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Today

� Semidefinite relaxations

� Lagrangian relaxations for general QCQPs

� Randomization

� Bounds on suboptimality (MAXCUT)

� Exact relaxations, S-lemma

� Concentration arguments

� Approximate S-lemma

� Problems on graphs
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Convex Optimization

Convex problem:

minimize f0(x)
subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

x ∈ Rn is optimization variable; fi : Rn → R are convex:

fi(λx+ (1− λ)y) ≤ λfi(x) + (1− λ)fi(y)

for all x, y, 0 ≤ λ ≤ 1

� includes LS, LP, QP, and many others

� like LS, LP, and QP, convex problems are fundamentally tractable
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Nonconvex Problems

Nonconvexity makes problems essentially untractable...

� Sometimes the result of bad problem formulation

� Natural limitation: fixed transaction costs, binary communications, ...

What can be done?... Use convex optimization results to

� Get exact solutions in rare cases.

� Find bounds on the optimal value, by relaxation.

� Get ”good” feasible points via randomization.
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Nonconvex Problems

� Focus first on a specific class of problems: general QCQPs

� Large range of applications...

A generic QCQP can be written

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

� If all Pi are p.s.d., this is a convex problem...

� We suppose at least one Pi is not p.s.d.

A. d’Aspremont. M1 ENS. 5/50



Example: Boolean Least Squares

Boolean least-squares problem:

minimize ‖Ax− b‖2
subject to x2i = 1, i = 1, . . . , n

� basic problem in digital communications

� could check all 2n possible values of x . . .

� an NP-hard problem, and very hard in practice

� many heuristics for approximate solution
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Example: Partitioning Problem

two-way partitioning problem described in §5.1.4 of the textbook

minimize xTWx
subject to x2i = 1, i = 1, . . . , n

where W ∈ Sn, with Wii = 0.

� a feasible x corresponds to the partition

{1, . . . , n} = {i | xi = −1} ∪ {i | xi = 1}

� the matrix coefficient Wij can be interpreted as the cost of having the
elements i and j in the same partition.

� the objective is to find the partition with least total cost

� classic particular instance: MAXCUT (Wij ≥ 0)
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Convex Relaxation

The original QCQP

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

can be bounded by, after writing X = xxT ,

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m

X � xxT
Rank(X) = 1

the only nonconvex constraint is now Rank(X) = 1...
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Convex Relaxation: Semidefinite Relaxation

� We can directly relax this last constraint, i.e. drop the nonconvex
Rank(X) = 1 to keep only X � xxT

� The resulting program gives a lower bound on the optimal value

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m

X � xxT

Tricky. . . Can be improved?
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Lagrangian Relaxation

From the original problem

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

We can form the Lagrangian:

L(x, λ) = xT

(
P0 +

m∑
i=1

λiPi

)
x+

(
q0 +

m∑
i=1

λiqi

)T
x+ r0 +

m∑
i=1

λiri

in the variables x ∈ Rn and λ ∈ Rm+ ...
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Lagrangian Relaxation: Lagrangian

The dual can be computed explicitly as an (unconstrained) quadratic
minimization problem, with:

inf
x∈R

xTPx+ qTx+ r =

{
r − 1

4q
TP †q, if P � 0 and q ∈ R(P )

−∞, otherwise

we have:

infxL(x, λ) = −1
4 (q0 +

∑m
i=1 λiqi)

T
(P0 +

∑m
i=1 λiPi)

†
(q0 +

∑m
i=1 λiqi)

+
∑m
i=1 λiri + r0

where we recognize a Schur complement...
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Lagrangian Relaxation: Dual

The dual of the QCQP is then given by:

maximize γ +
∑m
i=1 λiri + r0

subject to

[
(P0 +

∑m
i=1 λiPi) (q0 +

∑m
i=1 λiqi) /2

(q0 +
∑m
i=1 λiqi)

T
/2 −γ

]
� 0

λi ≥ 0, i = 1, . . . ,m

which is a semidefinite program in the variable λ ∈ Rm and can be solved
efficiently.

