Optimisation Combinatoire et Convexe.

Introduction, convexité, dualité.
Today

- Convex optimization: introduction
- Course organization and other gory details...
- Convex optimization: basic concepts
Convex Optimization
Convex optimization

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_1(x) \leq 0, \ldots, f_m(x) \leq 0
\end{align*}
\]

\(x \in \mathbb{R}^n\) is optimization variable; \(f_i : \mathbb{R}^n \to \mathbb{R}\) are \textbf{convex}:

\[
f_i(\lambda x + (1 - \lambda)y) \leq \lambda f_i(x) + (1 - \lambda)f_i(y)
\]

for all \(x, y, 0 \leq \lambda \leq 1\)

- This template includes LS, LP, QP, and many others.
- \textbf{Good news:} convex problems (LP, QP, etc) are \textit{fundamentally tractable}.
- \textbf{Bad news:} this is an exception, most nonconvex are \textit{completely intractable}.
Convex optimization

A brief history.

- The field is about 50 years old.
- Starts with the work of Von Neumann, Kuhn and Tucker, etc.
- Explodes in the 60’s with the advent of “relatively” cheap and efficient computers.
- Key to all this: fast linear algebra
- Some of the theory developed before computers even existed.
Convex optimization: history

- Historical view: nonlinear problems are hard, linear ones are easy.

- In reality: **Convexity** \implies low complexity

 "... In fact the great watershed in optimization isn’t between linearity and nonlinearity, but convexity and nonconvexity."
 T. Rockafellar.

- True: Nemirovskii and Yudin [1979].

- Very true: Karmarkar [1984].

- Seriously true: convex programming, Nesterov and Nemirovskii [1994].
Convexity, complexity

- All convex minimization problems with: a first order oracle (returning $f(x)$ and a subgradient) can be solved in polynomial time in size and number of precision digits.

- Proved using the ellipsoid method by Nemirovskii and Yudin [1979].

- Very slow convergence in practice.
Linear Programming

- Simplex algorithm by Dantzig (1949): exponential worst-case complexity, very efficient in most cases.

- Khachiyan [1979] then used the ellipsoid method to show the polynomial complexity of LP.

- Karmarkar [1984] describes the first efficient polynomial time algorithm for LP, using interior point methods.
From LP to structured convex programs

- Nesterov and Nemirovskii [1994] show that the interior point methods (IPM) used for LPs can be applied to a larger class of structured convex problems.

- The **self-concordance** analysis that they introduce extends the polynomial time complexity proof for LPs.

- Most operations that preserve convexity also preserve self-concordance.
Large-scale convex programs

Interior point methods.

- IPM essentially solved once and for all a broad range of medium-scale convex programs.
- For large-scale problems, computing a single Newton step is often too expensive.

First order methods.

- Dependence on precision is polynomial $O(1/\epsilon^\alpha)$, not logarithmic $O(\log(1/\epsilon))$. This is OK in many applications (stats, etc).
- Run a much larger number of cheaper iterations. No Hessian means significantly lower memory and CPU costs per iteration.
- No unified analysis (self-concordance for IPM): large library of disparate methods.
- Algorithmic choices strictly constrained by problem structure.

Objective: classify these techniques, study their performance & complexity.
Symmetric cone programs

- An important particular case: linear programming on symmetric cones

 minimize \(c^T x \)
 subject to \(Ax - b \in \mathcal{K} \)

- These include the LP, second-order (Lorentz) and semidefinite cone:

 LP: \(\{ x \in \mathbb{R}^n : x \geq 0 \} \)
 Second order: \(\{(x, y) \in \mathbb{R}^n \times \mathbb{R} : \|x\| \leq y\} \)
 Semidefinite: \(\{ X \in \mathbb{S}^n : X \succeq 0 \} \)

- Broad class of problems can be represented in this way.

- **Good news:** Fast, reliable, open-source solvers available (SDPT3, CVX, etc).

This course will describe some “exotic” applications of these programs.
A few “miracles”

Beyond convexity.

- **Hidden convexity.** Convex programs solving nonconvex problems (*S*-lemma).
- **Approximation results.** Approximating combinatorial problems by convex programs.
 - Approximate *S*-lemma.
 - Approximation ratio for MaxCut, etc.
- **Recovery results on *ℓ*₁ penalties.** Finding sparse solutions to optimization problems using convex penalties.
 - Sparse signal reconstruction.
 - Matrix completion (collaborative filtering, NETFLIX, etc.).
Course Organization
Course outline

- Fundamental definitions
 - A brief primer on convexity and duality theory

- Algorithmic complexity
 - Interior point methods, self-concordance.
 - First order algorithms: complexity and classification.

- Modern applications
 - Statistics
 - Geometrical problems, graphs.
 - ...

- Some “miracles”: approximation, asymptotic and hidden convexity results
 - Measure concentration results.
 - S-lemma, MaxCut, low rank SDP solutions, nonconvex QCQP, etc.
 - High dimensional geometry
 - ℓ_1 recovery, matrix completion, convex deconvolution, etc.
Info

- Course website with lecture notes, homework, etc.

 http://www.di.ens.fr/~aspremon/

- A final exam.
Contact info on http://www.di.ens.fr/~aspremon/

Email: aspremon@ens.fr

Dual PhDs: Ecole Polytechnique & Stanford University

Interests: Optimization, machine learning, statistics & finance.
All lecture notes will be posted online, none of the books below are required.

- “Convex Optimization” by Lieven Vandenberghe and Stephen Boyd, available online at:

 http://www.stanford.edu/~boyd/cvxbook/

- See also Ben-Tal and Nemirovski [2001], “Lectures On Modern Convex Optimization: Analysis, Algorithms, And Engineering Applications”, SIAM.

 http://www2.isye.gatech.edu/~nemirovs/

Convex Sets
Convex Sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities
Convex set

line segment between x_1 and x_2: all points

$$x = \theta x_1 + (1 - \theta) x_2$$

with $0 \leq \theta \leq 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \leq \theta \leq 1 \quad \implies \quad \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)
Convex combination and convex hull

convex combination of \(x_1, \ldots, x_k \): any point \(x \) of the form

\[
x = \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k
\]

with \(\theta_1 + \cdots + \theta_k = 1, \theta_i \geq 0 \)

convex hull \(\text{Co} S \): set of all convex combinations of points in \(S \)
Hyperplanes and halfspaces

hyperplane: set of the form \(\{x \mid a^T x = b\} \) \((a \neq 0)\)

- \(a\) is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

halfspace: set of the form \(\{x \mid a^T x \leq b\} \) \((a \neq 0)\)

\[a^T x = b \]

\[a^T x \geq b \]

\[a^T x \leq b \]
Euclidean balls and ellipsoids

- **(Euclidean) ball** with center x_c and radius r:

 \[B(x_c, r) = \{ x \mid \|x - x_c\|_2 \leq r \} = \{ x_c + ru \mid \|u\|_2 \leq 1 \} \]

- **Ellipsoid**: set of the form

 \[\{ x \mid (x - x_c)^T P^{-1}(x - x_c) \leq 1 \} \]

 with $P \in \mathbb{S}^{n}_{++}$ (i.e., P symmetric positive definite)

 other representation: $\{ x_c + Au \mid \|u\|_2 \leq 1 \}$, with A square and nonsingular.

- Representation impacts problem formulation & complexity.

