
Clustering and Feature Selection using
Sparse Principal Component Analysis

Ronny Luss∗ Alexandre d’Aspremont†

January 25, 2008

Abstract

In this paper, we study the application of sparse principal component analysis (PCA) to
clustering and feature selection problems. Sparse PCA seeks sparse factors, or linear com-
binations of the data variables, explaining a maximum amount of variance in the data while
having only a limited number of nonzero coefficients. PCA is often used as a simple clustering
technique and sparse factors allow us here to interpret the clusters in terms of a reduced set
of variables. We begin with a brief introduction and motivation on sparse PCA and detail our
implementation of the algorithm in d’Aspremont et al. (2005). We then apply these results to
some classic clustering and feature selection problems arising in biology.

Keywords: Sparse principal component analysis, semidefinite programming, clustering, fea-
ture selection.1

1 Introduction

This paper focuses on applications of sparse principal component analysis to clustering and fea-
ture selection problems, with a particular focus on gene expression data analysis. Sparse methods
have had a significant impact in many areas of statistics, in particular regression and classification
(see [CT05], [DT05] and [Vap95] among others). As in these areas, our motivation for developing
sparse multivariate visualization tools is the potential of these methods for yielding statistical re-
sults that are both more interpretable and more robust than classical analyses, while giving up little
statistical efficiency.

Principal component analysis (PCA) is a classic tool for analyzing large scale multivariate data.
It seeks linear combinations of the data variables (often called factors or principal components)
that capture a maximum amount of variance. Numerically, PCAonly amounts to computing a few

∗ORFE Department, Princeton University, Princeton, NJ 08544. rluss@princeton.edu
†ORFE Department, Princeton University, Princeton, NJ 08544. aspremon@princeton.edu
1Mathematical Subject Classification: 90C90, 62H25, 65K05.

1

leading eigenvectors of the data’s covariance matrix, so itcan be applied to very large scale data
sets. One of the key shortcomings of PCA however is that thesefactors are linear combinations
of all variables; that is, all factor coefficients (or loadings) are non-zero. This means that while
PCA facilitates model interpretation and visualization byconcentrating the information in a few
key factors, the factors themselves are still constructed using all observed variables. In many
applications of PCA, the coordinate axes have a direct physical interpretation; in finance or biology
for example, each axis might correspond to a specific financial asset or gene. In such cases, having
only a few nonzero coefficients in the principal components would greatly improve the relevance
and interpretability of the factors. In sparse PCA, we seek atrade-off between the two goals of
expressive power(explaining most of the variance or information in the data)andinterpretability
(making sure that the factors involve only a few coordinate axes or variables). When PCA is used
as a clustering tool, sparse factors will allow us to identify the clusters with the action of only a
few variables.

Earlier methods to produce sparse factors include Cadima and Jolliffe [CJ95] where the load-
ings with smallest absolute value are thresholded to zero and nonconvex algorithms called SCoT-
LASS by [JTU03], SLRA [ZZS02, ZZS04] and SPCA by [ZHT06]. This last method works by
writing PCA as a regression-type optimization problem and applies LASSO [Tib96], a penaliza-
tion technique based on thel1 norm. Very recently, [MWA06b] and [MWA06a] also proposed
a greedy approach which seeks globally optimal solutions onsmall problems and uses a greedy
method to approximate the solution of larger ones. In what follows, we give a brief introduction to
the relaxation of this problem in [dEGJL07] and describe howthis smooth optimization algorithm
was implemented. The most expensive numerical step in this algorithm is the computation of the
gradient as a matrix exponential and our key numerical contribution here is to show that using only
a partial eigenvalue decomposition of the current iterate can produce a sufficiently precise gradi-
ent approximation while drastically improving computational efficiency. We then show on classic
gene expression data sets that using sparse PCA as a simple clustering tool isolates very relevant
genes compared to other techniques such as recursive feature elimination or ranking.

The paper is organized as follows. In Section 2, we begin witha brief introduction and motiva-
tion on sparse PCA and detail our implementation of the algorithm in a numerical toolbox called
DSPCA, which is available for download on the authors’ websites. In Section 3, we describe the
application of sparse PCA to clustering and feature selection on gene expression data.

