspremont. M1 ENS. 46/54

Coordinate Descent

We seek to solve L
minimize f(x)
subjectto xz € C

In the variable z € R™, with C C R"™ convex.

m Our main assumption here is that C' is a product of simpler sets. We rewrite
the problem
minimize f(x1,...,2p)
subjectto x;€C;, 1=1,...,p

where C' = C7 x ... X C,.

m This helps if the minimization subproblems

wl?ei(rjl,-f(xl’ ey Ly ey Tp)

can be solved very efficiently (or in closed-form).

A. d’Aspremont. M1 ENS. 47 /54

Coordinate Descent

Algorithm. The algorithm simply computes the iterates z(*t1) as

xgkﬂ) = argmin f(xgk), . ,xgk), . ,x](ok))
x;€C}
x§k+1) _ x§k)7 Iy

for a certain i € [1, p|, cycling over all indices in [1, p|.

Convergence.

s Complexity analysis similar to coordinate-wise gradient descent (or steepest
descent in {1 norm).

= Need f(x) strongly convex to get linear complexity bound.

m Few clean results outside of this setting.

A. d'Aspremont. M1 ENS. 43 /54

Coordinate Descent

Example.

Consider the box constrained minimization problem

minimize 2L Ax + bLy
subject to ||z]|eo < 1

in the variable £ € R™. We assume A > 0.

The set ||z]|oo <1 is a box, i.e. a product of intervals.

Each minimization subproblem means solving a second order equation.

The dual is

min (b+y)" A~ (b+y) — 4|yl
yeR™

which can be interpreted as a penalized regression problem in the
variable y € R".

A. d'Aspremont. M1 ENS.

49 /54

Partial Minimization:

Dykstra, alternating projection

A. d'Aspremont. M1 ENS. 50/54

Dykstra, alternating projection

We focus on a simple feasibility problem
find z € C1 N Cy

in the variable £ € R™ with C, C5 C R" two convex sets.

We assume now that the projection problems on C; are easier to solve

minimize ||z — y||2
subject to z= € C}

in r € R™.

A. d'Aspremont. M1 ENS. 51/54

Dykstra, alternating projection

Algorithm (alternating projection)

m Choose g € R".

m For k=1,... kK™ iterate

1. Project on C

Thy1/2 = argmin ||z — a2
xeCq

2. Project on (5

Th41 = argmin ||z — Tp41 /2|2
xeCy

Convergence. We can show dist(zy, C1 N C5) — 0. Linear convergence provided
some additional regularity assumptions.

A. d'Aspremont. M1 ENS. 52/54

Dykstra, alternating projection

Algorithm (Dykstra)

m Choose xg, zg € R".

m For k=1,... kK™ iterate

1. Project on C

Th41/2 = argmin ||z — 2|2
xeCq

2. Update
Rk+1/2 = 25171-c+1/2 — Zk
3. Project on (5

Th41 = argmin || — 2p41/2]|2
xeCly

4. Update
Zk+1 = 2k + Thtl — Thy1/2

Convergence. Usually faster than simple alternating projection.

A. d'Aspremont. M1 ENS.

53/54