Use semidefinite duality to compute the dual of this last program?
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Lagrangian Relaxation: Bidual

Taking the dual again, we get an SDP is given by

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m[

X xT

x 1

]
� 0

in the variables X ∈ Sn and x ∈ Rn

� This is a convex relaxation of the original program

� We have recovered the semidefinite relaxation in an “automatic” way
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Lagrangian Relaxation: Boolean LS

Using the previous technique, we can relax the original Boolean LS problem

minimize ‖Ax− b‖2
subject to x2i = 1, i = 1, . . . , n

and relax it as an SDP

minimize Tr(AX) + 2bTAx+ bT b

subject to

[
X xT

x 1

]
� 0

Xii = 1, i = 1, . . . , n

this program then produces a lower bound on the optimal value of the original
Boolean LS program
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Lagrangian Relaxation: Partitioning

The partitioning problem defined above is

minimize xTWx
subject to x2i = 1, i = 1, . . . , n

the variable x disappears from the relaxation, which becomes

minimize Tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n
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Feasible points?

� Lagrangian relaxations only provide lower bounds on the optimal value

� Can we compute good feasible points?

� Can we measure how suboptimal this lower bound is?
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Randomization

The original QCQP

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

was relaxed into

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m[

X xT

x 1

]
� 0

� The last (Schur complement) constraint is equivalent to X − xxT � 0

� Hence, if x and X are the solution to the relaxed program, then X − xxT is a
covariance matrix...
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Randomization

� Pick x as a Gaussian variable with x ∼ N (x,X − xxT )

� x will solve the QCQP ”on average” over this distribution

In other words, it will satisfy

minimize E[xTP0x+ qT0 x+ r0]
subject to E[xTPix+ qTi x+ ri] ≤ 0, i = 1, . . . ,m

a good feasible point can then be obtained by sampling enough x. . .
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Linearization

Consider the constraint
xTPx+ qTx+ r ≤ 0

we decompose the matrix P into its positive and negative parts

P = P+ − P−, P+, P− � 0

and original constraint becomes

xTP+x+ qT0 x+ r0 ≤ xTP−x
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Linearization

Both sides of the inequality are now convex quadratic functions. We linearize the
right hand side around an initial feasible point x0 to obtain

xTP+x+ qT0 x+ r0 ≤ x(0)TP−x(0) + 2x(0)TP−(x− x(0))

� The right hand side is now an affine lower bound on the original function
xTP−x (see §3.1.3 in the book).

� The resulting constraint is convex and more conservative than the original one,
hence the feasible set of the new problem will be a convex subset of the
original feasible set

� We form a convex restriction of the problem

We can then solve the convex restriction to get a better feasible point x(1) and
iterate. . .
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Bounds on suboptimality

� In certain particular cases, it is possible to get a hard bound on the gap
between the optimal value and the relaxation result

� A classical example is that of the MAXCUT bound

The MAXCUT problem is a particular case of the partitioning problem:

maximize xTWx
subject to x2i = 1, i = 1, . . . , n

its Lagrangian relaxation is computed as:

maximize Tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n
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Bounds on suboptimality: MAXCUT

Let X be a solution to this program

� we look for a feasible point by sampling a normal distribution N (0, X)

� we convert each sample point x to a feasible point by rounding it to the
nearest value in {−1, 1}, i.e. taking

x̂ = sgn(x)

crucially, when x̂ is sampled using that procedure, the expected value of the
objective E[x̂TWx] can be computed explicitly:

E[x̂TWx] =
2

π

n∑
i,j=1

Wij arcsin(Xij) =
2

π
Tr(W arcsin(X))
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Bounds on suboptimality: MAXCUT

� We are guaranteed to reach this expected value 2/πTr(W arcsin(X)) after
sampling a few (feasible) points x̂

� Hence we know that the optimal value OPT of the MAXCUT problem is
between 2/πTr(W arcsin(X)) and Tr(WX)

Furthermore, with arcsin(X) � X, we can simplify (and relax) the above
expression to get:

2

π
Tr(WX) ≤ OPT ≤ Tr(WX)

the procedure detailed above guarantees that we can find a feasible point at most
2/π suboptimal
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Bounds on suboptimality: MAXCUT

Proposition

MAXCUT approximation. Let OPT be the optimal value of the partitioning
problem

maximize xTWx
subject to x2i = 1, i = 1, . . . , n

where W � 0, and let SDP be the optimal value of its Lagrangian relaxation

maximize Tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n

then we have 2
π Tr(WX) ≤ OPT ≤ Tr(WX).