2 Algorithm and implementation

In this section, we begin by introducing the sparse PCA problem and the corresponding semidef-
inite relaxation derived in [dEGJL07]. We then discuss how to use a partial eigenvalue decompo-
sition of the current iterate to produce a sufficiently precise gradient approximation and improve
computational efficiency.

2

2.1 Sparse PCA & Semidefinite Relaxation

Given a covariance matrixA ∈ Sn, whereSn is the set of symmetric matrices of dimensionn, the
problem of finding a sparse factor which explains a maximum amount of variance in the data can
be written:

maximize xT Ax
subject to ‖x‖2 = 1

Card(x) ≤ k,
(1)

in the variablex ∈ Rn whereCard(x) denotes the cardinality ofx andk > 0 is a parameter
controlling this cardinality. Computing sparse factors with maximum variance is a combinatorial
problem and is numerically hard and [dEGJL07] use semidefinite relaxation techniques to compute
approximate solutions efficiently by solving the followingconvex program:

maximize Tr(AX)
subject to Tr(X) = 1

1
T |X|1 ≤ k

X � 0,

(2)

which is a semidefinite program in the variableX ∈ Sn, where1T |X|1 =
∑

ij |Xij| can be seen
as a convex lower bound on the functionCard(X). When the solution of the above problem has
rank one, we haveX = xxT wherex is an approximate solution to (1). When the solution of this
relaxation is not rank one, we use the leading eigenvector ofX as a principal component.

While small instances of problem (2) can be solved efficiently using interior point semidefinite
programming solvers such as SEDUMI by [Stu99], theO(n2) linear constraints make these solvers
inefficient for reasonably large instances. Furthermore, interior point methods are geared towards
solving small problems with high precision requirements, while here we need to solve very large
instances with relatively low precision. In [dEGJL07] it was shown that a smoothing technique
due to [Nes05] could be applied to problem (2) to get a complexity estimate ofO(n4

√
log n/ǫ)

and a much lower memory cost per iteration. The key numericalstep in this algorithm is the
computation of a smooth approximation of problem (2) and thegradient of the objective, which
amounts to computing a matrix exponential.

2.2 Implementation

Again, given a covariance matrixA ∈ Sn, the DSPCA code solves a penalized formulation of
problem (2), written as:

maximize Tr(AX) − ρ1T |X|1
subject to Tr(X) = 1

X � 0,
(3)

in the variableX ∈ Sn. The dual of this program can be written as:

minimize f(U) = λmax(A + U)
subject to |Uij| ≤ ρ.

(4)

3

in the variableU ∈ Sn. The algorithm in [dEGJL07] regularizes the objectivef(U) in (4), replac-
ing it by the smooth (i.e. with Lipschitz continuous gradient) uniform approximation:

fµ(U) = µ log (Tr exp((A + U)/µ)) − µ log n,

whose gradient can be computed explicitly as:

∇fµ(U) := exp ((A + U)/µ) / (Tr exp ((A + U)/µ)) .

Following [Nes83], solving the smooth problem:

min
{U∈Sn,|Uij |≤ρ}

fµ(U)

with µ = ǫ/2 log(n) then produces anǫ-approximate solution to (3) and requires

O

(

ρ
n
√

log n

ǫ

)

(5)

iterations. The main step at each iteration is computing thematrix exponentialexp((A + U)/µ).
This is a classic problem in linear algebra (see [MVL03] for acomprehensive survey) and in what
follows, we detail three different methods implemented in DSPCA and their relative performance.

Full eigenvalue decomposition An exact computation of the matrix exponential can be done
through a full eigenvalue decomposition of the matrix. Given the spectral decompositionV DV T

of a matrixA where the columns ofV are the eigenvectors andD is a diagonal matrix comprised
of the eigenvalues(di)

n
i=1, the matrix exponential can be computed as:

exp(A) = V HV T ,

whereH is the diagonal matrix with(hi = edi)n
i=1 on its diagonal. While this is a simple procedure,

it is also relatively inefficient.

Padé approximation The next method implemented in DSPCA is called Padé approximation
and approximates the exponential by a rational function. The (p,q) Padé approximation forexp(A)
is defined by (see [MVL03]):

Rpq(A) = [Dpq]
−1Npq(A), (6)

where

Npq(A) =

p
∑

j=0

(p + q − j)!p!

