
Optimisation Combinatoire et Convexe

First Order Methods: part I

A. d’Aspremont. M1 ENS. 1/44

Today

First Order Methods: Part One.

� Introduction

◦ Exploiting structure

◦ Classification

� Gradient/projection based methods

◦ Acceleration

◦ Optimal complexity, resisting oracles

A. d’Aspremont. M1 ENS. 2/44

Introduction

Interior Point Methods, Netwon.

� Even with efficient linear algebra, exploiting structure in the KKT system
computing the Newton step, the cost of one iteration becomes prohibitive.

� The dependence on the precision target is logarithmic O(log(1/ε)): Newton’s
method produces high precision solutions, which is often unnecessary.

� Very good agreement between theoretical complexity bounds and empirical
performance:

◦ Two convergence phases for Newton’s method (damped, quadratic).

◦ Dimension independence: only precision improvement matters in Newton’s
iterations.

◦ Very good dependence on precision target.

◦ Affine invariance: immune to conditioning issues.

Unfortunately: does not scale forever. . .

A. d’Aspremont. M1 ENS. 3/44

Introduction

First order methods.

� Dependence on precision is polynomial O(1/εα), not logarithmic O(log(1/ε)).
This is OK in many applications (stats, etc).

� Run a much larger number of cheaper iterations. No Hessian means
significantly lower memory and CPU costs per iteration.

� Lack of second order information means conditioning issues have much more
impact on numerical performance.

� Much greater gap between theoretical complexity bounds and empirical
performance.

� No unified analysis (self-concordance for IPM): large library of disparate
methods.

� Algorithmic choices strictly constrained by problem structure.

Objective: classify these techniques, study their performance & complexity.

A. d’Aspremont. M1 ENS. 4/44

Introduction

First order methods. Algorithmic choices based on problem structure.

� Some optimization subproblems can be solved very efficiently (thresholding,
binary search, SVD, etc).

� Classify algorithms according to these subproblems:

◦ Projection. Project the current iterate on a simple convex set, according to
a certain norm. Iterates are mostly based on projected gradient steps.

◦ Centering. Solve a centering problem at each iteration and compute a
subgradient at the center to localize the solution.

◦ Affine maximization. Solve an affine maximization problem over the
feasible set.

◦ Partial optimization. Solve the minimization problem over a subset of the
variables.

� Solving large-scale programs means solving a long sequence of these
subproblems.

A. d’Aspremont. M1 ENS. 5/44

Gradient/projection methods

A. d’Aspremont. M1 ENS. 6/44

Gradient/projection methods: introduction

Solve
minimize f(x)
subject to x ∈ C

in x ∈ Rn, with C ⊂ Rn convex.

Main assumptions in the subgradient/gradient methods that follow:

� The gradient ∇f(x) or a subgradient can be computed efficiently.

� If C is not Rn, for any y ∈ Rn, the following subproblem can be solved
efficiently

minimize yTx+ d(x)
subject to x ∈ C

in the variable x ∈ Rn, where d(x) is a strongly convex function. Typically,
d(x) = ‖x‖22 and this is an Euclidean projection.

We will always assume that C is simple enough so that this projection step can be
solved efficiently.

A. d’Aspremont. M1 ENS. 7/44

Subgradient Methods

Subgradient. Definition.

� Suppose that f is a convex function with domf = Rn, and that there is a
vector g ∈ Rn such that:

f(y) ≥ f(x) + gT (y − x), for all y ∈ Rn

� The vector g is called a subgradient of f at x, we write g ∈ ∂f .

� Of course, if f is differentiable, the gradient of f at x satisfies this condition

� The subgradient defines a supporting hyperplane for f at the point x

A. d’Aspremont. M1 ENS. 8/44

Gradient methods

minimize f(x)
subject to x ∈ C

In theory. . .

� The theoretical convergence speed of gradient based methods is mostly
controlled by the smoothness of the objective.

Convex objective f(x) Iterations. . .
Nondifferentiable O(1/ε2)
Differentiable O(1/ε2)
Smooth (Lipschitz gradient) O(1/

√
ε)

Strongly convex O(log(1/ε))

� Obviously, the geometry of the (convex) feasible set also has an impact.

In practice. . .

� Compared to IPM, much larger gap between theoretical complexity guarantees
and empirical performance.