Proof. Suppose we sample x ∼ N (0, X) then take x̂ = sgn(x). We get

E[x̂TWx] =
2

π

n∑
i,j=1

Wij arcsin(Xij) =
2

π
Tr(W arcsin(X))
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where arcsin(X) is taken elementwise, with

arcsin(X)ij = Xij +

∞∑
k=1

1 · 3 · · · (2k − 1)

2kk!(2k + 1)
X2k+1
ij

which means
arcsin(X)−X � 0

because if we define the elementwise matrix power [X]k such that

[X]kij = Xij

then [X]k � 0 when X � 0. This finally means that

E[x̂TWx] =
2

π
Tr(W arcsin(X)) ≥ 2

π
Tr(WX)
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Numerical Example: Boolean LS

Boolean least-squares problem:

minimize ‖Ax− b‖2
subject to x2i = 1, i = 1, . . . , n

with

‖Ax− b‖2 = xTATAx− 2bTAx+ bT b

= TrATAX − 2bTATx+ bT b

where X = xxT , hence can express BLS as

minimize TrATAX − 2bTAx+ bT b
subject to Xii = 1, X � xxT , rank(X) = 1

. . . still a very hard problem
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SDP relaxation for BLS

Using Lagrangian relaxation, with

X � xxT ⇐⇒
[
X x
xT 1

]
� 0

we obtained the SDP relaxation (with variables X, x)

minimize TrATAX − 2bTATx+ bT b

subject to Xii = 1,

[
X x
xT 1

]
� 0

� Optimal value of SDP gives lower bound for BLS

� If optimal matrix is rank one, we’re done
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Interpretation via randomization

� Can think of variables X, x in SDP relaxation as defining a normal distribution
z ∼ N (x,X − xxT ), with E z2i = 1

� SDP objective is E ‖Az − b‖2

suggests randomized method for BLS:

� Find Xopt, xopt, optimal for SDP relaxation

� Generate z from N (xopt, Xopt − xoptxoptT )

� Take x = sgn(z) as approximate solution of BLS
(can repeat many times and take best one)

A. d’Aspremont. M1 ENS. 28/50



Example

� (randomly chosen) parameters A ∈ R150×100, b ∈ R150

� x ∈ R100, so feasible set has 2100 ≈ 1030 points

LS approximate solution: minimize ‖Ax− b‖ s.t. ‖x‖2 = n, then round yields

objective 8.7% over SDP relaxation bound

randomized method: (using SDP optimal distribution)

� best of 20 samples: 3.1% over SDP bound

� best of 1000 samples: 2.6% over SDP bound
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Example: Partitioning Problem
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Example: Partitioning Problem

MAXCUT. Numerical example.

minimize xTWx
subject to x2i = 1, i = 1, . . . , n

the Lagrange dual of this problem is given by the SDP:

maximize −1Tν
subject to W + diag(ν) � 0
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Partitioning: Lagrangian relaxation

the dual of this SDP is another SDP

minimize TrWX
subject to X � 0

Xii = 1, i = 1, . . . , n

the solution Xopt gives a lower bound on the optimal value popt of the
partitioning problem

� solve the previous SDP to find Xopt (and the bound popt)

� let v denote an eigenvector of Xopt associated with its largest eigenvalue

� now let
x̂ = sgn(v)

the vector x̂ is our guess for a good partition
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Partitioning: Randomization

Randomization.

� we generate independent samples x(1), . . . , x(K) from a normal distribution
with zero mean and covariance Xopt

� for each sample we consider the heuristic approximate solution

x̂(k) = sgn(x(k))

� we then take the one with lowest cost

On a randomly chosen problem:

� The optimal SDP lower bound popt is equal to −1641

� The simple sgn(x) heuristic gives a partition with total cost −1280

At this point, we can say that the optimal value is between −1641 and −1280
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Partitioning: Numerical Example
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Histogram of the objective obtained by the randomized heuristic, over 1000
samples: the minimum value reached here is −1328
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Partitioning: Numerical Example
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We know the optimum is between −1641 and −1328.
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Greedy method

We can improve these results a little bit using the following simple greedy
heuristic

� Suppose the matrix Y = x̂TWx̂ has a column j whose sum
∑n
i=1 yij is

positive.

� Switching x̂j to −x̂j will decrease the objective by 2
∑n
i=1 yij.

� if we pick the column yj0 with largest sum, switch x̂j0 and repeat until all
column sums are negative, we decrease the objective.

Applying this to the SDP heuristic gives an objective value of −1372, our best
partition yet...
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Hidden convexity, S-lemma, . . .
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S-lemma

� In general, nonconvex quadratically constrained quadratic programming is hard.

� Yet, we have very efficient, very reliable algorithms to solve the following
eigenvalue problem

maximize xTAx
subject to xTx = 1

with complexity O(n2) (computing a sequence of matrix vector products).