(p + q)!j!(p − j)!
Aj and Dpq(A) =

q
∑

j=0

(p + q − j)!q!

(p + q)!j!(q − j)!
(−A)j .

Herep andq control the degree and precision of the approximation and wesetp = q = 6 (we
set p = q in practice due to computational issues; see [MVL03]). The approximation is only
valid in a small neighborhood of zero, which means that we need to scale down the matrix before

4

approximating its exponential using (6), and then scale it back to its original size. This scaling and
squaring can be done efficiently using the property thateA = (e

A
m)m. We first scale the matrixA

so that 1

m
‖A‖ ≤ 10−6 and find the smallest integers such that this is true form = 2s. We then use

the Padé approximation to computeeA, and simply square the results times to scale it back.
Padé approximation only requires computing one matrix inversion and several matrix products

which can be done very efficiently. However, ifn or s get somewhat large, scaling and squaring
can be costly, in which case a full eigenvalue decompositionhas better performance. While Padé
approximations appear to be the current method of choice forcomputing matrix exponentials (see
[MVL03]), it does not perform as well as expected on our problems compared to partial eigenvalue
decomposition discussed below, because of the particular structure of our optimization problem.
Numerical results illustrating this issue are detailed in the last section.

Partial eigenvalue decomposition The first two classic methods we described for computing the
exponential of a matrix are both geared towards producing a solution up to (or close to) machine
precision. In most of the sparse PCA problems we solve here, the target precision for the algorithm
is of the order10−1. Computing the gradient up to machine precision in this context is unneces-
sarily costly. In fact, [d’A05] shows that the optimal convergence of the algorithm in [Nes05] can
be achieved using approximate gradient values∇̃fµ(U), provided the error satisfies the following
condition:

|〈∇̃fµ(U) −∇fµ(U), Y 〉| ≤ δ, |Uij|, |Yij| ≤ ρ, i, j = 1, . . . , n, (7)

whereδ is a parameter controlling the approximation error. In practice, this means that we only
need to compute a few leading eigenvalues of the matrix(A + U)/µ to get a sufficient gradient
approximation. More precisely, if we denote byλ ∈ Rn the eigenvalues of(A+U)/µ, condition (7)
can be used to show that, to get convergence, we need only compute thej largest eigenvalues with
j such that:

(n − j)eλj

√

∑j

i=1
e2λi

(
∑j

i=1
eλi)2

+

√
n − jeλj

∑j
i=1

eλi

≤ δ

ρn
. (8)

The terms on the left side decrease asj increases meaning the condition is satisfied by increasing
the number of eigenvalues used. Computing thej largest eigenvalues of a matrix can be done very
efficiently using packages such as ARPACK ifj << n. Whenj becomes large, the algorithm
switches to full eigenvalue decomposition. Finally, the leading eigenvalues tend to coalesce close
to the optimum, potentially increasing the number of eigenvalues required at each iteration (see
[Pat98] for example) but this phenomenon does not seem to appear at the low precision targets
considered here. We detail empirical results on the performance of this technique in the following
sections illustrating how this technique clearly dominates the two others for large scale problems.

2.3 Comparison with interior point solvers

We give an example illustrating the necessity of a large-scale solver using a smooth approximation
to problem (2). The Sedumi implementation to problem (2) runs out of memory for problem sizes
larger than 60, so we compare the example on very small dimensions against our implementation

5

with partial eigenvalue decomposition (DSPCA). The covariance matrix is formed using colon
cancer gene expression data detailed in the following section. Table 1 shows running times for
DSPCA and Sedumi on for various (small) problem dimensions.DSPCA clearly beats the interior
point solver in computational time while achieving comparable precision (measured as the per-
centage of variance explained by the sparse factor). For reference, we show how much variation is
explained by the leading principal component. The decreasein variance using Sedumi and DSPCA
represents the cost of sparsity here.

Dim. NonZeros DSPCA time DSPCA Var. Sedumi time Sedumi Var. PCA Var.
10 3 0.08 42.88 % 0.39 43.00 % 49.36 %
20 8 0.27 45.67 % 5.29 47.50 % 52.58 %
30 11 0.99 40.74 % 41.99 42.44 % 51.13 %
40 14 4.55 40.26 % 229.44 41.89 % 52.40 %
50 15 7.52 36.76 % 903.36 38.53 % 50.24 %

Table 1: CPU time (in seconds) and explained variance for Sedumi and smooth optimiza-
tion with partial eigenvalue decompositions (DSPCA). Var measures the percentage of total
variance explained by the sparse factors. DSPCA significantly outperforms in terms of CPU
time while reaching comparable variance targets.

