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Today

� Convex optimization: introduction

� Course organization and other gory details...

� Convex optimization: basic concepts
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Convex Optimization
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Convex optimization

minimize f0(x)
subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

x ∈ Rn is optimization variable; fi : Rn → R are convex:

fi(λx+ (1− λ)y) ≤ λfi(x) + (1− λ)fi(y)

for all x, y, 0 ≤ λ ≤ 1

� This template includes LS, LP, QP, and many others.

� Good news: convex problems (LP, QP, etc) are fundamentally tractable.

� Bad news: this is an exception, most nonconvex are completely intractable.
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Convex optimization

A brief history. . .

� The field is about 50 years old.

� Starts with the work of Von Neumann, Kuhn and Tucker, etc.

� Explodes in the 60’s with the advent of “relatively” cheap and efficient
computers. . .

� Key to all this: fast linear algebra

� Some of the theory developed before computers even existed. . .
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Convex optimization: history

� Historical view: nonlinear problems are hard, linear ones are easy.

� In reality: Convexity =⇒ low complexity

”... In fact the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.” T. Rockafellar.

� True: Nemirovskii and Yudin [1979].

� Very true: Karmarkar [1984].

� Seriously true: convex programming, Nesterov and Nemirovskii [1994].
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Convexity, complexity

� All convex minimization problems with: a first order oracle (returning f(x) and
a subgradient) can be solved in polynomial time in size and number of
precision digits.

� Proved using the ellipsoid method by Nemirovskii and Yudin [1979].

� Very slow convergence in practice.
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Linear Programming

� Simplex algorithm by Dantzig (1949): exponential worst-case complexity, very
efficient in most cases.

� Khachiyan [1979] then used the ellipsoid method to show the polynomial
complexity of LP.

� Karmarkar [1984] describes the first efficient polynomial time algorithm for LP,
using interior point methods.
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From LP to structured convex programs

� Nesterov and Nemirovskii [1994] show that the interior point methods (IPM)
used for LPs can be applied to a larger class of structured convex problems.

� The self-concordance analysis that they introduce extends the polynomial
time complexity proof for LPs.

� Most operations that preserve convexity also preserve self-concordance.
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Large-scale convex programs

Interior point methods.

� IPM essentially solved once and for all a broad range of medium-scale convex
programs.

� For large-scale problems, computing a single Newton step is often too expensive

First order methods.

� Dependence on precision is polynomial O(1/εα), not logarithmic O(log(1/ε)).
This is OK in many applications (stats, etc).

� Run a much larger number of cheaper iterations. No Hessian means
significantly lower memory and CPU costs per iteration.

� No unified analysis (self-concordance for IPM): large library of disparate
methods.

� Algorithmic choices strictly constrained by problem structure.

Objective: classify these techniques, study their performance & complexity.
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Symmetric cone programs

� An important particular case: linear programming on symmetric cones

minimize cTx
subject to Ax− b ∈ K

� These include the LP, second-order (Lorentz) and semidefinite cone:

LP: {x ∈ Rn : x ≥ 0}
Second order: {(x, y) ∈ Rn × R : ‖x‖ ≤ y}
Semidefinite: {X ∈ Sn : X � 0}

� Broad class of problems can be represented in this way.

� Good news: Fast, reliable, open-source solvers available (SDPT3, CVX, etc).

This course will describe some “exotic” applications of these programs.

A. d’Aspremont. M1 ENS. 11/128



A few “miracles”

Beyond convexity. . .

� Hidden convexity. Convex programs solving nonconvex problems (S-lemma).

� Approximation results. Approximating combinatorial problems by convex
programs.

◦ Approximate S-lemma.

◦ Approximation ratio for MaxCut, etc.

� Recovery results on `1 penalties. Finding sparse solutions to optimization
problems using convex penalties.

◦ Sparse signal reconstruction.

◦ Matrix completion (collaborative filtering, NETFLIX, etc.).
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Course Organization
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Course outline

� Fundamental definitions

◦ A brief primer on convexity and duality theory

� Algorithmic complexity

◦ Interior point methods, self-concordance.

◦ First order algorithms: complexity and classification.

� Modern applications

◦ Statistics

◦ Geometrical problems, graphs.

◦ · · ·
� Some “miracles”: approximation, asymptotic and hidden convexity results

◦ Measure concentration results.

◦ S-lemma, MaxCut, low rank SDP solutions, nonconvex QCQP, etc.

◦ High dimensional geometry

◦ `1 recovery, matrix completion, convex deconvolution, etc.
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Info

� Course website with lecture notes, homework, etc.

http://www.di.ens.fr/~aspremon/

� A final exam.
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Short blurb

� Contact info on http://www.di.ens.fr/~aspremon/

� Email: aspremon@ens.fr

� Dual PhDs: Ecole Polytechnique & Stanford University

� Interests: Optimization, machine learning, statistics & finance.
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Convex Sets

A. d’Aspremont. M1 ENS. 18/128



Convex Sets

� affine and convex sets

� some important examples

� operations that preserve convexity

� generalized inequalities

� separating and supporting hyperplanes

� dual cones and generalized inequalities
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Convex set

line segment between x1 and x2: all points

x = θx1 + (1− θ)x2

with 0 ≤ θ ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of x1,. . . , xk: any point x of the form

x = θ1x1 + θ2x2 + · · ·+ θkxk

with θ1 + · · ·+ θk = 1, θi ≥ 0

convex hull CoS: set of all convex combinations of points in S
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Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a 6= 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a 6= 0)

a

aTx ≥ b

aTx ≤ b

x0

� a is the normal vector

� hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

� (Euclidean) ball with center xc and radius r:

B(xc, r) = {x | ‖x− xc‖2 ≤ r} = {xc + ru | ‖u‖2 ≤ 1}

� Ellipsoid: set of the form

{x | (x− xc)TP−1(x− xc) ≤ 1}

with P ∈ Sn++ (i.e., P symmetric positive definite)

xc

other representation: {xc +Au | ‖u‖2 ≤ 1}, with A square and nonsingular.

� Representation impacts problem formulation & complexity.