� Conditioning, well-posedness, etc. also have a very strong impact.

A. d’Aspremont. M1 ENS. 9/44

Subgradient Methods

Subgradient method.

� Algorithm. At each iteration k, update the current point xk according to:

xk+1 = xk + αkgk

where gk is a subgradient of f at xk

� αk is the step size sequence

� Similar to gradient descent but, not a descent method . . .

� Instead: use the best point and the minimum function value found so far

A. d’Aspremont. M1 ENS. 10/44

Subgradient methods

Step size strategies:

� Constant step size: αk = h for all k ≥ 0

� Constant step length: αk/‖gk‖ = h for all k ≥ 0

� Square summable but not summable:

∞∑
k=0

αk =∞ and
∞∑
k=0

α2
k <∞

� Nonsummable diminishing:

∞∑
k=0

αk =∞ and lim
k→∞

αk = 0

A. d’Aspremont. M1 ENS. 11/44

Subgradient methods: convergence

Convergence proof. For standard gradient descent methods, convergence is
based on the function value decreasing at each step. Here, the function value
often increases, but the Euclidean distance to the optimal set converges.

Proposition

Subgradient method complexity. Assuming ‖g‖2 ≤ G, for all g ∈ ∂f , the
subgradient method with step size αi satisifes

fbest − f? ≤
dist(x1, x

∗)2 +G2
∑k
i=1α

2
i

2
∑k
i=1αi

Proof. We have

‖x(k+1) − x?‖22 = ‖x(k) − αkg(k) − x?‖22
= ‖x(k) − x?‖22 − 2αkg

(k)T (x(k) − x?) + α2
k‖g(k)‖22

≤ ‖x(k) − x?‖22 − 2αk(f(x(k))− f?) + α2
k‖g(k)‖22,

A. d’Aspremont. M1 ENS. 12/44

where f? = f(x?). The last line follows from the definition of subgradient, which
gives

f(x?) ≥ f(x(k)) + g(k)T (x? − x(k)).

Applying the inequality above recursively, we have

‖x(k+1) − x?‖22 ≤ ‖x(1) − x?‖22 − 2

k∑
i=1

αi(f(x(i))− f?) +

k∑
i=1

α2
i‖g(i)‖22.

Using ‖x(k+1) − x?‖22 ≥ 0 we have

2

k∑
i=1

αi(f(x(i))− f?) ≤ ‖x(1) − x?‖22 +

k∑
i=1

α2
i‖g(i)‖22.

Combining this with

k∑
i=1

αi(f(x(i))− f?) ≥

(
k∑
i=1

αi

)
min

i=1,...,k
(f(x(i))− f?),

A. d’Aspremont. M1 ENS. 13/44

we have the inequality

f
(k)
best − f

? = min
i=1,...,k

f(x(i))− f? ≤
‖x(1) − x?‖22 +

∑k
i=1α

2
i‖g(i)‖22

2
∑k
i=1αi

. (1)

Finally, using the assumption ‖g(k)‖2 ≤ G, we obtain the basic inequality

f
(k)
best − f

? = min
i=1,...,k

f(x(i))− f? ≤
‖x(1) − x?‖22 +G2

∑k
i=1α

2
i

2
∑k
i=1αi

. (2)

Since x? is any minimizer of f , we can state that

f
(k)
best − f

? ≤
dist(x(1), X?)2 +G2

∑k
i=1α

2
i

2
∑k
i=1αi

.

A. d’Aspremont. M1 ENS. 14/44

Subgradient methods: convergence

Constant step size. If αk = h, we have

f
(k)
best − f

? ≤ dist(x(1), X?)2 +G2h2k

2hk
.

To get an ε solution, we set h = 2ε/G2 and

dist(x1, X
?)2

2hk
≤ ε

hence the following bound on the number of iterations

k ≥ dist(x1, X
?)2G2

4ε2
.

A. d’Aspremont. M1 ENS. 15/44

Subgradient methods: convergence

Square summable but not summable. Now suppose

‖α‖22 =

∞∑
k=1

α2
k <∞,

∞∑
k=1

αk =∞.

Then we have

f
(k)
best − f

? ≤ dist(x(1), X?)2 +G2‖α‖22
2
∑k
i=1αi

,

which converges to zero as k →∞. In other words, the subgradient method

converges (in the sense f
(k)
best → f?).