- Idem for polytopes, with polynomial number of vertices, exponential number of facets, and vice-versa.
Norm balls and norm cones

norm: a function $\| \cdot \|$ that satisfies

- $\|x\| \geq 0$; $\|x\| = 0$ if and only if $x = 0$
- $\|tx\| = |t| \|x\|$ for $t \in \mathbb{R}$
- $\|x + y\| \leq \|x\| + \|y\|$\n
notation: $\| \cdot \|$ is general (unspecified) norm; $\| \cdot \|_{\text{symb}}$ is particular norm

norm ball with center x_c and radius r: \{ x | $\|x - x_c\| \leq r$ \}

norm cone: \{ (x, t) | $\|x\| \leq t$ \}

Euclidean norm cone is called second-order cone

norm balls and cones are convex
Polyhedra

solution set of finitely many linear inequalities and equalities

\[Ax \preceq b, \quad Cx = d \]

\((A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \preceq \text{ is componentwise inequality})\)

polyhedron is intersection of finite number of halfspaces and hyperplanes
Positive semidefinite cone

notation:

- \(S^n \) is set of symmetric \(n \times n \) matrices
- \(S^n_+ = \{ X \in S^n \mid X \succeq 0 \} \): positive semidefinite \(n \times n \) matrices
 \[
 X \in S^n_+ \iff z^T X z \geq 0 \text{ for all } z
 \]
- \(S^n_+ \) is a convex cone
- \(S^n_{++} = \{ X \in S^n \mid X \succ 0 \} \): positive definite \(n \times n \) matrices

example: \[
\begin{bmatrix}
 x & y \\
 y & z
\end{bmatrix} \in S^2_+
\]
Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

 $$x_1, x_2 \in C, \quad 0 \leq \theta \leq 1 \quad \implies \quad \theta x_1 + (1 - \theta) x_2 \in C$$

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity

 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions
the intersection of (any number of) convex sets is convex

example:

\[S = \{ x \in \mathbb{R}^m \mid |p(t)| \leq 1 \text{ for } |t| \leq \pi/3 \} \]

where \(p(t) = x_1 \cos t + x_2 \cos 2t + \cdots + x_m \cos mt \)

for \(m = 2 \):
Affine function

suppose \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is affine \((f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m) \)

- the image of a convex set under \(f \) is convex
\[
S \subseteq \mathbb{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}
\]

- the inverse image \(f^{-1}(C) \) of a convex set under \(f \) is convex
\[
C \subseteq \mathbb{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbb{R}^n \mid f(x) \in C\} \text{ convex}
\]

examples

- scaling, translation, projection

- solution set of linear matrix inequality \(\{x \mid x_1A_1 + \cdots + x_mA_m \preceq B\} \)
 (with \(A_i, B \in S^p \))

- hyperbolic cone \(\{x \mid x^TPx \leq (c^Tx)^2, c^Tx \geq 0\} \) (with \(P \in S_+^n \))
Perspective and linear-fractional function

Perspective function \(P : \mathbb{R}^{n+1} \to \mathbb{R}^n \):

\[
P(x, t) = x/t, \quad \text{dom} \ P = \{(x, t) \mid t > 0\}
\]

Images and inverse images of convex sets under perspective are convex.

Linear-fractional function \(f : \mathbb{R}^n \to \mathbb{R}^m \):

\[
f(x) = \frac{Ax + b}{c^T x + d}, \quad \text{dom} \ f = \{x \mid c^T x + d > 0\}
\]

Images and inverse images of convex sets under linear-fractional functions are convex.
Generalized inequalities

A convex cone $K \subseteq \mathbb{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

Examples

- nonnegative orthant $K = \mathbb{R}^n_+ = \{ x \in \mathbb{R}^n \mid x_i \geq 0, i = 1, \ldots, n \}$
- positive semidefinite cone $K = \mathbb{S}^n_+$
- nonnegative polynomials on $[0,1]$:

\[
K = \{ x \in \mathbb{R}^n \mid x_1 + x_2 t + x_3 t^2 + \cdots + x_n t^{n-1} \geq 0 \text{ for } t \in [0,1] \}
\]
generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \quad x <_K y \iff y - x \in \text{int } K$$

examples

- componentwise inequality ($K = \mathbb{R}^n_+$)

$$x \leq_{\mathbb{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \ldots, n$$

- matrix inequality ($K = \mathbf{S}^n_+$)

$$X \leq_{\mathbf{S}^n_+} Y \iff Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in \leq_K

properties: many properties of \leq_K are similar to \leq on \mathbb{R}, e.g.,

$$x \leq_K y, \quad u \leq_K v \implies x + u \leq_K y + v$$
if \(C \) and \(D \) are disjoint convex sets, then there exists \(a \neq 0, b \) such that

\[
a^T x \leq b \quad \text{for } x \in C, \quad a^T x \geq b \quad \text{for } x \in D
\]

the hyperplane \(\{ x \mid a^T x = b \} \) separates \(C \) and \(D \)

Classical result. Proof relies on minimizing distance between set, and using the argmin to explicitly produce separating hyperplane.
Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0:

$$\{ x \mid a^T x = a^T x_0 \}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C
Dual cones and generalized inequalities

dual cone of a cone K:

$$K^* = \{y \mid y^T x \geq 0 \text{ for all } x \in K\}$$

examples

- $K = \mathbb{R}^n_+: K^* = \mathbb{R}^n_+$
- $K = \mathbb{S}^n_+: K^* = \mathbb{S}^n_+$
- $K = \{(x, t) \mid \|x\|_2 \leq t\}: K^* = \{(x, t) \mid \|x\|_2 \leq t\}$
- $K = \{(x, t) \mid \|x\|_1 \leq t\}: K^* = \{(x, t) \mid \|x\|_\infty \leq t\}$

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \geq 0 \text{ for all } x \succeq_K 0$$
Convex Functions
Outline

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities
Definition

\(f : \mathbb{R}^n \to \mathbb{R} \) is convex if \(\text{dom} \, f \) is a convex set and

\[
 f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]

for all \(x, y \in \text{dom} \, f, \ 0 \leq \theta \leq 1 \)

- \(f \) is concave if \(-f\) is convex

- \(f \) is strictly convex if \(\text{dom} \, f \) is convex and

\[
 f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)
\]

for \(x, y \in \text{dom} \, f, \ x \neq y, \ 0 < \theta < 1 \)
Examples on \mathbb{R}

convex:
- affine: $ax + b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$
- exponential: e^{ax}, for any $a \in \mathbb{R}$
- powers: x^α on \mathbb{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on \mathbb{R}, for $p \geq 1$
- negative entropy: $x \log x$ on \mathbb{R}_{++}

concave:
- affine: $ax + b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$
- powers: x^α on \mathbb{R}_{++}, for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbb{R}_{++}
Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

Affine functions are convex and concave; all norms are convex.

Examples on \mathbb{R}^n

- Affine function $f(x) = a^T x + b$
- Norms: $\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p}$ for $p \geq 1$; $\|x\|_\infty = \max_k |x_k|$.

Examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

- Affine function

 $$f(X) = \text{Tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

- Spectral (maximum singular value) norm

 $$f(X) = \|X\|_2 = \sigma_{\text{max}}(X) = (\lambda_{\text{max}}(X^T X))^{1/2}$$
Restriction of a convex function to a line

\[f : \mathbb{R}^n \to \mathbb{R} \] is convex if and only if the function \(g : \mathbb{R} \to \mathbb{R}, \)

\[g(t) = f(x + tv), \quad \text{dom } g = \{ t \mid x + tv \in \text{dom } f \} \]

is convex (in \(t \)) for any \(x \in \text{dom } f, \ v \in \mathbb{R}^n \)

can check convexity of \(f \) by checking convexity of functions of one variable

example. \(f : S^n \to \mathbb{R} \) with \(f(X) = \log \det X, \ \text{dom } X = S^n_{++} \)

\[g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2}) \]

\[= \log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i) \]

where \(\lambda_i \) are the eigenvalues of \(X^{-1/2}VX^{-1/2} \)

\(g \) is concave in \(t \) (for any choice of \(X \succ 0, \ V \)); hence \(f \) is concave
extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \quad \tilde{f}(x) = \infty, \quad x \notin \text{dom } f$$

often simplifies notation; for example, the condition

$$0 \leq \theta \leq 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \leq \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbb{R} \cup \{\infty\}$), means the same as the two conditions

- $\text{dom } f$ is convex
- for $x, y \in \text{dom } f$,

$$0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$
First-order condition

\[f \text{ is differentiable if } \text{dom } f \text{ is open and the gradient} \]

\[
\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \ldots, \frac{\partial f(x)}{\partial x_n} \right)
\]

exists at each \(x \in \text{dom } f \)

1st-order condition: differentiable \(f \) with convex domain is convex iff

\[
f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \text{for all } x, y \in \text{dom } f
\]

first-order approximation of \(f \) is global underestimator
Second-order conditions

f is **twice differentiable** if $\text{dom } f$ is open and the Hessian $\nabla^2 f(x) \in S^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \ldots, n,$$

exists at each $x \in \text{dom } f$

2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if
 $$\nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \text{dom } f$$