3 Clustering and Feature Selection

In this section, we use our code for sparse PCA (DSPCA), to analyze large sets of gene expression
data and we discuss applications of this technique to clustering and feature selection. PCA is very
often used as a simple tool for data visualization and clustering (see [SSR06] for a recent analysis),
here sparse factors allow us to interpret the low dimensional projection of the data in terms of only
a few variables.

3.1 Gene expression data

We first test the performance of DSPCA on covariance matricesgenerated from a gene expression
data set from [ABN+99] on colon cancer. The data set is comprised of 62 tissue samples, 22
from normal colon tissues and 40 from cancerous colon tissues with 2000 genes measured in each
sample. We preprocess the data by taking the log of all data intensities and then normalize the log
data of each sample to be mean zero and standard deviation one, which is a classic procedure to
minimize experimental effects (see [HK05]).

Since the semidefinite programs produced by these data sets are relatively large (withn = 1000
after preprocessing), we first test the numerical performance of the algorithm and run the code on
increasingly large problems using each of the three methodsdescribed in section 2.2 (full eigen-
value decomposition, Padé approximation and partial eigenvalue decomposition). Theoretically,

6

the performance increase of using partial, rather than full, eigenvalue decompositions should be
substantial when only a few eigenvalues are required. In practice there is overhead due to the
necessity of testing condition (8) iteratively. Figure 1 depicts the results of these tests on a 3.0
GHz CPU in a loglog plot of runtime (in seconds) versus problem dimension (on the left). We
plot the average number of eigenvalues required by condition (8) versus problem dimension (on
the right), with dashed lines at plus and minus one standard deviation. We cannot include interior
point algorithms in this comparison because memory problems occur for dimensions greater than
50.

10
2

10
3

10
0

10
1

10
2

10
3

Exact
Pade Approximation
Partial Eig Approximation

C
P

U
tim

e
(s

ec
on

ds
)

Dimension

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

%
ei

gs
.

re
qu

ire
d

Dimension

Figure 1: Performance of smooth optimization using exact gradient, Padé approximations
and partial eigenvalue decomposition. CPU time versus problem dimension (left). Average
percentage of eigenvalues required versus problem dimension (right) for partial eigenvalue
decomposition, with dashed lines at plus and minus one standard deviation.

In these tests, partial eigenvalue is more than three times faster than the other methods for
large problem sizes, meaning the approximate gradient is the dominating alternative compared to
the exact gradient. The plot of the average percentage of eigenvalues for each test shows that on
average only 2-3% of the eigenvalues are necessary. Given the gain performance, the main lim-
itation becomes memory; the partial eigenvalue implementation has memory allocation problems
at dimensions 1900 and larger on a computer with 3.62 Gb RAM. Notice also that in our exper-
iments, computing the matrix exponential using Padé approximation is slower than performing a
full eigenvalue decomposition, which reflects the high numerical cost of matrix multiplications
necessary for scaling and squaring in Padé approximations.

Next, we test the impact of the sparsity target on computational complexity. We observe in (5)
that the number of iterations required by the algorithm scales linearly withρ. Furthermore, asρ
increases, condition (8) means that more eigenvalues are required to satisfy to prove convergence,
which increases the computational effort.

Figure 2 shows how computing time (left) and duality gap (right) vary with the number of
eigenvalues required at each iteration (shown as the percentage of total eigenvalues). The four

7

tests are all of dimension 1000 and vary in degrees of sparsity; for a fixed data set at a fixed
point in the algorithm, more sparsity (ie. higherρ and less genes) requires more eigenvalues as
noted above. The increase in required eigenvalues is much more pronounced when viewed as the
algorithm proceeds, measured by the increasing computing time (left) and decreasing duality gap
(right). More eigenvalues are also required as the current iterate gets closer to the optimal solution.
Note that, to reduce overhead, the code does not allow the number of required eigenvalues to
decrease from one iteration to the next. Figure 2 shows as wasexpected that computational cost of
an iteration increases with both target precision and target sparsity.