A. d’Aspremont. M1 ENS. 16/44

Subgradient Methods

If the problem has constraints:

minimize f(x)
subject to x ∈ C

where C ⊂ Rn is a convex set

� Use the Euclidean projection pC(·)

xk+1 = pC(xk + αkgk)

� Similar complexity analysis

� Some numerical examples on piecewise linear minimization. . . Problem
instance with n = 10 variables, m = 100 terms

“In theory, there is no difference between theory and practice.
In practice, there is. . . ”

A. d’Aspremont. M1 ENS. 17/44

Subgradient Methods: Numerical Examples

Constant step length, h = 0.05, 0.02, 0.005

0 100 200 300 400 500
10

−2

10
−1

10
0

h = 0.05
h = 0.02
h = 0.005

k

f
(x

(k
))
−

p
⋆

A. d’Aspremont. M1 ENS. 18/44

Subgradient Methods: Numerical Examples

Constant step size h = 0.05, 0.02, 0.005

0 100 200 300 400 500
10

−2

10
−1

10
0

h = 0.05
h = 0.02
h = 0.005

k

f
(x

(k
))
−

p
⋆

A. d’Aspremont. M1 ENS. 19/44

Subgradient Methods: Numerical Examples

Diminishing step rule α = 0.1/
√
k and square summable step size rule α = 0.1/k.

0 50 100 150 200 250
10

−2

10
−1

10
0

α = .1/
√
k

α = .1/k

k

f
(x

(k
))
−

p
⋆

A. d’Aspremont. M1 ENS. 20/44

Subgradient Methods: Numerical Examples

Constant step length h = 0.02, diminishing step size rule α = 0.1/
√
k, and square

summable step rule α = 0.1/k

0 500 1000 1500 2000 2500 3000 3500
10

−3

10
−2

10
−1

10
0

h = 0.02

α = .1/
√
k

α = .1/k

k

f
(k

)
b
e
st
−

p
⋆

A. d’Aspremont. M1 ENS. 21/44

Accelerated Gradient Methods

A. d’Aspremont. M1 ENS. 22/44

Accelerated Gradient Methods

Solve
minimize f(x)
subject to x ∈ C

in x ∈ Rn, with C ⊂ Rn convex.

� Additional smoothness assumption: the gradient is Lipschitz continuous

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for all x, y ∈ C

where ‖ · ‖ is a norm.

� We will also study the case where the function is strongly convex, i.e. there
exists µ > 0

f(y) ≥ f(x) + (y − x)T∇f(x) +
µ

2
‖y − x‖2 for all x, y ∈ C

where ‖ · ‖ is a norm. But acceleration works even when σ = 0.

A. d’Aspremont. M1 ENS. 23/44

Accelerated Gradient Methods

The fact that the gradient ∇f(x) is Lipschitz continuous

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for all x, y ∈ C

has important algorithmic consequences:

� For any x, y ∈ Rn,

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2

and we get a quadratic upper bound on the function f(x).

� This means in particular that if y = x− 1
L∇f(x), then

f(y) ≤ f(x)− 1

2L
‖∇f(x)‖2

and we get a guaranteed decrease in the function value at each gradient
step.

A. d’Aspremont. M1 ENS. 24/44

Accelerated Gradient Methods

Suppose we seek to solve
min f(x)

over x ∈ Rn, assuming ∇f(x) is Lipschitz continuous with constant L.

Consider the following method (due to Adrien Taylor), based on [Nesterov, 1983].

For k = 1, . . . , kmax iterate

1. Set yk+1 = (1− τk)yk + τkzk − αk∇f(yk).

2. Set zk+1 = zk − γk∇f(y+1k).

where the parameters are set using the value of a time varying sequence Ak

τk =
Ak+1 −Ak
Ak+1

, αk =
Ak

LAk+1
, γk =

Ak+1 −Ak
L

.

A. d’Aspremont. M1 ENS. 25/44

Accelerated Gradient Methods

Theorem

Convergence. Let f be L-smooth and convex. For all values Ak ≥ 0 the iterates
satisfy

Ak+1(f(yk+1)− f(x?)) +
L

2
‖zk+1 − x?‖2 ≤ Ak(f(yk)− f(x?)) +

L

2
‖zk − x?‖2,

if Ak is monotonically increasing and Ak+1 − (Ak −Ak+1)
2 ≥ 0.