- if $\nabla^2 f(x) \succ 0$ for all $x \in \text{dom } f$, then f is strictly convex
Examples

quadratic function: \(f(x) = (1/2)x^TPx + q^Tx + r \) (with \(P \in S^n \))

\[
\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P
\]

convex if \(P \succeq 0 \)

least-squares objective: \(f(x) = \|Ax - b\|_2^2 \)

\[
\nabla f(x) = 2A^T(Ax - b), \quad \nabla^2 f(x) = 2A^TA
\]

convex (for any \(A \))

quadratic-over-linear: \(f(x, y) = x^2/y \)

\[
\nabla^2 f(x, y) = \frac{2}{y^3} \left[\begin{array}{c} y \\ -x \end{array} \right] \left[\begin{array}{c} y \\ -x \end{array} \right]^T \succeq 0
\]

convex for \(y > 0 \)
log-sum-exp: \(f(x) = \log \sum_{k=1}^{n} \exp x_k \) is convex

\[
\nabla^2 f(x) = \frac{1}{1^T z} \text{diag}(z) - \frac{1}{(1^T z)^2} zz^T \quad (z_k = \exp x_k)
\]

to show \(\nabla^2 f(x) \succeq 0 \), we must verify that \(v^T \nabla^2 f(x) v \geq 0 \) for all \(v \):

\[
v^T \nabla^2 f(x) v = \frac{\left(\sum_k z_k v_k^2 \right) \left(\sum_k z_k \right) - \left(\sum_k v_k z_k \right)^2}{\left(\sum_k z_k \right)^2} \geq 0
\]

since \(\left(\sum_k v_k z_k \right)^2 \leq \left(\sum_k z_k v_k^2 \right) \left(\sum_k z_k \right) \) (from Cauchy-Schwarz inequality)

geometric mean: \(f(x) = \left(\prod_{k=1}^{n} x_k \right)^{1/n} \) on \(\mathbb{R}^{n}_{++} \) is concave

(similar proof as for log-sum-exp)
Epigraph and sublevel set

\(\alpha \)-sublevel set of \(f : \mathbb{R}^n \to \mathbb{R} \):

\[
C_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \}
\]

sublevel sets of convex functions are convex (converse is false)

epigraph of \(f : \mathbb{R}^n \to \mathbb{R} \):

\[
\text{epi } f = \{ (x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom } f, \ f(x) \leq t \}
\]

\(f \) is convex if and only if \(\text{epi } f \) is a convex set

A. d’Aspremont. M1 ENS.
Jensen’s inequality

basic inequality: if \(f \) is convex, then for \(0 \leq \theta \leq 1 \),

\[
f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]

extension: if \(f \) is convex, then

\[
f(\mathbb{E} z) \leq \mathbb{E} f(z)
\]

for any random variable \(z \)

basic inequality is special case with discrete distribution

\[
\text{Prob}(z = x) = \theta, \quad \text{Prob}(z = y) = 1 - \theta
\]
Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$

3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective
Positive weighted sum & composition with affine function

nonnegative multiple: \(\alpha f \) is convex if \(f \) is convex, \(\alpha \geq 0 \)

sum: \(f_1 + f_2 \) convex if \(f_1, f_2 \) convex (extends to infinite sums, integrals)

composition with affine function: \(f(Ax + b) \) is convex if \(f \) is convex

examples

- log barrier for linear inequalities

\[
f(x) = - \sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{ x \mid a_i^T x < b_i, i = 1, \ldots, m \}
\]

- (any) norm of affine function: \(f(x) = \|Ax + b\| \)
Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,\ldots,m}(a^T_i x + b_i)$ is convex

- sum of r largest components of $x \in \mathbb{R}^n$:

 $$f(x) = x[1] + x[2] + \cdots + x[r]$$

 is convex ($x[i]$ is ith largest component of x)

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \cdots + x_{i_r} \mid 1 \leq i_1 < i_2 < \cdots < i_r \leq n\}$$
Pointwise supremum

If \(f(x, y) \) is convex in \(x \) for each \(y \in A \), then

\[
g(x) = \sup_{y \in A} f(x, y)
\]
is convex

Examples

- Support function of a set \(C \): \(S_C(x) = \sup_{y \in C} y^Tx \) is convex
- Distance to farthest point in a set \(C \):

\[
f(x) = \sup_{y \in C} \|x - y\|
\]
- Maximum eigenvalue of symmetric matrix: for \(X \in \mathbb{S}^n \),

\[
\lambda_{\text{max}}(X) = \sup_{\|y\|_2=1} y^TXy
\]
Composition with scalar functions

composition of $g : \mathbb{R}^n \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$:

$$f(x) = h(g(x))$$

f is convex if

- g convex, h convex, \tilde{h} nondecreasing
- g concave, h convex, \tilde{h} nonincreasing

proof (for $n = 1$, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- $1/g(x)$ is convex if g is concave and positive
Vector composition

composition of $g : \mathbb{R}^n \to \mathbb{R}^k$ and $h : \mathbb{R}^k \to \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_k(x))$$

f is convex if

- g_i convex, h convex, \tilde{h} nondecreasing in each argument
- g_i concave, h convex, \tilde{h} nonincreasing in each argument

proof (for $n = 1$, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex
Minimization

if $f(x, y)$ is convex in (x, y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

- $f(x, y) = x^T A x + 2 x^T B y + y^T C y$ with

 $$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0, \quad C \succ 0$$

 minimizing over y gives $g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T)x$

 g is convex, hence Schur complement $A - BC^{-1}B^T \succeq 0$

- distance to a set: $\text{dist}(x, S) = \inf_{y \in S} \|x - y\|$ is convex if S is convex
The conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

- f^* is convex (even if f is not)
- Used in regularization, duality results, . . .
examples

- negative logarithm $f(x) = -\log x$

\[
 f^*(y) = \sup_{x > 0} (xy + \log x) \\
 = \begin{cases}
 -1 - \log(-y) & y < 0 \\
 \infty & \text{otherwise}
 \end{cases}
\]

- strictly convex quadratic $f(x) = (1/2)x^T Q x$ with $Q \in \mathbf{S}_+^n$

\[
 f^*(y) = \sup_{x} (y^T x - (1/2)x^T Q x) \\
 = \frac{1}{2} y^T Q^{-1} y
\]
Quasiconvex functions

$f : \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if $\text{dom } f$ is convex and the sublevel sets

$$S_\alpha = \{x \in \text{dom } f \mid f(x) \leq \alpha\}$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave
Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbb{R}
- $\text{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbb{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbb{R}_{++}^2
- linear-fractional function
 \[
 f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{x \mid c^T x + d > 0\}
 \]
 is quasilinear
- distance ratio
 \[
 f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom } f = \{x \mid \|x - a\|_2 \leq \|x - b\|_2\}
 \]
 is quasiconvex
Properties

modified Jensen inequality: for quasiconvex f

$$0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \max\{f(x), f(y)\}$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \leq f(x) \implies \nabla f(x)^T(y - x) \leq 0$$

sums of quasiconvex functions are not necessarily quasiconvex
Log-concave and log-convex functions

A positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \geq f(x)^\theta f(y)^{1-\theta} \quad \text{for } 0 \leq \theta \leq 1$$

f is log-convex if $\log f$ is convex

- powers: x^a on \mathbb{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1} (x-\bar{x})}$$

- cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du$$
Properties of log-concave functions

- twice differentiable f with convex domain is log-concave if and only if
 \[f(x) \nabla^2 f(x) \preceq \nabla f(x) \nabla f(x)^T \]
 for all $x \in \text{dom } f$

- product of log-concave functions is log-concave

- sum of log-concave functions is not always log-concave

- integration: if $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is log-concave, then
 \[g(x) = \int f(x, y) \, dy \]
 is log-concave (not easy to show)
consequences of integration property

- convolution \(f \ast g \) of log-concave functions \(f, g \) is log-concave

\[
(f \ast g)(x) = \int f(x - y)g(y)dy
\]