� Idem for polytopes, with polynomial number of vertices, exponential number of
facets, and vice-versa.
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Polyhedra

solution set of finitely many linear inequalities and equalities

Ax � b, Cx = d

(A ∈ Rm×n, C ∈ Rp×n, � is componentwise inequality)

a1 a2

a3

a4

a5

P

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

� Sn is set of symmetric n× n matrices

� Sn+ = {X ∈ Sn | X � 0}: positive semidefinite n× n matrices

X ∈ Sn+ ⇐⇒ zTXz ≥ 0 for all z

Sn+ is a convex cone

� Sn++ = {X ∈ Sn | X � 0}: positive definite n× n matrices

example:

[
x y
y z

]
∈ S2

+

xy

z

0

0.5

1

−1

0

1
0

0.5

1
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Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces,
norm balls, . . . ) by operations that preserve convexity

� intersection

� affine functions

� perspective function

� linear-fractional functions
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Intersection

the intersection of (any number of) convex sets is convex

example:
S = {x ∈ Rm | |p(t)| ≤ 1 for |t| ≤ π/3}

where p(t) = x1 cos t+ x2 cos 2t+ · · ·+ xm cosmt

for m = 2:

0 π/3 2π/3 π

−1

0

1

t

p
(t
)

x1

x
2 S

−2 −1 0 1 2
−2

−1

0

1

2
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Affine function

suppose f : Rn → Rm is affine (f(x) = Ax+ b with A ∈ Rm×n, b ∈ Rm)

� the image of a convex set under f is convex

S ⊆ Rn convex =⇒ f(S) = {f(x) | x ∈ S} convex

� the inverse image f−1(C) of a convex set under f is convex

C ⊆ Rm convex =⇒ f−1(C) = {x ∈ Rn | f(x) ∈ C} convex

examples

� scaling, translation, projection

� solution set of linear matrix inequality {x | x1A1 + · · ·+ xmAm � B}
(with Ai, B ∈ Sp)

� hyperbolic cone {x | xTPx ≤ (cTx)2, cTx ≥ 0} (with P ∈ Sn+)
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Perspective and linear-fractional function

perspective function P : Rn+1 → Rn:

P (x, t) = x/t, domP = {(x, t) | t > 0}

images and inverse images of convex sets under perspective are convex

linear-fractional function f : Rn → Rm:

f(x) =
Ax+ b

cTx+ d
, dom f = {x | cTx+ d > 0}

images and inverse images of convex sets under linear-fractional functions are
convex
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Generalized inequalities

a convex cone K ⊆ Rn is a proper cone if

� K is closed (contains its boundary)

� K is solid (has nonempty interior)

� K is pointed (contains no line)

examples

� nonnegative orthant K = Rn+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}

� positive semidefinite cone K = Sn+

� nonnegative polynomials on [0, 1]:

K = {x ∈ Rn | x1 + x2t+ x3t
2 + · · ·+ xnt

n−1 ≥ 0 for t ∈ [0, 1]}

A. d’Aspremont. M1 ENS. 30/128



generalized inequality defined by a proper cone K:

x �K y ⇐⇒ y − x ∈ K, x ≺K y ⇐⇒ y − x ∈ intK

examples

� componentwise inequality (K = Rn+)

x �Rn+
y ⇐⇒ xi ≤ yi, i = 1, . . . , n

� matrix inequality (K = Sn+)

X �Sn+
Y ⇐⇒ Y −X positive semidefinite

these two types are so common that we drop the subscript in �K

properties: many properties of �K are similar to ≤ on R, e.g.,

x �K y, u �K v =⇒ x+ u �K y + v
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Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists a 6= 0, b such that

aTx ≤ b for x ∈ C, aTx ≥ b for x ∈ D

D

C

a

aTx ≥ b aTx ≤ b

the hyperplane {x | aTx = b} separates C and D

Classical result. Proof relies on minimizing distance between set, and using the
argmin to explicitly produce separating hyperplane.
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Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x0:

{x | aTx = aTx0}

where a 6= 0 and aTx ≤ aTx0 for all x ∈ C

C

a

x0

supporting hyperplane theorem: if C is convex, then there exists a supporting
hyperplane at every boundary point of C
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Dual cones and generalized inequalities

dual cone of a cone K:

K∗ = {y | yTx ≥ 0 for all x ∈ K}

examples

� K = Rn+: K∗ = Rn+
� K = Sn+: K∗ = Sn+

� K = {(x, t) | ‖x‖2 ≤ t}: K∗ = {(x, t) | ‖x‖2 ≤ t}

� K = {(x, t) | ‖x‖1 ≤ t}: K∗ = {(x, t) | ‖x‖∞ ≤ t}

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

y �K∗ 0 ⇐⇒ yTx ≥ 0 for all x �K 0
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Convex Functions
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Outline

� basic properties and examples

� operations that preserve convexity

� the conjugate function

� quasiconvex functions

� log-concave and log-convex functions

� convexity with respect to generalized inequalities
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Definition

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

� f is concave if −f is convex

� f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1
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Examples on R

convex:

� affine: ax+ b on R, for any a, b ∈ R

� exponential: eax, for any a ∈ R

� powers: xα on R++, for α ≥ 1 or α ≤ 0

� powers of absolute value: |x|p on R, for p ≥ 1

� negative entropy: x log x on R++

concave:

� affine: ax+ b on R, for any a, b ∈ R

� powers: xα on R++, for 0 ≤ α ≤ 1

� logarithm: log x on R++
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Examples on Rn and Rm×n

affine functions are convex and concave; all norms are convex

examples on Rn

� affine function f(x) = aTx+ b

� norms: ‖x‖p = (
∑n
i=1 |xi|p)1/p for p ≥ 1; ‖x‖∞ = maxk |xk|

examples on Rm×n (m× n matrices)

� affine function

f(X) = Tr(ATX) + b =

m∑
i=1

n∑
j=1

AijXij + b

� spectral (maximum singular value) norm

f(X) = ‖X‖2 = σmax(X) = (λmax(XTX))1/2
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Restriction of a convex function to a line

f : Rn → R is convex if and only if the function g : R→ R,

g(t) = f(x+ tv), dom g = {t | x+ tv ∈ dom f}

is convex (in t) for any x ∈ dom f , v ∈ Rn

can check convexity of f by checking convexity of functions of one variable

example. f : Sn → R with f(X) = log detX, domX = Sn++

g(t) = log det(X + tV ) = log detX + log det(I + tX−1/2V X−1/2)