Proof. Perform a weighted sum of the following inequalities:

� smoothness and convexity between x? and yk+1 with weight λ1 = Ak+1 −Ak

f(x?) ≥ f(yk+1) + 〈∇f(yk+1);x? − yk+1〉+ 1
2L‖∇f(yk+1)‖2,

� smoothness and convexity between yk and yk+1 with weight λ2 = Ak

f(yk) ≥ f(yk+1) + 〈∇f(yk+1); yk − yk+1〉+ 1
2L‖∇f(yk+1)−∇f(yk)‖2.

A. d’Aspremont. M1 ENS. 26/44

The weighted sum can be written as

0 ≥λ1[f(yk+1)− f(x?) + 〈∇f(yk+1);x? − yk+1〉+ 1
2L‖∇f(yk+1)‖2]

+ λ2[f(yk+1)− f(yk) + 〈∇f(yk+1); yk − yk+1〉+ 1
2L‖∇f(yk+1)−∇f(yk)‖2],

which is equivalently formulated as

Ak+1(f(yk+1)− f(x?)) +
L

2
‖zk+1 − x?‖2

≤ Ak(f(yk)− f(x?)) +
L

2
‖zk − x?‖2 −

Ak
2L
‖∇f(yk)‖2

− Ak+1 − (Ak+1 −Ak)2

2L
‖∇f(yk+1)‖2.

Therefore, we reach the desired statement as soon as we can remove the last two
terms. This means Ak ≥ 0 and Ak+1 − (Ak+1 −Ak)2 ≥ 0 (both verified by

assumptions). The choice Ak+1 = Ak +
1+
√

4Ak+1

2 allows satisfying
Ak+1 − (Ak+1 −Ak)2 = 0 with the largest possible value of Ak+1.

A. d’Aspremont. M1 ENS. 27/44

Accelerated Gradient Methods

We get the following result, with a convergence rate of O(1/k2).

Theorem

Complexity. After k iterations, we obtain points yk and zk satisfying

f(yk)− f(x?) ≤
L‖z0 − x?‖2

k2
.

Proof. We can pick Ak = k2/2 which satisfies Ak+1 − (Ak −Ak+1)
2 ≥ 0 and,

together with the previous theorem, yields the bound above.

A. d’Aspremont. M1 ENS. 28/44

Accelerated Gradient Methods

The choice of norm has a significant impact on complexity. Consider

minimize f(x)
subject to x ∈ C

� Euclidean. Pick d(x) = ‖x‖22/2, strongly convex with σ = 1 w.r.t. the
Euclidean norm

f(xk)− f∗ ≤
2L2‖x∗‖22
(k + 1)2

where L2 is such that ‖∇f(x)−∇f(y)‖2 ≤ L2‖x− y‖2, for all x, y ∈ C.

� Entropy. Pick d(x) =
∑n
i=1 xi log xi, strongly convex with σ = 1 w.r.t. the

‖.‖1 norm

f(xk)− f∗ ≤
2L∞d(x∗)

(k + 1)2

where Le is such that ‖∇f(x)−∇f(y)‖∞ ≤ L∞‖x− y‖1, for all x, y ∈ C.

Because ‖ · ‖∞ ≤ ‖ · ‖2 ≤ ‖ · ‖1, we always have L∞ ≤ L2.

A. d’Aspremont. M1 ENS. 29/44

Accelerated Gradient Methods: optimality

Accelerated gradient methods. Can we do better than O(1/
√
ε)?

Problem class. f(x) has a Lipschitz continuous gradient with constant L. At
each iteration, we get a black-box gradient oracle, and we look for a solution
satisfying f(x)− f∗ ≤ ε

If we know nothing about f(x) except its gradient at certain points and its
gradient Lipschitz constant L.

� We need at least O(‖x0 − x∗‖2
√
L/ε) iterations.

� We can construct an explicit quadratic function reaching this bounds, which is
hard for all schemes.

A. d’Aspremont. M1 ENS. 30/44

Accelerated Gradient Methods: optimality

Definition

Iterative method. We will assume that an iterative method generates a sequence
of points yk such that

yk ∈ Lk , y0 + span {∇f(y0),∇f(y1), . . . ,∇f(yk−1)}

This can be relaxed, but simplifies analysis and covers most classical algorithms.