- if \(C \subseteq \mathbb{R}^n \) convex and \(y \) is a random variable with log-concave pdf then

\[
f(x) = \text{Prob}(x + y \in C)
\]

is log-concave

proof: write \(f(x) \) as integral of product of log-concave functions

\[
f(x) = \int g(x + y)p(y) \, dy, \quad g(u) = \begin{cases} 1 & u \in C \\ 0 & u \notin C \end{cases}, \quad p \text{ is pdf of } y
\]
Convex Optimization Problems
Outline

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming
- vector optimization
Optimization problem in standard form

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

- \(x \in \mathbb{R}^n\) is the optimization variable
- \(f_0 : \mathbb{R}^n \to \mathbb{R}\) is the objective or cost function
- \(f_i : \mathbb{R}^n \to \mathbb{R}, i = 1, \ldots, m\), are the inequality constraint functions
- \(h_i : \mathbb{R}^n \to \mathbb{R}\) are the equality constraint functions

optimal value:

\[
p^* = \inf \{ f_0(x) \mid f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad h_i(x) = 0, \quad i = 1, \ldots, p \}
\]

- \(p^* = \infty\) if problem is infeasible (no \(x\) satisfies the constraints)
- \(p^* = -\infty\) if problem is unbounded below
Optimal and locally optimal points

x is **feasible** if $x \in \text{dom } f_0$ and it satisfies the constraints

A feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points

x is **locally optimal** if there is an $R > 0$ such that x is optimal for

$$
\begin{align*}
\text{minimize (over } z) & \quad f_0(z) \\
\text{subject to} & \quad f_i(z) \leq 0, \quad i = 1, \ldots, m, \quad h_i(z) = 0, \quad i = 1, \ldots, p \\
& \quad \|z - x\|_2 \leq R
\end{align*}
$$

examples (with $n = 1, \ m = p = 0$)

- $f_0(x) = 1/x, \ \text{dom } f_0 = \mathbb{R}_{++}: \ p^* = 0, \ \text{no optimal point}$
- $f_0(x) = -\log x, \ \text{dom } f_0 = \mathbb{R}_{++}: \ p^* = -\infty$
- $f_0(x) = x \log x, \ \text{dom } f_0 = \mathbb{R}_{++}: \ p^* = -1/e, \ x = 1/e \ \text{is optimal}$
- $f_0(x) = x^3 - 3x, \ p^* = -\infty, \ \text{local optimum at } x = 1$
Implicit constraints

the standard form optimization problem has an implicit constraint

\[x \in D = \bigcap_{i=0}^{m} \text{dom } f_i \cap \bigcap_{i=1}^{p} \text{dom } h_i, \]

- we call \(D \) the domain of the problem
- the constraints \(f_i(x) \leq 0, h_i(x) = 0 \) are the explicit constraints
- a problem is unconstrained if it has no explicit constraints \((m = p = 0) \)

example:

\[
\text{minimize } f_0(x) = - \sum_{i=1}^{k} \log(b_i - a_i^T x)
\]

is an unconstrained problem with implicit constraints \(a_i^T x < b_i \)
Feasibility problem

find \(x \)
subject to \(f_i(x) \leq 0, \quad i = 1, \ldots, m \)
\(h_i(x) = 0, \quad i = 1, \ldots, p \)

\(\text{can be considered a special case of the general problem with } f_0(x) = 0: \)

minimize \(0 \)
subject to \(f_i(x) \leq 0, \quad i = 1, \ldots, m \)
\(h_i(x) = 0, \quad i = 1, \ldots, p \)

- \(p^* = 0 \) if constraints are feasible; any feasible \(x \) is optimal
- \(p^* = \infty \) if constraints are infeasible
Convex optimization problem

standard form convex optimization problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad a^T_i x = b_i, \quad i = 1, \ldots, p
\end{align*}
\]

- f_0, f_1, \ldots, f_m are convex; equality constraints are affine
- problem is quasiconvex if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

important property: feasible set of a convex optimization problem is convex
example

minimize \(f_0(x) = x_1^2 + x_2^2 \)
subject to \(f_1(x) = x_1/(1 + x_2^2) \leq 0 \)
\(h_1(x) = (x_1 + x_2)^2 = 0 \)

- \(f_0 \) is convex; feasible set \(\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\} \) is convex
- not a convex problem (according to our definition): \(f_1 \) is not convex, \(h_1 \) is not affine
- equivalent (but not identical) to the convex problem

minimize \(x_1^2 + x_2^2 \)
subject to \(x_1 \leq 0 \)
\(x_1 + x_2 = 0 \)
Local and global optima

any locally optimal point of a convex problem is (globally) optimal

Proof: suppose x is locally optimal and y is optimal with $f_0(y) < f_0(x)$

x locally optimal means there is an $R > 0$ such that

\[z \text{ feasible, } \|z - x\|_2 \leq R \implies f_0(z) \geq f_0(x) \]

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2\|y - x\|_2)$

- $\|y - x\|_2 > R$, so $0 < \theta < 1/2$
- z is a convex combination of two feasible points, hence also feasible
- $\|z - x\|_2 = R/2$ and

\[f_0(z) \leq \theta f_0(x) + (1 - \theta)f_0(y) < f_0(x) \]

which contradicts our assumption that x is locally optimal
Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T(y - x) \geq 0 \quad \text{for all feasible } y$$

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x
unconstrained problem: x is optimal if and only if

$$x \in \text{dom} f_0, \quad \nabla f_0(x) = 0$$

equality constrained problem

minimize $f_0(x)$ subject to $Ax = b$

x is optimal if and only if there exists a ν such that

$$x \in \text{dom} f_0, \quad Ax = b, \quad \nabla f_0(x) + A^T\nu = 0$$

minimization over nonnegative orthant

minimize $f_0(x)$ subject to $x \succeq 0$

x is optimal if and only if

$$x \in \text{dom} f_0, \quad x \succeq 0, \quad \left\{ \begin{array}{l}
\nabla f_0(x)_i \geq 0 \quad x_i = 0 \\
\nabla f_0(x)_i = 0 \quad x_i > 0
\end{array} \right.$$
two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

- **eliminating equality constraints**

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

is equivalent to

\[
\begin{align*}
\text{minimize (over } z) & \quad f_0(Fz + x_0) \\
\text{subject to} & \quad f_i(Fz + x_0) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

where \(F \) and \(x_0 \) are such that

\[
Ax = b \iff x = Fz + x_0 \text{ for some } z
\]
■ introducing equality constraints

\[
\begin{align*}
\text{minimize} & \quad f_0(A_0x + b_0) \\
\text{subject to} & \quad f_i(A_ix + b_i) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

is equivalent to

\[
\begin{align*}
\text{minimize (over } x, y_i) & \quad f_0(y_0) \\
\text{subject to} & \quad f_i(y_i) \leq 0, \quad i = 1, \ldots, m \\
y_i = A_ix + b_i, \quad i = 0, 1, \ldots, m
\end{align*}
\]

■ introducing slack variables for linear inequalities

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad a_i^Tx \leq b_i, \quad i = 1, \ldots, m
\end{align*}
\]

is equivalent to

\[
\begin{align*}
\text{minimize (over } x, s) & \quad f_0(x) \\
\text{subject to} & \quad a_i^Tx + s_i = b_i, \quad i = 1, \ldots, m \\
s_i \geq 0, \quad i = 1, \ldots m
\end{align*}
\]
epigraph form: standard form convex problem is equivalent to

\[
\begin{align*}
\text{minimize (over } x, t \text{)} & \quad t \\
\text{subject to} & \quad f_0(x) - t \leq 0 \\
& \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

minimizing over some variables

\[
\begin{align*}
\text{minimize} & \quad f_0(x_1, x_2) \\
\text{subject to} & \quad f_i(x_1) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

is equivalent to

\[
\begin{align*}
\text{minimize} & \quad \tilde{f}_0(x_1) \\
\text{subject to} & \quad f_i(x_1) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

where \(\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2) \)
Quasiconvex optimization