= log detX +

n∑
i=1

log(1 + tλi)

where λi are the eigenvalues of X−1/2V X−1/2

g is concave in t (for any choice of X � 0, V ); hence f is concave
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Extended-value extension

extended-value extension f̃ of f is

f̃(x) = f(x), x ∈ dom f, f̃(x) =∞, x 6∈ dom f

often simplifies notation; for example, the condition

0 ≤ θ ≤ 1 =⇒ f̃(θx+ (1− θ)y) ≤ θf̃(x) + (1− θ)f̃(y)

(as an inequality in R ∪ {∞}), means the same as the two conditions

� dom f is convex

� for x, y ∈ dom f ,

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)
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First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)
exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian ∇2f(x) ∈ Sn,

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i, j = 1, . . . , n,

exists at each x ∈ dom f

2nd-order conditions: for twice differentiable f with convex domain

� f is convex if and only if

∇2f(x) � 0 for all x ∈ dom f

� if ∇2f(x) � 0 for all x ∈ dom f , then f is strictly convex

A. d’Aspremont. M1 ENS. 43/128



Examples

quadratic function: f(x) = (1/2)xTPx+ qTx+ r (with P ∈ Sn)

∇f(x) = Px+ q, ∇2f(x) = P

convex if P � 0

least-squares objective: f(x) = ‖Ax− b‖22

∇f(x) = 2AT (Ax− b), ∇2f(x) = 2ATA

convex (for any A)

quadratic-over-linear: f(x, y) = x2/y

∇2f(x, y) =
2

y3

[
y
−x

] [
y
−x

]T
� 0

convex for y > 0 xy

f
(x

,
y
)

−2

0

2

0

1

2
0

1

2
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log-sum-exp: f(x) = log
∑n
k=1 expxk is convex

∇2f(x) =
1

1Tz
diag(z)− 1

(1Tz)2
zzT (zk = expxk)

to show ∇2f(x) � 0, we must verify that vT∇2f(x)v ≥ 0 for all v:

vT∇2f(x)v =
(
∑
k zkv

2
k)(
∑
k zk)− (

∑
k vkzk)

2

(
∑
k zk)

2
≥ 0

since (
∑
k vkzk)

2 ≤ (
∑
k zkv

2
k)(
∑
k zk) (from Cauchy-Schwarz inequality)

geometric mean: f(x) = (
∏n
k=1 xk)

1/n on Rn++ is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set

α-sublevel set of f : Rn → R:

Cα = {x ∈ dom f | f(x) ≤ α}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : Rn → R:

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t}

epi f

f

f is convex if and only if epi f is a convex set
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Jensen’s inequality

basic inequality: if f is convex, then for 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

extension: if f is convex, then

f(E z) ≤ E f(z)

for any random variable z

basic inequality is special case with discrete distribution

Prob(z = x) = θ, Prob(z = y) = 1− θ
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show ∇2f(x) � 0

3. show that f is obtained from simple convex functions by operations that
preserve convexity

� nonnegative weighted sum
� composition with affine function
� pointwise maximum and supremum
� composition
� minimization
� perspective
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Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, α ≥ 0

sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax+ b) is convex if f is convex

examples

� log barrier for linear inequalities

f(x) = −
m∑
i=1

log(bi − aTi x), dom f = {x | aTi x < bi, i = 1, . . . ,m}

� (any) norm of affine function: f(x) = ‖Ax+ b‖
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Pointwise maximum

if f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex

examples

� piecewise-linear function: f(x) = maxi=1,...,m(aTi x+ bi) is convex

� sum of r largest components of x ∈ Rn:

f(x) = x[1] + x[2] + · · ·+ x[r]

is convex (x[i] is ith largest component of x)

proof:

f(x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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Pointwise supremum

if f(x, y) is convex in x for each y ∈ A, then

g(x) = sup
y∈A

f(x, y)

is convex

examples

� support function of a set C: SC(x) = supy∈C y
Tx is convex

� distance to farthest point in a set C:

f(x) = sup
y∈C
‖x− y‖

� maximum eigenvalue of symmetric matrix: for X ∈ Sn,

λmax(X) = sup
‖y‖2=1

yTXy
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Composition with scalar functions

composition of g : Rn → R and h : R→ R:

f(x) = h(g(x))

f is convex if
g convex, h convex, h̃ nondecreasing

g concave, h convex, h̃ nonincreasing

� proof (for n = 1, differentiable g, h)

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

� note: monotonicity must hold for extended-value extension h̃

examples

� exp g(x) is convex if g is convex

� 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

f is convex if
gi convex, h convex, h̃ nondecreasing in each argument

gi concave, h convex, h̃ nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f ′′(x) = g′(x)T∇2h(g(x))g′(x) +∇h(g(x))Tg′′(x)

examples

�
∑m
i=1 log gi(x) is concave if gi are concave and positive

� log
∑m
i=1 exp gi(x) is convex if gi are convex
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Minimization

if f(x, y) is convex in (x, y) and C is a convex set, then

g(x) = inf
y∈C

f(x, y)

is convex

examples

� f(x, y) = xTAx+ 2xTBy + yTCy with[
A B
BT C

]
� 0, C � 0

minimizing over y gives g(x) = infy f(x, y) = xT (A−BC−1BT )x

g is convex, hence Schur complement A−BC−1BT � 0

� distance to a set: dist(x, S) = infy∈S ‖x− y‖ is convex if S is convex
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The conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

� f∗ is convex (even if f is not)

� Used in regularization, duality results, . . .
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examples

� negative logarithm f(x) = − log x

f∗(y) = sup
x>0

(xy + log x)

=

{
−1− log(−y) y < 0
∞ otherwise

� strictly convex quadratic f(x) = (1/2)xTQx with Q ∈ Sn++

f∗(y) = sup
x

(yTx− (1/2)xTQx)