A. d’Aspremont. M1 ENS. 31/44

Accelerated Gradient Methods: optimality

Proof structure.

� Design a set of (quadratic) functions fn(x) whose gradients at sparse points
have only one more nonzero coefficient.

� Without loss of generality, we can always start at y0 = 0.

� Starting at y0 = 0, any iterate yk will have at most cardinality k, whatever
the algorithm.

� These iterates poorly approximate the optimum, which has cardinality n.

A. d’Aspremont. M1 ENS. 32/44

Accelerated Gradient Methods: optimality

We write Sk,n , {x ∈ Rn : xi = 0, i = k + 1, . . . , n}.

Lemma

Worst function in class. [Nesterov, 2003, §2.1.2] Define

fk(x) ,
L

8

(
x21 +

k−1∑
i=1

(xi − xi+1)
2 + x2k − 2x1

)

then for any sequence yi ∈ Rn, i = 0, . . . , p, such that

yk ∈ Lk , y0 + span {∇fp(y0),∇fp(y1), . . . ,∇fp(yk−1)}

we have yk ∈ Sk,n.

A. d’Aspremont. M1 ENS. 33/44

Proof. We can write

0 ≤ L

4

(
s21 +

k−1∑
i=1

(si − si+1)
2 + s2k

)
≤ sT∇2f(x)s

≤ L

4

(
s21 +

k−1∑
i=1

2(s2i + s2i+1) + s2k

)
≤ L

n∑
i=1

s2i

which means 0 � ∇2fk(x) � L In, hence ∇fk(x) is Lipschitz continuous with
constant L, because ∇2fk(x) = L

4Ak with

Ak =

(
B 0
0 0

)
where Bk =


2 −1 · · · 0
−1 2

... −1
0 · · · −1 2


where Ak is block tridiagonal with an upper left block of dimension Bk ∈ Sk. By
induction now, ∇fp(x0) = (L/4)e1 ∈ S1,n and assuming y ∈ Sk,n, then
∇fp(y) = (L/2)(Aky − e1) ∈ Sk+1,n because Ak is tridiagonal.

A. d’Aspremont. M1 ENS. 34/44

Accelerated Gradient Methods: optimality

Theorem

Worst-case complexity. For any 1 ≤ k ≤ (n − 1)/2, there exists a function
f(X) with ∇f(x) L-Lipschitz continuous, such that for any iterative method (cf.
above) we have

f(yk)− f∗ ≥
3L‖y0 − y∗‖2

32(k + 1)2

and

‖yk − y∗‖2 ≥
1

8
‖y0 − y∗‖2.

Proof. Without loss of generality, we can assume that y0 = 0, otherwise we
simply shift the function without changing its nature. We will apply an iterative
method to the function f(x) , f2k+1(x). Let us first note that the minimizer of
f(x), solving

∇fk(x) = Akx− e1 = 0

is given by

y∗ =

{
1− i

2k+1, i = 1, . . . , 2k + 1,

0 i = k + 1, . . . , n.

A. d’Aspremont. M1 ENS. 35/44

and

f∗2k+1 =
L

8

(
1

2k + 2
− 1

)
. (3)

and

‖y∗‖2 =

2k+1∑
i=1

(
1− i

2k + 1

)2

≤ 1

3
(2k + 2) (4)

using

k∑
i=1

i =
k(k + 1)

2
and

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
≤ (k + 1)3

3

From the form of fp(x) we have fp(x) = fk(x) whenever x ∈ Sk,n and p ≥ k,
hence in particular,

f(yk) , f2k+1(yk) = fk(yk) ≥ f∗ =
L

8

(
1

k + 1
− 1

)
,

in view of (3) and (4), with y0 = 0, f∗ , f∗2k+1 we get

f(yk)− f∗

‖y0 − y∗‖2
≥

L
8 (−1 + 1

k+1 + 1− 1
2k+2)

(2k + 2)/3
=

3L

32(k + 1)2

A. d’Aspremont. M1 ENS. 36/44

which is the first inequality. Since yk ∈ Sk,n we have

‖yk − y∗‖2 ≥
2k+1∑
i=k+1

(ȳ∗2k+1,i)
2 =

2k+1∑
i=k+1

(
1− i

2k + 2

)2

hence, with y0 = 0 and using again (4)

‖yk − y∗‖2 ≥ 2k2 + 7k + 6

24k + 1

≥ 2k2 + 7k + 6

16(k + 1)2
‖y0 − ȳ∗2k+1‖2

≥ 1

8
‖y0 − ȳ∗2k+1‖2

because
2k2 + 7k + 6

16(k + 1)2
≥ 1

8
‖y0 − ȳ∗‖2

for all k ≥ 0 and y∗ , ȳ∗2k+1.