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

with \(f_0 : \mathbb{R}^n \to \mathbb{R} \) quasiconvex, \(f_1, \ldots, f_m \) convex

can have locally optimal points that are not (globally) optimal
quasiconvex optimization via convex feasibility problems

\[f_0(x) \leq t, \quad f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad Ax = b \quad (1) \]

- for fixed \(t \), a convex feasibility problem in \(x \)
- if feasible, we can conclude that \(t \geq p^* \); if infeasible, \(t \leq p^* \)

\[\text{Bisection method for quasiconvex optimization} \]

given \(l \leq p^*, u \geq p^*, \) tolerance \(\epsilon > 0 \).

repeat

1. \(t := (l + u)/2 \).
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, \(u := t \); else \(l := t \).

until \(u - l \leq \epsilon \).

requires exactly \(\lceil \log_2 ((u - l)/\epsilon) \rceil \) iterations (where \(u, l \) are initial values)
Linear program (LP)

minimize \quad c^T x + d
subject to \quad Gx \preceq h
\quad Ax = b

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron
Chebyshev center of a polyhedron

Chebyshev center of

\[P = \{ x \mid a_i^T x \leq b_i, \ i = 1, \ldots, m \} \]

is center of largest inscribed ball

\[B = \{ x_c + u \mid \|u\|_2 \leq r \} \]

\[a_i^T x \leq b_i \text{ for all } x \in B \text{ if and only if } \]

\[\sup \{ a_i^T(x_c + u) \mid \|u\|_2 \leq r \} = a_i^T x_c + r \|a_i\|_2 \leq b_i \]

\[\text{hence, } x_c, r \text{ can be determined by solving the LP} \]

\[
\begin{align*}
\text{maximize} & \quad r \\
\text{subject to} & \quad a_i^T x_c + r \|a_i\|_2 \leq b_i, \quad i = 1, \ldots, m
\end{align*}
\]
(Generalized) linear-fractional program

minimize \(f_0(x) \)
subject to \(Gx \preceq h \)
\(Ax = b \)

linear-fractional program

\[
f_0(x) = \frac{c^T x + d}{e^T x + f}, \quad \text{dom } f_0(x) = \{ x \mid e^T x + f > 0 \}
\]

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables \(y, z \))

minimize \(c^T y + dz \)
subject to \(G y \preceq h z \)
\(A y = b z \)
\(e^T y + f z = 1 \)
\(z \geq 0 \)
Quadratic program (QP)

\[
\begin{align*}
\text{minimize} & \quad (1/2)x^TPx + q^Tx + r \\
\text{subject to} & \quad Gx \preceq h \\
& \quad Ax = b
\end{align*}
\]

- \(P \in \mathbb{S}_+^n \), so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron
Examples

least-squares

$$\text{minimize} \quad \|Ax - b\|_2^2$$

- analytical solution $x^* = A^\dagger b$ (A^\dagger is pseudo-inverse)
- can add linear constraints, e.g., $l \leq x \leq u$

linear program with random cost

$$\begin{align*}
\text{minimize} & \quad \bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} c^T x + \gamma \text{var}(c^T x) \\
\text{subject to} & \quad Gx \leq h, \quad Ax = b
\end{align*}$$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$
- $\gamma > 0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)
Quadratically constrained quadratic program (QCQP)

\[\begin{align*}
\text{minimize} & \quad \frac{1}{2} x^T P_0 x + q_0^T x + r_0 \\
\text{subject to} & \quad \frac{1}{2} x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*} \]

- \(P_i \in S^n_+ \); objective and constraints are convex quadratic
- if \(P_1, \ldots, P_m \in S^n_{++} \), feasible region is intersection of \(m \) ellipsoids and an affine set
Second-order cone programming

\[
\begin{align*}
\text{minimize} & \quad f^T x \\
\text{subject to} & \quad \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \ldots, m \\
& \quad Fx = g
\end{align*}
\]

\((A_i \in \mathbb{R}^{n_i \times n}, \ F \in \mathbb{R}^{p \times n})\)

- inequalities are called second-order cone (SOC) constraints:
 \[(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbb{R}^{n_i+1}\]

- for \(n_i = 0\), reduces to an LP; if \(c_i = 0\), reduces to a QCQP
- more general than QCQP and LP
Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad a_i^T x \leq b_i, \quad i = 1, \ldots, m,
\end{align*}
\]

there can be uncertainty in c, a_i, b_i

two common approaches to handling uncertainty (in a_i, for simplicity)

- **deterministic model:** constraints must hold for all $a_i \in \mathcal{E}_i$

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad a_i^T x \leq b_i \quad \text{for all } a_i \in \mathcal{E}_i, \quad i = 1, \ldots, m,
\end{align*}
\]

- **stochastic model:** a_i is random variable; constraints must hold with probability η

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad \text{Prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \ldots, m
\end{align*}
\]
deterministic approach via SOCP

- choose an ellipsoid as \mathcal{E}_i:

 $$
 \mathcal{E}_i = \{ \bar{a}_i + P_i u \mid \|u\|_2 \leq 1 \} \quad (\bar{a}_i \in \mathbb{R}^n, \ P_i \in \mathbb{R}^{n \times n})
 $$

 center is \bar{a}_i, semi-axes determined by singular values/vectors of P_i

- robust LP

 $$
 \begin{align*}
 \text{minimize} \quad & \quad c^T x \\
 \text{subject to} \quad & \quad a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \ i = 1, \ldots, m
 \end{align*}
 $$

 is equivalent to the SOCP

 $$
 \begin{align*}
 \text{minimize} \quad & \quad c^T x \\
 \text{subject to} \quad & \quad \bar{a}_i^T x + \|P_i^T x\|_2 \leq b_i, \quad i = 1, \ldots, m
 \end{align*}
 $$

 (follows from $\sup_{\|u\|_2 \leq 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$)
stochastic approach via SOCP

- Assume \(a_i \) is Gaussian with mean \(\bar{a}_i \), covariance \(\Sigma_i \) (\(a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i) \)).

- \(a_i^T x \) is Gaussian r.v. with mean \(\bar{a}_i^T x \), variance \(x^T \Sigma_i x \); hence

\[
\text{Prob}(a_i^T x \leq b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2} \right)
\]

where \(\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt \) is CDF of \(\mathcal{N}(0,1) \).

- Robust LP

\[
\begin{align*}
&\text{minimize} & c^T x \\
&\text{subject to} & \text{Prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \ldots, m,
\end{align*}
\]

with \(\eta \geq 1/2 \), is equivalent to the SOCP

\[
\begin{align*}
&\text{minimize} & c^T x \\
&\text{subject to} & \bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \leq b_i, \quad i = 1, \ldots, m
\end{align*}
\]
Impact of reliability

\[\{ x \mid \text{Prob}(a_i^T x \leq b_i) \geq \eta, \ i = 1, \ldots, m \} \]

\(\eta = 10\% \)

\(\eta = 50\% \)

\(\eta = 90\% \)
Generalized inequality constraints

custom problem with generalized inequality constraints

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \preceq_{K_i} 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- \(f_0 : \mathbb{R}^n \to \mathbb{R} \) convex; \(f_i : \mathbb{R}^n \to \mathbb{R}^{k_i} \) \(K_i \)-convex w.r.t. proper cone \(K_i \)
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Fx + g \preceq_{K} 0 \\
& \quad Ax = b
\end{align*}
\]

extends linear programming (\(K = \mathbb{R}^m_+ \)) to nonpolyhedral cones
Semidefinite program (SDP)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad x_1 F_1 + x_2 F_2 + \cdots + x_n F_n + G \preceq 0 \\
& \quad Ax = b
\end{align*}
\]

with \(F_i, G \in \mathbb{S}^k \)

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

\[
x_1 \hat{F}_1 + \cdots + x_n \hat{F}_n + \hat{G} \preceq 0, \quad x_1 \tilde{F}_1 + \cdots + x_n \tilde{F}_n + \tilde{G} \preceq 0
\]

is equivalent to single LMI

\[
x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \cdots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \preceq 0
\]
LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^T x$
subject to $Ax \leq b$

SDP: minimize $c^T x$
subject to $\text{diag}(Ax - b) \leq 0$

(note different interpretation of generalized inequality \leq)

