First Order Methods: Part Two.

- **Centring.** Solve a centering problem at each iteration and compute a subgradient at the center to localize the solution.

- **Affine maximization.** Solve an affine maximization problem over the feasible set.

- **Partial optimization.** Solve the minimization problem over a subset of the variables.
Centering: Localization Methods
Localization methods

- **Function** $f : \mathbb{R}^n \to \mathbb{R}$ convex (and for now, differentiable)
- **problem**: minimize f
- **oracle model**: for any x we can evaluate f and $\nabla f(x)$ (at some cost)

Main assumption: *evaluating the gradient is very expensive.*

From $f(x) \geq f(x_0) + \nabla f(x_0)^T(x - x_0)$ we conclude

$$\nabla f(x_0)^T(x - x_0) \geq 0 \implies f(x) \geq f(x_0)$$

i.e., all points in halfspace $\nabla f(x_0)^T(x - x_0) \geq 0$ are *worse* than x_0
Localization methods

- by evaluating ∇f we rule out a halfspace in our search for x^*:

$$x^* \in \{x \mid \nabla f(x_0)^T(x - x_0) \leq 0\}$$

- idea: get one bit of info (on location of x^*) by evaluating ∇f

- for nondifferentiable f, can replace $\nabla f(x_0)$ with any subgradient $g \in \partial f(x_0)$
Localization methods

suppose we have evaluated $\nabla f(x_1), \ldots, \nabla f(x_k)$ then we know $x^* \in \{x \mid \nabla f(x_i)^T(x - x_i) \leq 0\}$

on the basis of $\nabla f(x_1), \ldots, \nabla f(x_k)$, we have localized x^* to a polyhedron

question: what is a ‘good’ point x_{k+1} at which to evaluate ∇f?
Localization methods

Basic localization (or cutting-plane) algorithm:

1. after iteration $k - 1$ we know $x^* \in P_{k-1}$:

 $$P_{k-1} = \{x \mid \nabla f(x^{(i)})^T(x - x^{(i)}) \leq 0, \ i = 1, \ldots, k - 1\}$$

2. evaluate $\nabla f(x^{(k)})$ (or $g \in \partial f(x^{(k)})$) for some $x^{(k)} \in P_{k-1}$

3. $P_k := P_{k-1} \cap \{x \mid \nabla f(x^{(k)})^T(x - x^{(k)}) \leq 0\}$
Localization methods

- \(P_k \) gives our uncertainty of \(x^* \) at iteration \(k \)
- want to pick \(x^{(k)} \) so that \(P_{k+1} \) is as small as possible
- clearly want \(x^{(k)} \) near center of \(C^{(k)} \)
Example: bisection on \mathbb{R}

- $f : \mathbb{R} \rightarrow \mathbb{R}$
- P_k is interval
- obvious choice: $x^{(k+1)} := \text{midpoint}(P_k)$

bisection algorithm

given interval $C = [l, u]$ containing x^*

repeat

1. $x := (l + u)/2$
2. evaluate $f'(x)$
3. if $f'(x) < 0$, $l := x$; else $u := x$
Example: bisection on \mathbb{R}

$$\text{length}(P_{k+1}) = u_{k+1} - l_{k+1} = \frac{u_k - l_k}{2} = (1/2)\text{length}(P_k)$$

and so $\text{length}(P_k) = 2^{-k}\text{length}(P_0)$
Example: bisection on \(\mathbb{R} \)

interpretation:

- \(\text{length}(P_k) \) measures our uncertainty in \(x^* \)
- Uncertainty is halved at each iteration; get exactly one bit of info about \(x^* \) per iteration
- \# steps required for uncertainty (in \(x^* \)) \(\leq \) :

 \[
 \log_2 \frac{\text{length}(P_0)}{\text{length}(P_k)} = \log_2 \frac{\text{initial uncertainty}}{\text{final uncertainty}}
 \]

question:

- can bisection be extended to \(\mathbb{R}^n \)?
- or is it special since \(\mathbb{R} \) is linear ordering?
Center of gravity algorithm