=
1

2
yTQ−1y
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Quasiconvex functions

f : Rn → R is quasiconvex if dom f is convex and the sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α}

are convex for all α

α

β

a b c

� f is quasiconcave if −f is quasiconvex

� f is quasilinear if it is quasiconvex and quasiconcave
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Examples

�

√
|x| is quasiconvex on R

� ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear

� log x is quasilinear on R++

� f(x1, x2) = x1x2 is quasiconcave on R2
++

� linear-fractional function

f(x) =
aTx+ b

cTx+ d
, dom f = {x | cTx+ d > 0}

is quasilinear

� distance ratio

f(x) =
‖x− a‖2
‖x− b‖2

, dom f = {x | ‖x− a‖2 ≤ ‖x− b‖2}

is quasiconvex
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Properties

modified Jensen inequality: for quasiconvex f

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ max{f(x), f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0

x
∇f(x)

sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ for 0 ≤ θ ≤ 1

f is log-convex if log f is convex

� powers: xa on R++ is log-convex for a ≤ 0, log-concave for a ≥ 0

� many common probability densities are log-concave, e.g., normal:

f(x) =
1√

(2π)n det Σ
e−

1
2(x−x̄)TΣ−1(x−x̄)

� cumulative Gaussian distribution function Φ is log-concave

Φ(x) =
1√
2π

∫ x

−∞
e−u

2/2 du
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Properties of log-concave functions

� twice differentiable f with convex domain is log-concave if and only if

f(x)∇2f(x) � ∇f(x)∇f(x)T

for all x ∈ dom f

� product of log-concave functions is log-concave

� sum of log-concave functions is not always log-concave

� integration: if f : Rn × Rm → R is log-concave, then

g(x) =

∫
f(x, y) dy

is log-concave (not easy to show)
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consequences of integration property

� convolution f ∗ g of log-concave functions f , g is log-concave

(f ∗ g)(x) =

∫
f(x− y)g(y)dy

� if C ⊆ Rn convex and y is a random variable with log-concave pdf then

f(x) = Prob(x+ y ∈ C)

is log-concave

proof: write f(x) as integral of product of log-concave functions

f(x) =

∫
g(x+ y)p(y) dy, g(u) =

{
1 u ∈ C
0 u 6∈ C,

p is pdf of y
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Convex Optimization Problems
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Outline

� optimization problem in standard form

� convex optimization problems

� quasiconvex optimization

� linear optimization

� quadratic optimization

� geometric programming

� generalized inequality constraints

� semidefinite programming

� vector optimization
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Optimization problem in standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

� x ∈ Rn is the optimization variable

� f0 : Rn → R is the objective or cost function

� fi : Rn → R, i = 1, . . . ,m, are the inequality constraint functions

� hi : Rn → R are the equality constraint functions

optimal value:

p? = inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

� p? =∞ if problem is infeasible (no x satisfies the constraints)

� p? = −∞ if problem is unbounded below
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Optimal and locally optimal points

x is feasible if x ∈ dom f0 and it satisfies the constraints

a feasible x is optimal if f0(x) = p?; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) f0(z)
subject to fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p

‖z − x‖2 ≤ R

examples (with n = 1, m = p = 0)

� f0(x) = 1/x, dom f0 = R++: p? = 0, no optimal point

� f0(x) = − log x, dom f0 = R++: p? = −∞

� f0(x) = x log x, dom f0 = R++: p? = −1/e, x = 1/e is optimal

� f0(x) = x3 − 3x, p? = −∞, local optimum at x = 1
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Implicit constraints

the standard form optimization problem has an implicit constraint

x ∈ D =

m⋂
i=0

dom fi ∩
p⋂
i=1

domhi,

� we call D the domain of the problem

� the constraints fi(x) ≤ 0, hi(x) = 0 are the explicit constraints

� a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:

minimize f0(x) = −
∑k
i=1 log(bi − aTi x)

is an unconstrained problem with implicit constraints aTi x < bi
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Feasibility problem

find x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

can be considered a special case of the general problem with f0(x) = 0:

minimize 0
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

� p? = 0 if constraints are feasible; any feasible x is optimal

� p? =∞ if constraints are infeasible
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Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

� f0, f1, . . . , fm are convex; equality constraints are affine

� problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)

often written as
minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

important property: feasible set of a convex optimization problem is convex
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example

minimize f0(x) = x2
1 + x2

2

subject to f1(x) = x1/(1 + x2
2) ≤ 0

h1(x) = (x1 + x2)2 = 0

� f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex

� not a convex problem (according to our definition): f1 is not convex, h1 is not
affine

� equivalent (but not identical) to the convex problem

minimize x2
1 + x2

2

subject to x1 ≤ 0
x1 + x2 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal

Proof: suppose x is locally optimal and y is optimal with f0(y) < f0(x)

x locally optimal means there is an R > 0 such that

z feasible, ‖z − x‖2 ≤ R =⇒ f0(z) ≥ f0(x)

consider z = θy + (1− θ)x with θ = R/(2‖y − x‖2)

� ‖y − x‖2 > R, so 0 < θ < 1/2

� z is a convex combination of two feasible points, hence also feasible

� ‖z − x‖2 = R/2 and

f0(z) ≤ θf0(x) + (1− θ)f0(y) < f0(x)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)T (y − x) ≥ 0 for all feasible y

−∇f0(x)

X
x

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily obtained
from the solution of the other, and vice-versa

some common transformations that preserve convexity:

� eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z
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� introducing equality constraints

minimize f0(A0x+ b0)
subject to fi(Aix+ bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix+ bi, i = 0, 1, . . . ,m

� introducing slack variables for linear inequalities

minimize f0(x)
subject to aTi x ≤ bi, i = 1, . . . ,m

is equivalent to

minimize (over x, s) f0(x)
subject to aTi x+ si = bi, i = 1, . . . ,m

si ≥ 0, i = 1, . . .m
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� epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

� minimizing over some variables

minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

where f̃0(x1) = infx2 f0(x1, x2)
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Quasiconvex optimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 : Rn → R quasiconvex, f1, . . . , fm convex

can have locally optimal points that are not (globally) optimal

(x, f0(x))
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quasiconvex optimization via convex feasibility problems

f0(x) ≤ t, fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (1)

� for fixed t, a convex feasibility problem in x

� if feasible, we can conclude that t ≥ p?; if infeasible, t ≤ p?