� Why is this one easy?

S-lemma. SDP relaxations of Nonconvex QPs with one quadratic constraint (two
in some cases) are exact, hence these programs can be solved in polynomial time.
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S-lemma

Geometrically, the set (xTAx, xTBx), where x ∈ Rn, describes a convex cone.
This has important consequences for semidefinite relaxations.

Proposition

Quadratic convexity. Suppose A,B ∈ Sn, then for all X � 0, there exists x ∈ Rn
with

xTAx = Tr(AX) and xTBx = Tr(BX). (1)

Proof. Suppose it is true for all X ∈ Sn+ with 2 ≤ RankX ≤ k, i.e. there exists
an x such that (1) holds. Let us show that it also holds if RankX = k + 1.

A matrix X ∈ Sn+ with RankX = k + 1 can be expressed as X = yyT + Z
where y 6= 0 and Z ∈ Sn+ with RankZ = k. By assumption, there exists a z such
that Tr(AZ) = zTAz, Tr(AZ) = zTBz. Therefore

Tr(AX) = Tr(A(yyT + zzT )), Tr(BX) = Tr(B(yyT + zzT )).

yyT + zzT has rank one or two, hence (1) by assumption.
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It is therefore sufficient to prove the result if RankX = 2. If RankX = 2, we
can factor X as X = V V T where V ∈ Rn×2, with linearly independent columns
v1 and v2.

Without loss of generality we can assume that V TAV is diagonal. (If V TAV is
not diagonal we replace V with V P where V TAV = P diag(λ)PT is the
eigenvalue decomposition of V TAV .) We will write V TAV and V TBV as

V TAV =

[
λ1 0
0 λ2

]
, V TBV =

[
σ1 γ
γ σ2

]
,

and define

w =

[
Tr(AX)
Tr(BX)

]
=

[
λ1 + λ2
σ1 + σ2

]
.

We need to show that w = (xTAx, xTBx) for some x. We distinguish two cases.

A. d’Aspremont. M1 ENS. 40/50



� First, assume (0, γ) is a linear combination of the vectors (λ1, σ1) and (λ2, σ2):

0 = z1λ1 + z2λ2, γ = z1σ1 + z2σ2,

for some z1, z2. In this case we choose x = αv1 + βv2, where α and β are
determined by solving two quadratic equations in two variables

α2 + 2αβz1 = 1, β2 + 2αβz2 = 1. (2)

This will give the desired result, since[
(αv1 + βv2)

TA(αv1 + βv2)
(αv1 + βv2)

TB(αv1 + βv2)

]
= α2

[
λ1
σ1

]
+ 2αβ

[
0
γ

]
+ β2

[
λ2
σ2

]
= (α2 + 2αβz1)

[
λ1
σ1

]
+ (β2 + 2αβz2)

[
λ2
σ2

]
=

[
λ1 + λ2
σ1 + σ2

]
.

It remains to show that the equations (2) are solvable. To see this, we first note
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that α and β must be nonzero, so we can write the equations equivalently as

α2(1 + 2(β/α)z1) = 1, (β/α)2 + 2(β/α)(z2 − z1) = 1.

The equation t2 + 2t(z2 − z1) = 1 has a positive and a negative root. At least
one of these roots (the root with the same sign as z1) satisfies 1 + 2tz1 > 0, so
we can choose

α = ±1/
√

1 + 2tz1, β = tα.

This yields two solutions (α, β) that satisfy (2). (If both roots of
t2 + 2t(z2 − z1) = 1 satisfy 1 + 2tz1 > 0, we obtain four solutions.)

� Next, assume that (0, γ) is not a linear combination of (λ1, σ1) and (λ2, σ2).
In particular, this means that (λ1, σ1) and (λ2, σ2) are linearly dependent.
Therefore their sum w = (λ1 + λ2, σ1 + σ2) is a nonnegative multiple of
(λ1, σ1), or (λ2, σ2), or both. If w = α2(λ1, σ1) for some α, we can choose
x = αv1. If w = β2(λ2, σ2) for some β, we can choose x = βv2.
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S-lemma

Strong duality.

� This shows directly that strong duality holds for

maximize xTAx
subject to xTBx ≤ 0

since the optimum value of this program is equal to that of its bidual, which is
a semidefinite program in X.

� Some extensions of this result are possible, e.g. the inhomogeneous case

maximize xTAx+ aTx
subject to xTBx+ bTx+ c = 0

or the normalized case (known as Brickman’s theorem)

maximize xTAx
subject to xTBx ≤ 0

xTx = 1
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Concentration inequalities,
approximate S-lemma, etc. . .
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Concentration inequalities

� We can extend randomization arguments to constrained problems.