SOCP and equivalent SDP

SOCP: minimize $f^T x$
subject to $\|A_ix + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \ldots, m$

SDP: minimize $f^T x$
subject to $\begin{bmatrix} (c_i^T x + d_i)I & A_ix + b_i \\ (A_ix + b_i)^T & c_i^T x + d_i \end{bmatrix} \succeq 0, \quad i = 1, \ldots, m$
Eigenvalue minimization

\[\text{minimize} \quad \lambda_{\text{max}}(A(x)) \]

where \(A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n \) (with given \(A_i \in S^k \))

equivalent SDP

\[
\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad A(x) \preceq tI
\end{align*}
\]

- variables \(x \in \mathbb{R}^n, t \in \mathbb{R} \)
- follows from

\[\lambda_{\text{max}}(A) \leq t \iff A \preceq tI \]
Matrix norm minimization

\[\text{minimize} \quad \|A(x)\|_2 = \left(\lambda_{\text{max}}(A(x)^T A(x)) \right)^{1/2} \]

where \(A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n \) (with given \(A_i \in S^{p \times q} \))

equivalent SDP

\[\text{minimize} \quad t \]
\[\text{subject to} \quad \begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0 \]

- variables \(x \in \mathbb{R}^n, t \in \mathbb{R} \)
- constraint follows from

\[\|A\|_2 \leq t \quad \iff \quad A^T A \leq t^2 I, \quad t \geq 0 \]
\[\iff \quad \begin{bmatrix} tI & A \\ A^T & tI \end{bmatrix} \succeq 0 \]
Duality
Outline

- Lagrange dual problem
- weak and strong duality
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities
Lagrangian

standard form problem (not necessarily convex)

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

variable \(x \in \mathbb{R}^n \), domain \(D \), optimal value \(p^* \)

Lagrangian: \(L : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \rightarrow \mathbb{R} \), with \(\text{dom } L = D \times \mathbb{R}^m \times \mathbb{R}^p \),

\[
L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)
\]

- weighted sum of objective and constraint functions
- \(\lambda_i \) is Lagrange multiplier associated with \(f_i(x) \leq 0 \)
- \(\nu_i \) is Lagrange multiplier associated with \(h_i(x) = 0 \)
Lagrange dual function

Lagrange dual function: $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu)$$

$$= \inf_{x \in D} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ, ν

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$f_0(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf_{x \in D} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$
Least-norm solution of linear equations

\[
\begin{align*}
\text{minimize} & \quad x^T x \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

dual function

- Lagrangian is \(L(x, \nu) = x^T x + \nu^T (Ax - b) \)
- to minimize \(L \) over \(x \), set gradient equal to zero:

\[
\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \quad \implies \quad x = -(1/2)A^T \nu
\]

- plug in in \(L \) to obtain \(g \):

\[
g(\nu) = L((-1/2)A^T \nu, \nu) = -\frac{1}{4} \nu^T AA^T \nu - b^T \nu
\]

a concave function of \(\nu \)

lower bound property: \(p^* \geq -(1/4)\nu^T AA^T \nu - b^T \nu \) for all \(\nu \)
Standard form LP

\[
\begin{align*}
\text{minimize} \quad & c^T x \\
\text{subject to} \quad & Ax = b, \quad x \succeq 0
\end{align*}
\]

dual function

- Lagrangian is

\[
L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x
\]

\[
= -b^T \nu + (c + A^T \nu - \lambda)^T x
\]

- \(L \) is linear in \(x \), hence

\[
g(\lambda, \nu) = \inf_x L(x, \lambda, \nu) = \begin{cases}
-b^T \nu & A^T \nu - \lambda + c = 0 \\
-\infty & \text{otherwise}
\end{cases}
\]

\(g \) is linear on affine domain \(\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\} \), hence concave

lower bound property: \(p^* \geq -b^T \nu \) if \(A^T \nu + c \succeq 0 \)
Equality constrained norm minimization

\[
\begin{align*}
\text{minimize} & \quad \|x\| \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

dual function

\[
g(\nu) = \inf_x (\|x\| - \nu^T Ax + b^T \nu) = \begin{cases}
\nu^T \nu & \|A^T \nu\|_* \leq 1 \\
-\infty & \text{otherwise}
\end{cases}
\]

where \(\|\nu\|_* = \sup_{\|u\| \leq 1} u^T \nu\) is dual norm of \(\| \cdot \|\).

proof: follows from \(\inf_x (\|x\| - y^T x) = 0\) if \(\|y\|_* \leq 1\), \(-\infty\) otherwise

- if \(\|y\|_* \leq 1\), then \(\|x\| - y^T x \geq 0\) for all \(x\), with equality if \(x = 0\)
- if \(\|y\|_* > 1\), choose \(x = tu\) where \(\|u\| \leq 1\), \(u^T y = \|y\|_* > 1\):

\[
\|x\| - y^T x = t(\|u\| - \|y\|_*) \rightarrow -\infty \quad \text{as } t \rightarrow \infty
\]

lower bound property: \(p^* \geq b^T \nu\) if \(\|A^T \nu\|_* \leq 1\)
Two-way partitioning

minimize $x^T W x$
subject to $x_i^2 = 1, \quad i = 1, \ldots, n$

- a nonconvex problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; W_{ij} is cost of assigning i, j to the same set; $-W_{ij}$ is cost of assigning to different sets

dual function

$$g(\nu) = \inf_x (x^T W x + \sum_i \nu_i (x_i^2 - 1)) = \inf_x x^T (W + \text{diag}(\nu)) x - 1^T \nu$$

$$= \begin{cases} -1^T \nu & W + \text{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases}$$

lower bound property: $p^* \geq -1^T \nu$ if $W + \text{diag}(\nu) \succeq 0$

example: $\nu = -\lambda_{\min}(W) 1$ gives bound $p^* \geq n \lambda_{\min}(W)$
The dual problem

Lagrange dual problem

maximize \(g(\lambda, \nu) \)
subject to \(\lambda \succeq 0 \)

- finds best lower bound on \(p^* \), obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted \(d^* \)
- \(\lambda, \nu \) are dual feasible if \(\lambda \succeq 0, (\lambda, \nu) \in \text{dom} \ g \)
- often simplified by making implicit constraint \((\lambda, \nu) \in \text{dom} \ g \) explicit

example: standard form LP and its dual (page 101)

minimize \(c^T x \)
subject to \(Ax = b \)
\(x \succeq 0 \)

maximize \(-b^T \nu \)
subject to \(A^T \nu + c \succeq 0 \)
Weak and strong duality

weak duality: \(d^* \leq p^* \)

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems
 for example, solving the SDP

\[
\begin{align*}
\text{maximize} & \quad -1^T \nu \\
\text{subject to} & \quad W + \text{diag}(\nu) \succeq 0
\end{align*}
\]

\(W \) gives a lower bound for the two-way partitioning problem on page 103

strong duality: \(d^* = p^* \)

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called **constraint qualifications**
Slater’s constraint qualification

strong duality holds for a convex problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

if it is strictly feasible, i.e.,

\[
\exists x \in \text{int } D : \quad f_i(x) < 0, \quad i = 1, \ldots, m, \quad Ax = b
\]

- also guarantees that the dual optimum is attained (if \(p^* > -\infty \))
- can be sharpened: \(e.g. \), can replace \(\text{int } D \) with \(\text{relint } D \) (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications
Feasibility problems

feasibility problem A in \(x \in \mathbb{R}^n \).

\[
f_i(x) < 0, \quad i = 1, \ldots, m, \quad h_i(x) = 0, \quad i = 1, \ldots, p
\]

feasibility problem B in \(\lambda \in \mathbb{R}^m, \nu \in \mathbb{R}^p \).

\[
\lambda \succeq 0, \quad \lambda \neq 0, \quad g(\lambda, \nu) \geq 0
\]

where \(g(\lambda, \nu) = \inf_x (\sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)) \)

- feasibility problem B is convex (\(g \) is concave), even if problem A is not
- A and B are always **weak alternatives**: at most one is feasible
 proof: assume \(\tilde{x} \) satisfies A, \(\lambda, \nu \) satisfy B

\[
0 \leq g(\lambda, \nu) \leq \sum_{i=1}^m \lambda_i f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x}) < 0
\]