Bisection method for quasiconvex optimization

given l ≤ p?, u ≥ p?, tolerance ε > 0.

repeat
1. t := (l + u)/2.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, u := t; else l := t.

until u− l ≤ ε.

requires exactly dlog2((u− l)/ε)e iterations (where u, l are initial values)

A. d’Aspremont. M1 ENS. 77/128



Linear program (LP)

minimize cTx+ d
subject to Gx � h

Ax = b

� convex problem with affine objective and constraint functions

� feasible set is a polyhedron

P
x⋆

−c
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Chebyshev center of a polyhedron

Chebyshev center of

P = {x | aTi x ≤ bi, i = 1, . . . ,m}

is center of largest inscribed ball

B = {xc + u | ‖u‖2 ≤ r}

xchebxcheb

� aTi x ≤ bi for all x ∈ B if and only if

sup{aTi (xc + u) | ‖u‖2 ≤ r} = aTi xc + r‖ai‖2 ≤ bi

� hence, xc, r can be determined by solving the LP

maximize r
subject to aTi xc + r‖ai‖2 ≤ bi, i = 1, . . . ,m
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(Generalized) linear-fractional program

minimize f0(x)
subject to Gx � h

Ax = b

linear-fractional program

f0(x) =
cTx+ d

eTx+ f
, dom f0(x) = {x | eTx+ f > 0}

� a quasiconvex optimization problem; can be solved by bisection

� also equivalent to the LP (variables y, z)

minimize cTy + dz
subject to Gy � hz

Ay = bz
eTy + fz = 1
z ≥ 0
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Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx � h

Ax = b

� P ∈ Sn+, so objective is convex quadratic

� minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)
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Examples

least-squares
minimize ‖Ax− b‖22

� analytical solution x? = A†b (A† is pseudo-inverse)

� can add linear constraints, e.g., l � x � u

linear program with random cost

minimize c̄Tx+ γxTΣx = E cTx+ γ var(cTx)
subject to Gx � h, Ax = b

� c is random vector with mean c̄ and covariance Σ

� hence, cTx is random variable with mean c̄Tx and variance xTΣx

� γ > 0 is risk aversion parameter; controls the trade-off between expected cost
and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize (1/2)xTP0x+ qT0 x+ r0

subject to (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m
Ax = b

� Pi ∈ Sn+; objective and constraints are convex quadratic

� if P1, . . . , Pm ∈ Sn++, feasible region is intersection of m ellipsoids and an
affine set
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Second-order cone programming

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)

� inequalities are called second-order cone (SOC) constraints:

(Aix+ bi, c
T
i x+ di) ∈ second-order cone in Rni+1

� for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP

� more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m,

there can be uncertainty in c, ai, bi

two common approaches to handling uncertainty (in ai, for simplicity)

� deterministic model: constraints must hold for all ai ∈ Ei

minimize cTx
subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m,

� stochastic model: ai is random variable; constraints must hold with
probability η

minimize cTx
subject to Prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m
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deterministic approach via SOCP

� choose an ellipsoid as Ei:

Ei = {āi + Piu | ‖u‖2 ≤ 1} (āi ∈ Rn, Pi ∈ Rn×n)

center is āi, semi-axes determined by singular values/vectors of Pi

� robust LP

minimize cTx
subject to aTi x ≤ bi ∀ai ∈ Ei, i = 1, . . . ,m

is equivalent to the SOCP

minimize cTx
subject to āTi x+ ‖PTi x‖2 ≤ bi, i = 1, . . . ,m

(follows from sup‖u‖2≤1(āi + Piu)Tx = āTi x+ ‖PTi x‖2)
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stochastic approach via SOCP

� assume ai is Gaussian with mean āi, covariance Σi (ai ∼ N (āi,Σi))

� aTi x is Gaussian r.v. with mean āTi x, variance xTΣix; hence

Prob(aTi x ≤ bi) = Φ

(
bi − āTi x
‖Σ1/2

i x‖2

)

where Φ(x) = (1/
√

2π)
∫ x
−∞ e

−t2/2 dt is CDF of N (0, 1)

� robust LP

minimize cTx
subject to Prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m,

with η ≥ 1/2, is equivalent to the SOCP

minimize cTx

subject to āTi x+ Φ−1(η)‖Σ1/2
i x‖2 ≤ bi, i = 1, . . . ,m
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Impact of reliability

{x | Prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m}

η = 10% η = 50% η = 90%
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Generalized inequality constraints

convex problem with generalized inequality constraints

minimize f0(x)
subject to fi(x) �Ki 0, i = 1, . . . ,m

Ax = b

� f0 : Rn → R convex; fi : Rn → Rki Ki-convex w.r.t. proper cone Ki

� same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize cTx
subject to Fx+ g �K 0

Ax = b

extends linear programming (K = Rm+ ) to nonpolyhedral cones
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Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · ·+ xnFn +G � 0

Ax = b

with Fi, G ∈ Sk

� inequality constraint is called linear matrix inequality (LMI)

� includes problems with multiple LMI constraints: for example,

x1F̂1 + · · ·+ xnF̂n + Ĝ � 0, x1F̃1 + · · ·+ xnF̃n + G̃ � 0

is equivalent to single LMI

x1

[
F̂1 0

0 F̃1

]
+ x2

[
F̂2 0

0 F̃2

]
+ · · ·+ xn

[
F̂n 0

0 F̃n

]
+

[
Ĝ 0

0 G̃

]
� 0
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LP and SOCP as SDP

LP and equivalent SDP

LP: minimize cTx
subject to Ax � b

SDP: minimize cTx
subject to diag(Ax− b) � 0

(note different interpretation of generalized inequality �)

SOCP and equivalent SDP

SOCP: minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

SDP: minimize fTx

subject to

[
(cTi x+ di)I Aix+ bi
(Aix+ bi)

T cTi x+ di

]
� 0, i = 1, . . . ,m
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Eigenvalue minimization

minimize λmax(A(x))

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Sk)

equivalent SDP
minimize t
subject to A(x) � tI

� variables x ∈ Rn, t ∈ R

� follows from
λmax(A) ≤ t ⇐⇒ A � tI
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Matrix norm minimization

minimize ‖A(x)‖2 =
(
λmax(A(x)TA(x))

)1/2
where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Sp×q)

equivalent SDP
minimize t

subject to

[
tI A(x)

A(x)T tI

]
� 0

� variables x ∈ Rn, t ∈ R

� constraint follows from

‖A‖2 ≤ t ⇐⇒ ATA � t2I, t ≥ 0

⇐⇒
[
tI A
AT tI

]
� 0
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Duality
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Outline

� Lagrange dual problem

� weak and strong duality

� optimality conditions

� perturbation and sensitivity analysis

� examples

� generalized inequalities
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Lagrangian

standard form problem (not necessarily convex)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p?