Take $x^{(k+1)} = \text{CG}(P_k)$ (center of gravity)

$$\text{CG}(P_k) = \frac{\int_{P_k} x \, dx}{\int_{P_k} dx}$$

Theorem. If $C \subseteq \mathbb{R}^n$ convex, $x_{cg} = \text{CG}(C)$, $g \neq 0$,

$$\text{vol} \left(C \cap \{x \mid g^T (x - x_{cg}) \leq 0 \} \right) \leq (1 - 1/e) \text{vol}(C) \approx 0.63 \, \text{vol}(C)$$

(independent of dimension n)

hence in CG algorithm, $\text{vol}(P_k) \leq 0.63^k \text{vol}(P_0)$
Center of gravity algorithm

- $\text{vol}(P_k)^{1/n}$ measures uncertainty (in x^*) at iteration k
- uncertainty reduced at least by $0.63^{1/n}$ each iteration
- from this can prove $f(x^{(k)}) \rightarrow f(x^*)$ (later)
- max. # steps required for uncertainty \leq :

$$1.51n \log_2 \frac{\text{initial uncertainty}}{\text{final uncertainty}}$$

(cf. bisection on \mathbb{R})
Center of gravity algorithm

advantages of CG-method

- guaranteed convergence
- number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

- finding $x^{(k+1)} = \text{CG}(P_k)$ is harder than original problem
- P_k becomes more complex as k increases
 (removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)
analytic center of polyhedron \(P = \{ z \mid a_i^T z \leq b_i, \ i = 1, \ldots, m \} \) is

\[
AC(P) = \arg\min_z -\sum_{i=1}^{m} \log(b_i - a_i^T z)
\]

ACCPM is localization method with next query point \(x^{(k+1)} = AC(P_k) \) (found by Newton’s method)
Outer ellipsoid from analytic center

- let x^* be analytic center of $P = \{z \mid a^T_i z \leq b_i, \ i = 1, \ldots, m\}$
- let H^* be Hessian of barrier at x^*,
\[
H^* = -\nabla^2 \sum_{i=1}^{m} \log(b_i - a^T_i z) \bigg|_{z=x^*} = \sum_{i=1}^{m} \frac{a_i a^T_i}{(b_i - a^T_i x^*)^2}
\]
- then, $P \subseteq E = \{z \mid (z - x^*)^T H^*(z - x^*) \leq m^2\}$ (not hard to show)
Lower bound in ACCPM

- let $E^{(k)}$ be outer ellipsoid associated with $x^{(k)}$
- a lower bound on optimal value p^* is

$$p^* \geq \inf_{z \in E^{(k)}} \left(f(x^{(k)}) + g^{(k)T}(z - x^{(k)}) \right)$$

$$= f(x^{(k)}) - m_k \sqrt{g^{(k)T}H^{(k)} - 1} g^{(k)}$$

(m_k is number of inequalities in P_k)
- gives simple stopping criterion $\sqrt{g^{(k)T}H^{(k)} - 1} g^{(k)} \leq \epsilon / m_k$
Best objective and lower bound

since ACCPM isn’t a descent a method, we keep track of best point found, and best lower bound

best function value so far: $$u_k = \min_{i=1, \ldots, k} f(x^{(k)})$$

best lower bound so far: $$l_k = \max_{i=1, \ldots, k} f(x^{(k)}) - m_k \sqrt{g^{(k)}T H^{(k)} - 1 g^{(k)}}$$

can stop when $$u_k - l_k \leq$$
Basic ACCPM

\begin{center}
\begin{tabular}{|l|}
\hline
given polyhedron P containing x^* \\
repeat \\
1. compute x^*, the analytic center of P, and H^* \\
2. compute $f(x^*)$ and $g \in \partial f(x^*)$ \\
3. $u := \min \{u, f(x^*)\}$ \\
\hspace{1cm} $l := \max \{l, f(x^*) - m \sqrt{g^T H^* g}\}$ \\
4. add inequality $g^T (z - x^*) \leq 0$ to P \\
until $u - l <$ \\
\hline
\end{tabular}
\end{center}

here m is number of inequalities in P
Dropping constraints

ACCPM adds an inequality to P each iteration, so centering gets harder, more storage as algorithm progresses

schemes for dropping constraints from $P^{(k)}$:

- remove all redundant constraints (expensive)
- remove some constraints known to be redundant
- remove constraints based on some relevance ranking
Dropping constraints in ACCPM

\(x^* \) is AC of \(P = \{x \mid a_i^T x \leq b_i, \ i = 1, \ldots, m\} \), \(H^* \) is barrier Hessian at \(x^* \)

define (ir)relevance measure \(\eta_i = \frac{b_i - a_i^T x^*}{\sqrt{a_i^T H^* a_i}} \)

- \(\eta_i / m \) is normalized distance from hyperplane \(a_i^T x = b_i \) to outer ellipsoid
- if \(\eta_i \geq m \), then constraint \(a_i^T x \leq b_i \) is redundant

common ACCPM constraint dropping schemes:

- drop all constraints with \(\eta_i \geq m \) (guaranteed to not change \(P \))
- drop constraints in order of irrelevance, keeping constant number, usually \(3n - 5n \)
PWL objective, $n = 10$ variables, $m = 100$ terms

simple ACCPM: $f(x^{(k)})$ and lower bound $f(x^{(k)}) - m\sqrt{g^{(k)T}H^{(k)} - 1g^{(k)}}$
ACCPM with constraint dropping

\[u_k - \rho \]

\[u_k - l_k \]

- no dropping
- drop \(\eta_i > m \)
- keep \(3n \)

A. d’Aspremont. M1 ENS.
ACCPM with constraint dropping

number of inequalities in P:

\[k \]

\[\text{no dropping} \]

\[\text{drop } n_i > m \]

\[\text{keep } 3n \]

\[k \]

\[0 \]

\[50 \]

\[100 \]

\[150 \]

\[200 \]

\[0 \]

\[50 \]

\[100 \]

\[150 \]

\[200 \]

\[\text{. . . constraint dropping actually } \text{improves} \text{ convergence (!)} \]
The Ellipsoid Method

Challenges in cutting-plane methods:

- can be difficult to compute appropriate next query point
- localization polyhedron grows in complexity as algorithm progresses

can get around these challenges . . .

ellipsoid method is another approach

- developed in 70s by Shor and Yudin
- used in 1979 by Khachian to give polynomial time algorithm for LP
Ellipsoid algorithm

idea: localize x^* in an **ellipsoid** instead of a **polyhedron**

1. at iteration k we know $x^* \in E^{(k)}$

2. set $x^{(k+1)} := \text{center}(E^{(k)})$; evaluate $\nabla f (x^{(k+1)})$ (or $g^{(k)} \in \partial f (x^{(k+1)})$)

3. hence we know

$$x^* \in E^{(k)} \cap \{z \mid \nabla f (x^{(k+1)})^T (z - x^{(k+1)}) \leq 0\}$$

(a half-ellipsoid)

4. set $E^{(k+1)} := \text{minimum volume ellipsoid covering} \ E^{(k)} \cap \{z \mid \nabla f (x^{(k+1)})^T (z - x^{(k+1)}) \leq 0\}$
Ellipsoid algorithm

compared to cutting-plane method:

- localization set doesn’t grow more complicated
- easy to compute query point
- but, we add unnecessary points in step 4
Properties of ellipsoid method

- reduces to bisection for \(n = 1 \)
- simple formula for \(E^{(k+1)} \) given \(E^{(k)} \), \(\nabla f (x^{(k+1)}) \)
- \(E^{(k+1)} \) can be larger than \(E^{(k)} \) in diameter (max semi-axis length), but is always smaller in volume
- \(\text{vol}(E^{(k+1)}) < e^{-\frac{1}{2n}} \text{vol}(E^{(k)}) \)
 (note that volume reduction factor depends on \(n \))
Example
$E(x, A) = \{z \mid (z - x)^T A^{-1} (z - x) \leq 1\}$
Updating the ellipsoid

(for $n > 1$) minimum volume ellipsoid containing

\[E \cap \{ z \mid g^T(z - x) \leq 0 \} \]

is given by

\[x^+ = x - \frac{1}{n+1} A \tilde{g} \]
\[A^+ = \frac{n^2}{n^2 - 1} \left(A - \frac{2}{n+1} A \tilde{g} \tilde{g}^T A \right) \]

where $\tilde{g} \triangleq g / \sqrt{g^T A g}$
As in the ACCPM case, we can get error bounds on the current iterate.