- A and B are **strong alternatives** if exactly one of the two is feasible (can prove infeasibility of A by producing solution of B and vice-versa).
Inequality form LP

primal problem

\[
\text{minimize } \quad c^T x \\
\text{subject to } \quad Ax \preceq b
\]

dual function

\[
g(\lambda) = \inf_x \left((c + A^T \lambda)^T x - b^T \lambda \right) = \begin{cases}
-b^T \lambda & A^T \lambda + c = 0 \\
-\infty & \text{otherwise}
\end{cases}
\]

dual problem

\[
\text{maximize } \quad -b^T \lambda \\
\text{subject to } \quad A^T \lambda + c = 0, \quad \lambda \succeq 0
\]

- from Slater’s condition: \(p^* = d^* \) if \(A\tilde{x} \prec b \) for some \(\tilde{x} \)
- in fact, \(p^* = d^* \) except when primal and dual are infeasible
Quadratic program

primal problem (assume $P \in S_{++}^n$)

\[
\begin{align*}
\text{minimize} & \quad x^T P x \\
\text{subject to} & \quad A x \preceq b
\end{align*}
\]

dual function

\[
g(\lambda) = \inf_x \left(x^T P x + \lambda^T (A x - b) \right) = -\frac{1}{4} \lambda^T A P^{-1} A^T \lambda - b^T \lambda
\]

dual problem

\[
\begin{align*}
\text{maximize} & \quad -(1/4) \lambda^T A P^{-1} A^T \lambda - b^T \lambda \\
\text{subject to} & \quad \lambda \succeq 0
\end{align*}
\]

- from Slater’s condition: $p^* = d^*$ if $A \tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^* = d^*$ always
A nonconvex problem with strong duality

minimize \(x^T Ax + 2b^T x \)
subject to \(x^T x \leq 1 \)

nonconvex if \(A \not\succeq 0 \)

dual function: \(g(\lambda) = \inf_x (x^T (A + \lambda I)x + 2b^T x - \lambda) \)

- unbounded below if \(A + \lambda I \not\succeq 0 \) or if \(A + \lambda I \succeq 0 \) and \(b \not\in \mathcal{R}(A + \lambda I) \)
- minimized by \(x = -(A + \lambda I)^\dagger b \) otherwise: \(g(\lambda) = -b^T (A + \lambda I)^\dagger b - \lambda \)

dual problem and equivalent SDP:

maximize \(-b^T (A + \lambda I)^\dagger b - \lambda \)
subject to \(A + \lambda I \succeq 0 \)
\(b \in \mathcal{R}(A + \lambda I) \)

maximize \(-t - \lambda \)
subject to \(\begin{bmatrix} A + \lambda I & b \\ b^T & t \end{bmatrix} \succeq 0 \)

strong duality although primal problem is not convex (more later)
Complementary slackness

Assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) + \sum_{i=1}^{p} \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* f_i(x^*) + \sum_{i=1}^{p} \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^* f_i(x^*) = 0$ for $i = 1, \ldots, m$ (known as complementary slackness):

$$\lambda_i^* > 0 \implies f_i(x^*) = 0, \quad f_i(x^*) < 0 \implies \lambda_i^* = 0$$
Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i, h_i):

1. **Primal feasibility**: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$

2. **Dual feasibility**: $\lambda \succeq 0$

3. **Complementary slackness**: $\lambda_i f_i(x) = 0$, $i = 1, \ldots, m$

4. **Gradient of Lagrangian with respect to x vanishes** (first order condition):

 $$\nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0$$

If strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions.
KKT conditions for convex problem

If \(\tilde{x}, \tilde{\lambda}, \tilde{\nu} \) satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: \(f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}) \)
- from 4th condition (and convexity): \(g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}) \)

hence, \(f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu}) \)

If Slater’s condition is satisfied, \(x \) is optimal if and only if there exist \(\lambda, \nu \) that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition \(\nabla f_0(x) = 0 \) for unconstrained problem

Summary:

- When strong duality holds, the KKT conditions are necessary conditions for optimality
- If the problem is convex, they are also sufficient
example: water-filling (assume $\alpha_i > 0$)

$$\begin{align*}
\text{minimize} & \quad - \sum_{i=1}^{n} \log(x_i + \alpha_i) \\
\text{subject to} & \quad x \succeq 0, \quad 1^T x = 1
\end{align*}$$

x is optimal iff $x \succeq 0$, $1^T x = 1$, and there exist $\lambda \in \mathbb{R}^n$, $\nu \in \mathbb{R}$ such that

$$\lambda \succeq 0, \quad \lambda_i x_i = 0, \quad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu$$

- if $\nu < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu - \alpha_i$
- if $\nu \geq 1/\alpha_i$: $\lambda_i = \nu - 1/\alpha_i$ and $x_i = 0$
- determine ν from $1^T x = \sum_{i=1}^{n} \max\{0, 1/\nu - \alpha_i\} = 1$

interpretation

- n patches; level of patch i is at height α_i
- flood area with unit amount of water
- resulting level is $1/\nu^*$
Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions

\[\text{e.g., replace } f_0(x) \text{ by } \phi(f_0(x)) \text{ with } \phi \text{ convex, increasing} \]
Introducing new variables and equality constraints

\[
\begin{align*}
\text{minimize} & \quad f_0(Ax + b) \\
\text{dual function is constant:} & \quad g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^* \\
\text{we have strong duality, but dual is quite useless}
\end{align*}
\]

reformulated problem and its dual

\[
\begin{align*}
\text{minimize} & \quad f_0(y) & \text{maximize} & \quad b^T \nu - f_0^*(\nu) \\
\text{subject to} & \quad Ax + b - y = 0 & \text{subject to} & \quad A^T \nu = 0
\end{align*}
\]

dual function follows from

\[
g(\nu) = \inf_{x, y} (f_0(y) - \nu^T y + \nu^T Ax + b^T \nu) = \begin{cases}
-f_0^*(\nu) + b^T \nu & A^T \nu = 0 \\
-\infty & \text{otherwise}
\end{cases}
\]
norm approximation problem: minimize $\|Ax - b\|$

minimize $\|y\|$
subject to $y = Ax - b$

can look up conjugate of $\| \cdot \|$, or derive dual directly

$$g(\nu) = \inf_{x,y} (\|y\| + \nu^T y - \nu^T Ax + b^T \nu)$$

$$= \begin{cases}
 b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0 \\
 -\infty & \text{otherwise}
\end{cases}$$

$$= \begin{cases}
 b^T \nu & A^T \nu = 0, \quad \|\nu\|_* \leq 1 \\
 -\infty & \text{otherwise}
\end{cases}$$

(see page 100)

dual of norm approximation problem

maximize $b^T \nu$
subject to $A^T \nu = 0, \quad \|\nu\|_* \leq 1$
Implicit constraints

LP with box constraints: primal and dual problem

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad -1 \leq x \leq 1
\end{align*}
\]

\[
\begin{align*}
\text{maximize} & \quad -b^T \nu - 1^T \lambda_1 - 1^T \lambda_2 \\
\text{subject to} & \quad c + A^T \nu + \lambda_1 - \lambda_2 = 0 \\
& \quad \lambda_1 \geq 0, \quad \lambda_2 \geq 0
\end{align*}
\]

reformulation with box constraints made implicit

\[
\begin{align*}
\text{minimize} & \quad f_0(x) = \begin{cases}
 c^T x & -1 \leq x \leq 1 \\
 \infty & \text{otherwise}
\end{cases} \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

dual function

\[
g(\nu) = \inf_{-1 \leq x \leq 1} (c^T x + \nu^T (Ax - b)) = -b^T \nu - \|A^T \nu + c\|_1
\]

dual problem: maximize \(-b^T \nu - \|A^T \nu + c\|_1\)
Problems with generalized inequalities

minimize \(f_0(x) \)
subject to \(f_i(x) \preceq K_0 \), \(i = 1, \ldots, m \)
\(h_i(x) = 0, \quad i = 1, \ldots, p \)