A. d’Aspremont. M1 ENS. 37/44

Gradient/projection methods

for stochastic problems

A. d’Aspremont. M1 ENS. 38/44

Stochastic Optimization

Solve
minimize φ(x) , E[f(x, ξ)]
subject to x ∈ C,

in x ∈ Rn, where C is a simple convex set. The key difference here is that the
function we are minimizing is stochastic.

� Batch method. A simple option is to approximate the problem by

minimize
∑m
i=1 f(x, ξm)

subject to x ∈ C,

where ξi are sampled from the distribution of ξ.

� Sampling is costly, the full batch is heavy, we can do better. . .

A. d’Aspremont. M1 ENS. 39/44

Stochastic Optimization

Assume we have an unbiased estimate g(x, ξ) of the subgradient of φ(x), i.e.

� E[g(x, ξ)|x] = g(x) ∈ ∂φ(x)

� In particular
φ(y) ≥ φ(x) + g(x)T (y − x)

A. d’Aspremont. M1 ENS. 40/44

Stochastic Optimization

Let pC(·) be the Euclidean projection operator on C.

Algorithm (Robust stochastic averaging)

� Choose x0 ∈ C and a step sequence γj > 0.

� For k = 1, . . . , kmax iterate

1. Compute a subgradient
g ∈ ∂f(xk, ξk)

2. Update the current point

xk+1 = pC(xk − hkg)

3. Compute

x̄ =

∑N−1
k=0 hkxk∑N−1
k=0 hk

A. d’Aspremont. M1 ENS. 41/44

Stochastic Optimization

Convergence proof.

Theorem

Complexity. Suppose ‖x? − x0‖ ≤ R for some x0 ∈ C, and E[‖g‖22] ≤ L2, then

E[f(x̄)]−min
x∈C

E[f(x, ξ)] ≤
R2 + L2

∑N−1
k=0 h

2
k

2
∑N−1
k=0 hk

Proof. Let x∗ be an optimal solution and define rk = ‖x∗ − xk‖. Since xk+1 is
the projection of xk − hkgk over C, it satisfies

r2k+1 ≤ ‖xk − hkgk − x∗‖2

= r2k − 2hk〈gk, xk − x∗〉+ h2k‖gk‖2

because xk+1 must be closer to x∗ ∈ C than xk − hkgk.

A. d’Aspremont. M1 ENS. 42/44

Taking expectations, we get, by convexity and because ξk and xk are independent.

E[r2k+1] ≤ E[r2k]− 2hkE[〈gk, xk − x∗〉] + h2kE[‖gk‖2]
≤ E[r2k]− 2hkE[〈E[gk|xk], xk − x∗〉] + h2kL

2

≤ E[r2k]− 2hk(E[φ(xk)]− φ(x∗)) + h2kL
2

Summing all these inequalities and using the convexity of φ(·), we finally get

r20 + L2
N−1∑
k=0

h2k ≤
N−1∑
k=0

hk(E[φ(xk)]− φ(x∗))

≤ 2

(
N−1∑
k=0

hk

)
(E[φ(x̄)]− φ(x∗))

hence the desired result.

A. d’Aspremont. M1 ENS. 43/44

Stochastic Optimization

Complexity.

� If we set hk = R/(L
√
N), we have

E[f(x̄)− f∗] ≤ LR√
N

� Furthermore, if we assume

E

[
exp

(
‖g‖22
L2

)]
≤ e, for all g ∈ ∂f(xk, ξ) and x ∈ C

we get

Prob

[
φ(x̃k)− φ∗ ≥

LR√
N

(12 + 2t)

]
≤ 2 exp(−t).

A. d’Aspremont. M1 ENS. 44/44

*

References

Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Mathematics Doklady, 27(2):
372–376, 1983.

Y. Nesterov. Introductory Lectures on Convex Optimization. Springer, 2003.

A. d’Aspremont. M1 ENS. 45/44