\(x^* \in E_k \), so

\[
\begin{align*}
 f(x^*)& \geq f(x^{(k)}) + \nabla f(x^{(k)})^T(x^* - x^{(k)}) \\
 &\geq f(x^{(k)}) + \inf_{x \in E^{(k)}} \nabla f(x^{(k)})^T(x - x^{(k)}) \\
 &= f(x^{(k)}) - \sqrt{\nabla f(x^{(k)})^T A^{(k)} \nabla f(x^{(k)})}
\end{align*}
\]

simple stopping criterion:

\[
\sqrt{\nabla f(x^{(k)})^T A^{(k)} \nabla f(x^{(k)})} \leq \epsilon
\]
Stopping criterion

\[f(x^{(k)}) = f^* + \sqrt{\nabla f(x^{(k)})^T A^{(k)} \nabla f(x^{(k)})} \]
Basic ellipsoid algorithm

ellipsoid described as \(E(x, A) = \{ z \mid (z - x)^T A^{-1} (z - x) \leq 1 \} \)

given ellipsoid \(E(x, A) \) containing \(x^* \), accuracy \(\epsilon > 0 \)
repeat
1. evaluate \(\nabla f(x) \) (or \(g \in \partial f(x) \))
2. if \(\sqrt{\nabla f(x)^T A \nabla f(x)} \leq \epsilon \), return \(x \)
3. update ellipsoid
 3a. \(\tilde{g} := \nabla f(x) \bigg/ \sqrt{\nabla f(x)^T A \nabla f(x)} \)
 3b. \(x := x - \frac{1}{n+1} A \tilde{g} \)
 3c. \(A := \frac{n^2}{n^2 - 1} \left(A - \frac{2}{n+1} A \tilde{g} \tilde{g}^T A \right) \)

properties:

- can propagate Cholesky factor of \(A \); get \(O(n^2) \) update
- not a descent method
- often slow but robust in practice
Interpretation

- change coordinates so uncertainty (E) is unit ball
- take gradient (or subgradient) step with fixed length $1/(n + 1)$

Properties:

- can propagate Cholesky factor of A; get $O(n^2)$ update
- not a descent method
- often slow but robust in practice
Proof of convergence

assumptions:

- f is Lipschitz: $|f(y) - f(x)| \leq G|y - x|
- $E^{(0)}$ is ball with radius R

suppose $f(x^{(i)}) > f^* + \epsilon$, $i = 0, \ldots, k$, then

$$f(x) \leq f^* + \epsilon \implies x \in E^{(k)}$$

since at iteration i we only discard points with $f \geq f(x^{(i)})$, then from Lipschitz condition,

$$kx - x^*k \leq G \implies f(x) \leq f^* + \epsilon \implies x \in E^{(k)}$$

so $B = \{x \mid kx - x^*k \leq G\} \subseteq E^{(k)}$, hence $\text{vol}(B) \leq \text{vol}(E^{(k)})$, so

$$\beta_n (G)^n \leq e^{-k/2n} \text{vol}(E^{(0)}) = e^{-k/2n} \beta_n R^n$$

(β_n is volume of unit ball in \mathbb{R}^n), therefore $k \leq 2n^2 \log(RG/\epsilon)$
\[B = \{ x \mid \|x - x^*\| \leq \epsilon/G \} \]