\(\preceq K_i \) is generalized inequality on \(\mathbb{R}^{k_i} \)

definitions are parallel to scalar case:

- Lagrange multiplier for \(f_i(x) \preceq K_i 0 \) is vector \(\lambda_i \in \mathbb{R}^{k_i} \)
- Lagrangian \(L : \mathbb{R}^n \times \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R} \), is defined as

\[
L(x, \lambda_1, \cdots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i^T f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)
\]

- dual function \(g : \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R} \), is defined as

\[
g(\lambda_1, \ldots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \cdots, \lambda_m, \nu)
\]
lower bound property: if $\lambda_i \succeq_{K_i^*} 0$, then $g(\lambda_1, \ldots, \lambda_m, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda \succeq_{K_i^*} 0$, then

$$f_0(\tilde{x}) \geq f_0(\tilde{x}) + \sum_{i=1}^{m} \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^{p} \nu_i h_i(\tilde{x})$$

$$\geq \inf_{x \in \mathcal{D}} L(x, \lambda_1, \ldots, \lambda_m, \nu)$$

$$= g(\lambda_1, \ldots, \lambda_m, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda_1, \ldots, \lambda_m, \nu)$

dual problem

maximize $g(\lambda_1, \ldots, \lambda_m, \nu)$

subject to $\lambda_i \succeq_{K_i^*} 0$, $i = 1, \ldots, m$

- **weak duality:** $p^* \geq d^*$ always
- **strong duality:** $p^* = d^*$ for convex problem with constraint qualification (for example, Slater’s: primal problem is strictly feasible)
Semidefinite program

primal SDP \((F_i, G \in S^k)\)

- minimize \(c^T x\)
- subject to \(x_1 F_1 + \cdots + x_n F_n \preceq G\)

- Lagrange multiplier is matrix \(Z \in S^k\)
- Lagrangian \(L(x, Z) = c^T x + \text{Tr}(Z(x_1 F_1 + \cdots + x_n F_n - G))\)
- dual function

\[
g(Z) = \inf_x L(x, Z) = \begin{cases}
-\text{Tr}(GZ) & \text{Tr}(F_i Z) + c_i = 0, \quad i = 1, \ldots, n \\
-\infty & \text{otherwise}
\end{cases}
\]

dual SDP

- maximize \(-\text{Tr}(GZ)\)
- subject to \(Z \succeq 0, \quad \text{Tr}(F_i Z) + c_i = 0, \quad i = 1, \ldots, n\)

\(p^* = d^*\) if primal SDP is strictly feasible \((\exists x \text{ with } x_1 F_1 + \cdots + x_n F_n < G)\)
Let’s consider the following Second Order Cone Program (SOCP):

\[
\begin{align*}
\text{minimize} & \quad f^T x \\
\text{subject to} & \quad \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \ldots, m,
\end{align*}
\]

with variable \(x \in \mathbb{R}^n\). Let’s show that the dual can be expressed as

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=1}^m (b_i^T u_i + d_i v_i) \\
\text{subject to} & \quad \sum_{i=1}^m (A_i^T u_i + c_i v_i) + f = 0 \\
& \quad \|u_i\|_2 \leq v_i, \quad i = 1, \ldots, m,
\end{align*}
\]

with variables \(u_i \in \mathbb{R}^{n_i}, v_i \in \mathbb{R}, i = 1, \ldots, m\) and problem data given by \(f \in \mathbb{R}^n\), \(A_i \in \mathbb{R}^{n_i \times n}, b_i \in \mathbb{R}^{n_i}, c_i \in \mathbb{R}\) and \(d_i \in \mathbb{R}\).
We can derive the dual in the following two ways:

1. Introduce new variables $y_i \in \mathbb{R}^{n_i}$ and $t_i \in \mathbb{R}$ and equalities $y_i = A_i x + b_i, t_i = c_i^T x + d_i$, and derive the Lagrange dual.

2. Start from the conic formulation of the SOCP and use the conic dual. Use the fact that the second-order cone is self-dual:

$$ t \geq \|x\| \iff tv + x^T y \geq 0, \text{ for all } v, y \text{ such that } v \geq \|y\| $$

The condition $x^T y \leq tv$ is a simple Cauchy-Schwarz inequality.
We introduce new variables, and write the problem as

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad \|y_i\|_2 \leq t_i, \quad i = 1, \ldots, m \\
& \quad y_i = A_i x + b_i, \quad t_i = c_i^T x + d_i, \quad i = 1, \ldots, m
\end{align*}
\]

The Lagrangian is

\[
L(x, y, t, \lambda, \nu, \mu) = c^T x + \sum_{i=1}^{m} \lambda_i (\|y_i\|_2 - t_i) + \sum_{i=1}^{m} \nu_i^T (y_i - A_i x - b_i) + \sum_{i=1}^{m} \mu_i (t_i - c_i^T x - d_i)
\]

\[
= (c - \sum_{i=1}^{m} A_i^T \nu_i - \sum_{i=1}^{m} \mu_i c_i)^T x + \sum_{i=1}^{m} (\lambda_i \|y_i\|_2 + \nu_i^T y_i) + \sum_{i=1}^{m} (-\lambda_i + \mu_i) t_i
\]

\[
- \sum_{i=1}^{n} (b_i^T \nu_i + d_i \mu_i).
\]
The minimum over x is bounded below if and only if

$$\sum_{i=1}^{m}(A_i^T \nu_i + \mu_i c_i) = c.$$

To minimize over y_i, we note that

$$\inf_{y_i}(\lambda_i \|y_i\|_2 + \nu_i^T y_i) = \begin{cases} 0 & \|\nu_i\|_2 \leq \lambda_i \\ -\infty & \text{otherwise.} \end{cases}$$

The minimum over t_i is bounded below if and only if $\lambda_i = \mu_i$.
The Lagrange dual function is

\[g(\lambda, \nu, \mu) = \begin{cases}
- \sum_{i=1}^{n} (b_i^T \nu_i + d_i \mu_i) & \text{if } \sum_{i=1}^{m} (A_i^T \nu_i + \mu_i c_i) = c, \\
\|\nu_i\|_2 \leq \lambda_i, & \mu = \lambda \\
-\infty & \text{otherwise}
\end{cases} \]

which leads to the dual problem

\[
\text{maximize } - \sum_{i=1}^{n} (b_i^T \nu_i + d_i \lambda_i) \\
\text{subject to } \sum_{i=1}^{m} (A_i^T \nu_i + \lambda_i c_i) = c \\
\|\nu_i\|_2 \leq \lambda_i, \quad i = 1, \ldots, m.
\]

which is again an SOCP
We can also express the SOCP as a **conic form** problem

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad -(c_i^T x + d_i, A_i x + b_i) \preceq_{K_i} 0, \quad i = 1, \ldots, m.
\end{align*}
\]

The Lagrangian is given by:

\[
L(x, u_i, v_i) = c^T x - \sum_i (A_i x + b_i)^T u_i - \sum_i (c_i^T x + d_i) v_i
\]

\[
= (c - \sum_i (A_i^T u_i + c_i v_i))^T x - \sum_i (b_i^T u_i + d_i v_i)
\]

for \((v_i, u_i) \succeq_{K_i} 0\) (which is also \(v_i \geq \|u_i\|\))
Duality: SOCP

With

\[L(x, u_i, v_i) = \left(c - \sum_i (A_i^T u_i + c_i v_i) \right)^T x - \sum_i (b_i^T u_i + d_i v_i) \]

the dual function is given by:

\[g(\lambda, \nu, \mu) = \begin{cases}
- \sum_{i=1}^n (b_i^T \nu_i + d_i \mu_i) & \text{if } \sum_{i=1}^m (A_i^T \nu_i + \mu_i c_i) = c, \\
-\infty & \text{otherwise}
\end{cases} \]

The conic dual is then:

\[
\begin{align*}
\text{maximize} & \quad - \sum_{i=1}^n (b_i^T u_i + d_i v_i) \\
\text{subject to} & \quad \sum_{i=1}^m (A_i^T u_i + v_i c_i) = c \\
& \quad (v_i, u_i) \succeq K_i^0, \quad i = 1, \ldots, m.
\end{align*}
\]
References