Lagrangian: L : Rn × Rm × Rp → R, with domL = D × Rm × Rp,

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

� weighted sum of objective and constraint functions

� λi is Lagrange multiplier associated with fi(x) ≤ 0

� νi is Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function

Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)

g is concave, can be −∞ for some λ, ν

lower bound property: if λ � 0, then g(λ, ν) ≤ p?

proof: if x̃ is feasible and λ � 0, then

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf
x∈D

L(x, λ, ν) = g(λ, ν)

minimizing over all feasible x̃ gives p? ≥ g(λ, ν)
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Least-norm solution of linear equations

minimize xTx
subject to Ax = b

dual function

� Lagrangian is L(x, ν) = xTx+ νT (Ax− b)

� to minimize L over x, set gradient equal to zero:

∇xL(x, ν) = 2x+ATν = 0 =⇒ x = −(1/2)ATν

� plug in in L to obtain g:

g(ν) = L((−1/2)ATν, ν) = −1

4
νTAATν − bTν

a concave function of ν

lower bound property: p? ≥ −(1/4)νTAATν − bTν for all ν
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Standard form LP

minimize cTx
subject to Ax = b, x � 0

dual function

� Lagrangian is

L(x, λ, ν) = cTx+ νT (Ax− b)− λTx
= −bTν + (c+ATν − λ)Tx

� L is linear in x, hence

g(λ, ν) = inf
x
L(x, λ, ν) =

{
−bTν ATν − λ+ c = 0
−∞ otherwise

g is linear on affine domain {(λ, ν) | ATν − λ+ c = 0}, hence concave

lower bound property: p? ≥ −bTν if ATν + c � 0
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Equality constrained norm minimization

minimize ‖x‖
subject to Ax = b

dual function

g(ν) = inf
x

(‖x‖ − νTAx+ bTν) =

{
bTν ‖ATν‖∗ ≤ 1
−∞ otherwise

where ‖v‖∗ = sup‖u‖≤1 u
Tv is dual norm of ‖ · ‖

proof: follows from infx(‖x‖ − yTx) = 0 if ‖y‖∗ ≤ 1, −∞ otherwise

� if ‖y‖∗ ≤ 1, then ‖x‖ − yTx ≥ 0 for all x, with equality if x = 0

� if ‖y‖∗ > 1, choose x = tu where ‖u‖ ≤ 1, uTy = ‖y‖∗ > 1:

‖x‖ − yTx = t(‖u‖ − ‖y‖∗)→ −∞ as t→∞

lower bound property: p? ≥ bTν if ‖ATν‖∗ ≤ 1
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Two-way partitioning

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n

� a nonconvex problem; feasible set contains 2n discrete points

� interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning i, j to
the same set; −Wij is cost of assigning to different sets

dual function

g(ν) = inf
x

(xTWx+
∑
i

νi(x
2
i − 1)) = inf

x
xT (W + diag(ν))x− 1Tν

=

{
−1Tν W + diag(ν) � 0
−∞ otherwise

lower bound property: p? ≥ −1Tν if W + diag(ν) � 0

example: ν = −λmin(W )1 gives bound p? ≥ nλmin(W )
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The dual problem

Lagrange dual problem
maximize g(λ, ν)
subject to λ � 0

� finds best lower bound on p?, obtained from Lagrange dual function

� a convex optimization problem; optimal value denoted d?

� λ, ν are dual feasible if λ � 0, (λ, ν) ∈ dom g

� often simplified by making implicit constraint (λ, ν) ∈ dom g explicit

example: standard form LP and its dual (page 99)

minimize cTx
subject to Ax = b

x � 0

maximize −bTν
subject to ATν + c � 0
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Weak and strong duality

weak duality: d? ≤ p?

� always holds (for convex and nonconvex problems)

� can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize −1Tν
subject to W + diag(ν) � 0

gives a lower bound for the two-way partitioning problem on page 101

strong duality: d? = p?

� does not hold in general

� (usually) holds for convex problems

� conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

� also guarantees that the dual optimum is attained (if p? > −∞)

� can be sharpened: e.g., can replace intD with relintD (interior relative to
affine hull); linear inequalities do not need to hold with strict inequality, . . .

� there exist many other types of constraint qualifications
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Inequality form LP

primal problem
minimize cTx
subject to Ax � b

dual function

g(λ) = inf
x

(
(c+ATλ)Tx− bTλ

)
=

{
−bTλ ATλ+ c = 0
−∞ otherwise

dual problem
maximize −bTλ
subject to ATλ+ c = 0, λ � 0

� from Slater’s condition: p? = d? if Ax̃ ≺ b for some x̃

� in fact, p? = d? except when primal and dual are infeasible
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Quadratic program

primal problem (assume P ∈ Sn++)

minimize xTPx
subject to Ax � b

dual function

g(λ) = inf
x

(
xTPx+ λT (Ax− b)

)
= −1

4
λTAP−1ATλ− bTλ

dual problem
maximize −(1/4)λTAP−1ATλ− bTλ
subject to λ � 0

� from Slater’s condition: p? = d? if Ax̃ ≺ b for some x̃

� in fact, p? = d? always
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A nonconvex problem with strong duality

minimize xTAx+ 2bTx
subject to xTx ≤ 1

nonconvex if A 6� 0

dual function: g(λ) = infx(x
T (A+ λI)x+ 2bTx− λ)