Conclusion: for \(K > 2n^2 \log(RG/\epsilon) \),

\[
\min_{i=0,\ldots,K} f(x^{(i)}) \leq f^* + \epsilon
\]
Interpretation of complexity

since $x^* \in E_0 = \{ x \mid kx - x^{(0)}k \leq R \}$, our prior knowledge of f^* is

$$f^* \in [f(x^{(0)}) - GR, f(x^{(0)})]$$

our prior uncertainty in f^* is GR

after k iterations our knowledge of f^* is

$$f^* \in \left[\min_{i=0,\ldots,k} f(x^{(i)}) - , \min_{i=0,\ldots,k} f(x^{(i)}) \right]$$

posterior uncertainty in f^* is \leq

iterations required:

$$2n^2 \log \frac{RG}{\text{prior uncertainty}} = 2n^2 \log \frac{\text{prior uncertainty}}{\text{posterior uncertainty}}$$

efficiency: $0.72/n^2$ bits per gradient evaluation (degrades with n)
Inequality constrained problems

minimize \(f_0(x) \)
subject to \(f_i(x) \leq 0, \ i = 1, \ldots, m \)

same idea: maintain ellipsoids \(E^{(k)} \) that

- contain \(x^* \)
- decrease in volume to zero
case 1: $x^{(k)}$ feasible, i.e., $f_i(x^{(k)}) \leq 0$, $i = 1, \ldots, m$

- then do usual update of $E^{(k)}$ based on $\nabla f_0(x^{(k)})$
- rules out halfspace of points with larger function value than current point

case 2: $x^{(k)}$ infeasible, say, $f_j(x^{(k)}) > 0$;

- then $\nabla f_j(x^{(k)})^T (x - x^{(k)}) \geq 0 \implies f_j(x) > 0 \implies x$ infeasible so update $E^{(k)}$ based on $\nabla f_j(x^{(k)})$
- rules out halfspace of infeasible points
Affine Maximization: Frank-Wolfe
Franke-Wolfe

- Classical first order methods for solving

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C,
\end{align*}
\]

in \(x \in \mathbb{R}^n \), with \(C \subset \mathbb{R}^n \) convex, relied on the assumption that the following subproblem could be solved efficiently

\[
\begin{align*}
\text{minimize} & \quad y^T x + d(x) \\
\text{subject to} & \quad x \in C,
\end{align*}
\]

in the variable \(x \in \mathbb{R}^n \), where \(d(x) \) is a strongly convex function.

- The method detailed here assumes instead that the **affine minimization subproblem**

\[
\begin{align*}
\text{minimize} & \quad d^T x \\
\text{subject to} & \quad x \in C
\end{align*}
\]

can be solved efficiently for any \(y \in \mathbb{R}^n \).
Franke-Wolfe

Algorithm.

- Choose $x_0 \in C$.
- For $k = 1, \ldots, k^{\text{max}}$ iterate
 1. Compute $\nabla f(x_k)$
 2. Solve
 \[
 \begin{align*}
 & \text{minimize} \quad x^T \nabla f(y_k) \\
 & \text{subject to} \quad x \in C
 \end{align*}
 \]
 in $x \in \mathbb{R}^n$, call the solution x_d.
 3. Update the current point

 $$x_{k+1} = x_k + \frac{2}{k+2}(x_d - x_k)$$

Note that all iterates are feasible.
Complexity. Assume that f is differentiable. Define the curvature C_f of the function $f(x)$ as

$$C_f \triangleq \sup_{s, x \in M, \alpha \in [0, 1], \ y = x + \alpha (s - x)} \frac{1}{\alpha^2} (f(y) - f(x) - hy - x, \nabla f(x)).$$

The Franke-Wolfe algorithm will then produce an ϵ solution after

$$N_{\text{max}} = \frac{4C_f}{\epsilon}$$

iterations.
Stopping criterion. At each iteration, we get a lower bound on the optimum as a byproduct of the affine minimization step. By convexity

\[f(x_k) + \nabla f(x_k)^T(x_d - x_k) \leq f(x), \quad \text{for all } x \in C \]

and finally, calling \(f^* \) the optimal value of problem, we obtain

\[f(x_k) - f^* \leq \nabla f(x_k)^T(x_k - x_d). \]

This allows us to bound the suboptimality of iterate at no additional cost.
Partial Minimization: Coordinate Descent
Coordinate Descent

We seek to solve

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C
\end{align*}
\]

in the variable \(x \in \mathbb{R}^n \), with \(C \subset \mathbb{R}^n \) convex.