� Concentration inequalities allow us to bound the probability that a constraint is
feasible. Basically, if we match the constraints/objective on average, we can
find w.h.p. a feasible point whose objective value is not too far off.

Theorem

Gaussian concentration. Suppose f(x) : Rn → R is Lipschitz continuous with
constant L with respect to the Euclidean norm, i.e.

|f(y)− f(x)| ≤ L‖x− y‖2, for all x, y ∈ Rn

then if gi, i = 1, . . . , n are i.i.d. Gaussian variables with gi ∼ N (0, 1), we have

Prob [|M − f(g)| ≥ Lt] ≤ exp(−t2/2)

where M = E[f(g)] or its median.
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Concentration inequalities

Similar concentration results also exist for binary random variables.

Theorem

Bernstein inequality. Let ui ∈ {−1, 1} be i.i.d. random variables with E[ui] = 0,
for any a ∈ Rn we have

Prob
[
|aTu| ≥ t‖a‖2

]
≤ exp(−t2/4)
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Approximate S-lemma

We can show the following result extending the S-lemma to approximate the case
with multiple quadratic constraints. (Inhomogeneous extensions are possible).

Theorem

Approximate S-lemma. Call OPT the optimal value of the following quadratic
optimization problems

maximize xTAx
subject to xTAix ≤ ci, i = 1, . . . ,m

in the variable x ∈ Rn, where the matrix A ∈ Sn is arbitrary, ci > 0, and Ai � 0.
Call SDP the optimal value of the semidefinite program (we assume strong duality
holds and SDP <∞)

maximize Tr(AX)
subject to Tr(AiX), i = 1, . . . ,m

in the variable X ∈ Sn. Then OPT ≤ SDP ≤ 2 ln (2
∑m
i=1Rank(Ai))OPT .
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Proof. We write X an optimal solution to SDP and X1/2AX1/2 = UDUT , the
eigenvalue decomposition of X1/2AX1/2, with D diagonal and U orthogonal. We
have, by construction

Tr(D) = Tr(UDUT ) = Tr(X1/2AX1/2) = Tr(AX) = SDP

We let ξi ∈ {−1, 1} be i.i.d. random variables with E[ξ] = 0. We define
η = X1/2Uξ, and write Di = UTX1/2AiX

1/2U , such that

Tr(Di) = Tr(UTX1/2AiX
1/2U) = Tr(X1/2AiX

1/2) = Tr(AiX) ≤ ci

this means

ηTAη = ξTUTX1/2AX1/2Uξ

= ξTUTUDUTUξ

= ξTDξ = Tr(D) = SDP,

and similarly,

E[ηTAiη] = E[ξTUTX1/2AiX
1/2Uξ]

= Tr(UTX1/2AiX
1/2U) = Tr(AiX) ≤ ci
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This shows that the vector η solves the SDP “on average”. We now show how to
construct vectors that satisfy approximately solve the QP with high probability.
We can write

Di =

k∑
j=1

djd
T
j , k = Rank(Di) = Rank(Ai),

Using the previous concentration inequality

Prob[|dTj ξ| ≥
√
t‖dj‖2] ≤ 2 exp(−t/2),

now, for each given ξ, if ξTDiξ ≥ t
∑k
j=1 ‖dj‖22 then for at least for one j, we

have |dTj ξ| ≥
√
t‖dj‖2, hence

Prob[ξTDiξ ≥ t
k∑
j=1

‖dj‖22] ≤
k∑
i=1

Prob[|dTj ξ| ≥
√
t‖dj‖2]

≤ 2Rank(Di) exp(−t/2)

Now, we have
∑k
j=1 ‖dj‖22 = Tr(

∑k
j=1 djd

T
j ) = Tr(Di) ≤ ci. Hence we have

showed
Prob[ηTAiη ≥ tci] ≤ 2Rank(Ai) exp(−t/2)

A. d’Aspremont. M1 ENS. 49/50



Let δ > 0 and

Θ = 2 ln

(∑m
i=1Rank(Ai)

1− δ

)
,

using union bounds, with probability δ > 0

Θ−1/2η

will be a feasible point of the QP, reaching an objective value of Θ−1SDP , hence

OPT ≤ SDP ≤ 2 ln

(
2

m∑
i=1

Rank(Ai)

)
OPT
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