� unbounded below if A+ λI 6� 0 or if A+ λI � 0 and b 6∈ R(A+ λI)

� minimized by x = −(A+ λI)†b otherwise: g(λ) = −bT (A+ λI)†b− λ

dual problem and equivalent SDP:

maximize −bT (A+ λI)†b− λ
subject to A+ λI � 0

b ∈ R(A+ λI)

maximize −t− λ

subject to

[
A+ λI b
bT t

]
� 0

strong duality although primal problem is not convex (more later)
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Complementary slackness

Assume strong duality holds, x? is primal optimal, (λ?, ν?) is dual optimal

f0(x?) = g(λ?, ν?) = inf
x

(
f0(x) +

m∑
i=1

λ?i fi(x) +

p∑
i=1

ν?i hi(x)

)

≤ f0(x?) +

m∑
i=1

λ?i fi(x
?) +

p∑
i=1

ν?i hi(x
?)

≤ f0(x?)

hence, the two inequalities hold with equality

� x? minimizes L(x, λ?, ν?)

� λ?i fi(x
?) = 0 for i = 1, . . . ,m (known as complementary slackness):

λ?i > 0 =⇒ fi(x
?) = 0, fi(x

?) < 0 =⇒ λ?i = 0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, hi):

1. Primal feasibility: fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p

2. Dual feasibility: λ � 0

3. Complementary slackness: λifi(x) = 0, i = 1, . . . ,m

4. Gradient of Lagrangian with respect to x vanishes (first order condition):

∇f0(x) +
m∑
i=1

λi∇fi(x) +

p∑
i=1

νi∇hi(x) = 0

If strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT
conditions
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KKT conditions for convex problem

If x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

� from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

� from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃)

If Slater’s condition is satisfied, x is optimal if and only if there exist λ, ν that
satisfy KKT conditions

� recall that Slater implies strong duality, and dual optimum is attained

� generalizes optimality condition ∇f0(x) = 0 for unconstrained problem

Summary:

� When strong duality holds, the KKT conditions are necessary conditions for
optimality

� If the problem is convex, they are also sufficient
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example: water-filling (assume αi > 0)

minimize −
∑n
i=1 log(xi + αi)

subject to x � 0, 1Tx = 1

x is optimal iff x � 0, 1Tx = 1, and there exist λ ∈ Rn, ν ∈ R such that

λ � 0, λixi = 0,
1

xi + αi
+ λi = ν

� if ν < 1/αi: λi = 0 and xi = 1/ν − αi
� if ν ≥ 1/αi: λi = ν − 1/αi and xi = 0

� determine ν from 1Tx =
∑n
i=1 max{0, 1/ν − αi} = 1

interpretation

� n patches; level of patch i is at height αi

� flood area with unit amount of water

� resulting level is 1/ν?
i

1/ν⋆

xi

αi
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Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

maximize g(λ, ν)
subject to λ � 0

perturbed problem and its dual

min. f0(x)
s.t. fi(x) ≤ ui, i = 1, . . . ,m

hi(x) = vi, i = 1, . . . , p

max. g(λ, ν)− uTλ− vTν
s.t. λ � 0

� x is primal variable; u, v are parameters

� p?(u, v) is optimal value as a function of u, v

� we are interested in information about p?(u, v) that we can obtain from the
solution of the unperturbed problem and its dual
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Perturbation and sensitivity analysis

global sensitivity result Strong duality holds for unperturbed problem and λ?, ν?

are dual optimal for unperturbed problem. Apply weak duality to perturbed
problem:

p?(u, v) ≥ g(λ?, ν?)− uTλ? − vTν?

= p?(0, 0)− uTλ? − vTν?

local sensitivity: if (in addition) p?(u, v) is differentiable at (0, 0), then

λ?i = −∂p
?(0, 0)

∂ui
, ν?i = −∂p

?(0, 0)

∂vi
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Duality and problem reformulations

� equivalent formulations of a problem can lead to very different duals

� reformulating the primal problem can be useful when the dual is difficult to
derive, or uninteresting

common reformulations

� introduce new variables and equality constraints

� make explicit constraints implicit or vice-versa

� transform objective or constraint functions

e.g., replace f0(x) by φ(f0(x)) with φ convex, increasing
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Introducing new variables and equality constraints

minimize f0(Ax+ b)

� dual function is constant: g = infxL(x) = infx f0(Ax+ b) = p?

� we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize f0(y)
subject to Ax+ b− y = 0

maximize bTν − f∗0 (ν)
subject to ATν = 0

dual function follows from

g(ν) = inf
x,y

(f0(y)− νTy + νTAx+ bTν)

=

{
−f∗0 (ν) + bTν ATν = 0
−∞ otherwise
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norm approximation problem: minimize ‖Ax− b‖

minimize ‖y‖
subject to y = Ax− b

can look up conjugate of ‖ · ‖, or derive dual directly

g(ν) = inf
x,y

(‖y‖+ νTy − νTAx+ bTν)

=

{
bTν + infy(‖y‖+ νTy) ATν = 0
−∞ otherwise

=

{
bTν ATν = 0, ‖ν‖∗ ≤ 1
−∞ otherwise

(see page 98)

dual of norm approximation problem

maximize bTν
subject to ATν = 0, ‖ν‖∗ ≤ 1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize cTx
subject to Ax = b

−1 � x � 1

maximize −bTν − 1Tλ1 − 1Tλ2

subject to c+ATν + λ1 − λ2 = 0
λ1 � 0, λ2 � 0

reformulation with box constraints made implicit

minimize f0(x) =

{
cTx −1 � x � 1
∞ otherwise

subject to Ax = b

dual function

g(ν) = inf
−1�x�1

(cTx+ νT (Ax− b))

= −bTν − ‖ATν + c‖1

dual problem: maximize −bTν − ‖ATν + c‖1
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Problems with generalized inequalities

minimize f0(x)
subject to fi(x) �Ki 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

�Ki is generalized inequality on Rki

definitions are parallel to scalar case:

� Lagrange multiplier for fi(x) �Ki 0 is vector λi ∈ Rki

� Lagrangian L : Rn × Rk1 × · · · × Rkm × Rp → R, is defined as

L(x, λ1, · · · , λm, ν) = f0(x) +

m∑
i=1

λTi fi(x) +

p∑
i=1

νihi(x)

� dual function g : Rk1 × · · · × Rkm × Rp → R, is defined as

g(λ1, . . . , λm, ν) = inf
x∈D

L(x, λ1, · · · , λm, ν)
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lower bound property: if λi �K∗i 0, then g(λ1, . . . , λm, ν) ≤ p?

proof: if x̃ is feasible and λ �K∗i 0, then

f0(x̃) ≥ f0(x̃) +

m∑
i=1

λTi fi(x̃) +

p∑
i=1

νihi(x̃)

≥ inf
x∈D

L(x, λ1, . . . , λm, ν)

= g(λ1, . . . , λm, ν)

minimizing over all feasible x̃ gives p? ≥ g(λ1, . . . , λm, ν)

dual problem
maximize g(λ1, . . . , λm, ν)
subject to λi �K∗i 0, i = 1, . . . ,m

� weak duality: p? ≥ d? always

� strong duality: p? = d? for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)
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Semidefinite program

primal SDP (Fi, G ∈ Sk)

minimize cTx
subject to x1F1 + · · ·+ xnFn � G

� Lagrange multiplier is matrix Z ∈ Sk

� Lagrangian L(x, Z) = cTx+ Tr (Z(x1F1 + · · ·+ xnFn −G))

� dual function

g(Z) = inf
x
L(x, Z) =

{
−Tr(GZ) Tr(FiZ) + ci = 0, i = 1, . . . , n
−∞ otherwise

dual SDP

maximize −Tr(GZ)
subject to Z � 0, Tr(FiZ) + ci = 0, i = 1, . . . , n

p? = d? if primal SDP is strictly feasible (∃x with x1F1 + · · ·+ xnFn ≺ G)
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Proof

Convex problem & constraint qualification

⇓

Strong duality
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Slater’s constraint qualification

Convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

The problem satisfies Slater’s condition if it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

� also guarantees that the dual optimum is attained (if p? > −∞)

� there exist many other types of constraint qualifications
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KKT conditions for convex problem

If x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

� from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

� from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃) with (x̃, λ̃, ν̃) feasible.

If Slater’s condition is satisfied, x is optimal if and only if there exist λ, ν that
satisfy KKT conditions

� Slater implies strong duality (more on this now), and dual optimum is attained

� generalizes optimality condition ∇f0(x) = 0 for unconstrained problem

Summary

� For a convex problem satisfying constraint qualification, the KKT conditions
are necessary & sufficient conditions for optimality.
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Proof

To simplify the analysis. We make two additional technical assumptions:

� The domain D has nonempty interior (hence, relintD = intD)

� We also assume that A has full rank, i.e. RankA = p.
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Proof

� We define the set A as

A = {(u, v, t) | ∃x ∈ D, fi(x) ≤ ui, i = 1, . . . ,m,
hi(x) = vi, i = 1, . . . , p, f0(x) ≤ t},

which is the set of values taken by the constraint and objective functions.

� If the problem is convex, A is defined by a list of convex constraints hence is
convex.

� We define a second convex set B as

B = {(0, 0, s) ∈ Rm × Rp × R | s < p?}.

� The sets A and B do not intersect (otherwise p? could not be optimal value of
the problem).

First step: The hyperplane separating A and B defines a supporting hyperplane
to A at (0, p?).
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Geometric proof

A

B

u

t

(ũ, t̃)

Illustration of strong duality proof, for a convex problem that satisfies Slater’s
constraint qualification. The two sets A and B are convex and do not intersect,
so they can be separated by a hyperplane. Slater’s constraint qualification
guarantees that any separating hyperplane must be nonvertical.
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Proof

� By the separating hyperplane theorem there exists (λ̃, ν̃, µ) 6= 0 and α such
that

(u, v, t) ∈ A =⇒ λ̃Tu+ ν̃Tv + µt ≥ α, (2)

and
(u, v, t) ∈ B =⇒ λ̃Tu+ ν̃Tv + µt ≤ α. (3)

� From (2) we conclude that λ̃ � 0 and µ ≥ 0. (Otherwise λ̃Tu+ µt is
unbounded below over A, contradicting (2).)

� The condition (3) simply means that µt ≤ α for all t < p?, and hence,
µp? ≤ α.

Together with (2) we conclude that for any x ∈ D,

µp? ≤ α ≤ µf0(x) +

m∑
i=1

λ̃ifi(x) + ν̃T (Ax− b) (4)
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Proof

Let us assume that µ > 0 (separating hyperplane is nonvertical)

� We can divide the previous equation by µ to get

L(x, λ̃/µ, ν̃/µ) ≥ p?

for all x ∈ D
� Minimizing this inequality over x produces p? ≤ g(λ, ν), where

λ = λ̃/µ, ν = ν̃/µ.

� By weak duality we have g(λ, ν) ≤ p?, so in fact g(λ, ν) = p?.

This shows that strong duality holds, and that the dual optimum is attained,
whenever µ > 0. The normal vector has the form (λ?, 1) and produces the
Lagrange multipliers.
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Proof

Second step: Slater’s constraint qualification is used to establish that the
hyperplane must be nonvertical, i.e. µ > 0.

By contradiction, assume that µ = 0. From (4), we conclude that for all x ∈ D,

m∑
i=1

λ̃ifi(x) + ν̃T (Ax− b) ≥ 0. (5)

� Applying this to the point x̃ that satisfies the Slater condition, we have

m∑
i=1

λ̃ifi(x̃) ≥ 0.

� Since fi(x̃) < 0 and λ̃i ≥ 0, we conclude that λ̃ = 0.
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Proof

This is where we use the two technical assumptions.

� Then (5) implies that for all x ∈ D, ν̃T (Ax− b) ≥ 0.

� But x̃ satisfies ν̃T (Ax̃− b) = 0, and since x̃ ∈ intD, there are points in D
with ν̃T (Ax− b) < 0 unless AT ν̃ = 0.

� This contradicts our assumption that RankA = p.

This means that we cannot have µ = 0 and ends the proof.
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