- Our main assumption here is that \(C \) is a product of simpler sets. We rewrite the problem

\[
\begin{align*}
\text{minimize} & \quad f(x_1, \ldots, x_p) \\
\text{subject to} & \quad x_i \in C_i, \quad i = 1, \ldots, p
\end{align*}
\]

where \(C = C_1 \times \ldots \times C_p \).

- This helps if the minimization subproblems

\[
\min_{x_i \in C_i} f(x_1, \ldots, x_i, \ldots, x_p)
\]

can be solved very efficiently (or in closed-form).
Coordinate Descent

Algorithm. The algorithm simply computes the iterates $x^{(k+1)}$ as

$$
x_i^{(k+1)} = \arg\min_{x_i \in C_i} f(x_1^{(k)}, \ldots, x_i^{(k)}, \ldots, x_p^{(k)})
$$

$$
x_j^{(k+1)} = x_j^{(k)}, \quad j \neq i
$$

for a certain $i \in [1, p]$, cycling over all indices in $[1, p]$.

Convergence.

- Complexity analysis similar to coordinate-wise gradient descent (or steepest descent in ℓ_1 norm).
- Need $f(x)$ strongly convex to get linear complexity bound.
- Few clean results outside of this setting.
Example.

- Consider the box constrained minimization problem

\[
\begin{align*}
\text{minimize} & \quad x^T A x + b^T x \\
\text{subject to} & \quad \|x\|_\infty \leq 1
\end{align*}
\]

in the variable \(x \in \mathbb{R}^n\). We assume \(A \succ 0\).

- The set \(\|x\|_\infty \leq 1\) is a box, i.e. a product of intervals.

- Each minimization subproblem means solving a second order equation.

- The dual is

\[
\min_{y \in \mathbb{R}^n} (b + y)^T A^{-1} (b + y) - 4kyk_1
\]

which can be interpreted as a penalized regression problem in the variable \(y \in \mathbb{R}^n\).
Partial Minimization:

Dykstra, alternating projection
We focus on a simple **feasibility problem**

\[
\text{find } x \in C_1 \cap C_2
\]

in the variable \(x \in \mathbb{R}^n \) with \(C_1, C_2 \subset \mathbb{R}^n \) two convex sets.

We assume now that the projection problems on \(C_i \) are easier to solve

\[
\begin{align*}
\text{minimize} & \quad kx - yk_2 \\
\text{subject to} & \quad x \in C_i
\end{align*}
\]

in \(x \in \mathbb{R}^n \).
Algorithm (alternating projection)

- Choose $x_0 \in \mathbb{R}^n$.
- For $k = 1, \ldots, k^{\text{max}}$ iterate
 1. Project on C_1
 \[x_{k+1/2} = \arg\min_{x \in C_1} kx - x_k k_2 \]
 2. Project on C_2
 \[x_{k+1} = \arg\min_{x \in C_2} kx - x_{k+1/2} k_2 \]

Convergence. We can show \(\text{dist}(x_k, C_1 \cap C_2) \to 0 \). Linear convergence provided some additional regularity assumptions.
Dykstra, alternating projection

Algorithm (Dykstra)

- Choose $x_0, z_0 \in \mathbb{R}^n$.
- **For** $k = 1, \ldots, k^{max}$ **iterate**
 1. Project on C_1

 $$x_{k+1/2} = \arg\min_{x \in C_1} \|x - z_k\|_2$$
 2. Update

 $$z_{k+1/2} = 2x_{k+1/2} - z_k$$
 3. Project on C_2

 $$x_{k+1} = \arg\min_{x \in C_2} \|x - z_{k+1/2}\|_2$$
 4. Update

 $$z_{k+1} = z_k + x_{k+1} - x_{k+1/2}$$

Convergence. Usually faster than simple alternating projection.