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

14 Genes, Rho = 32
16 Genes, Rho = 30
21 Genes, Rho = 28
28 Genes, Rho = 24

%
ei

gs
.

re
qu

ire
d

CPU time (seconds)
0 0.5 1 1.5 2 2.5

x 10
4

0

2

4

6

8

10

12

14

14 Genes, Rho = 32
16 Genes, Rho = 30
21 Genes, Rho = 28
28 Genes, Rho = 24

%
ei

gs
.

re
qu

ire
d

Duality gap

Figure 2: Percentage of eigenvalues required versus CPU time (left),and percentage of
eigenvalues required versus duality gap (right). The computational cost of an iteration
increases with both target precision and target sparsity.

3.2 Clustering

In this section, we compare the clustering (class discovery) performance of sparse PCA to that of
standard PCA. We analyze the colon cancer data set of [ABN+99] as well as a lymphoma data set
from [AED+00]. The lymphoma data set consists of 3 classes of lymphoma denoted DLCL (diffuse
large B-cell lymphoma), FL (follicular lymphoma) and CL (chronic lymphocytic leukemia). The
top two plots of Figure 3 display the clustering effects of using two factors on the colon cancer data
while the bottom two plots of Figure 3 display the results on the lymphoma data. On both data
sets, clusters are represented using PCA factors on the leftplots and sparse factors from DSPCA
on the right plots. For the colon cancer data, the second factor has greater power in predicting the
class of each sample, while for the lymphoma data, the first factor classifies DLCL and the second
factor differentiates between CL and FL. In these examples,we observe that DSPCA maintains
good cluster separation while requiring far fewer genes: a total of 13 instead of 1000 for the colon
cancer data, and 108 genes instead of 1000 for the lymphoma data set.

While the clustering remainsvisually clear, we now analyze and quantify the quality of the

8

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Normal
Cancer

F
ac

to
r

th
re

e
(5

00
ge

ne
s)

Factor two (500 genes)
−6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

4

Normal
Cancer

F
ac

to
r

th
re

e
(1

ge
ne

)
Factor two (12 genes)

−30 −20 −10 0 10 20 30 40
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

DLCL
FL
CL

F
ac

to
r

tw
o

(5
00

ge
ne

s)

Factor one (500 genes)
−20 −10 0 10 20 30 40

−25

−20

−15

−10

−5

0

5

10

15

DLCL
FL
CL

F
ac

to
r

tw
o

(5
3

ge
ne

s)

Factor one (55 genes)

Figure 3: Clustering: The top two graphs display the results on the colon cancer data set
using PCA (left) and DSPCA (right). Normal patients are red circles and cancer patients are
blue diamonds. The bottom two graphs display the results on the lymphoma data set using
PCA (left) and DSPCA (right). For lymphoma, we denote diffuse large B-cell lymphoma as
DLCL (red circles), follicular lymphoma as FL (blue diamonds), and chronic lymphocytic
leukaemia as CL (green squares).

9

clusters derived from PCA and DSPCA numerically using the Rand index. We first cluster the
data (after reducing to two dimensions) using K-means clustering, and then use the Rand index
to compare the partitions obtained from PCA and DSPCA to the true partitions. The Rand index
measures the similarity between two partitionsX andY and is computed as the ratio

R(X, Y) =
p + q
(

n

2

)

wherep is the number of pairs of elements that are in the same clusterin both partitionsX and
Y (correct pairs),q is the number of pairs of elements in different clusters in both X and Y
(error pairs), and

(

n

2

)

is the total number of element pairs. The Rand index for varying levels of
sparsity is plotted in Figure 4. The Rand index of standard PCA is .654 for colon cancer (.804 for
lymphoma) as marked in Figure 4. The Rand index for the DSPCA factors of colon cancer using
13 genes is .669 and is the leftmost point above the PCA line. This shows that clusters derived
using sparse factors can achieve equivalent performance toclusters derived from dense factors.
However, DSPCA on the lymphoma data does not achieve a high Rand index with very sparse
factors and it takes about 50 genes per factor to get good clusters.

0 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

PCA
DSPCA

R
an

d
in

de
x

Number of nonzero coefficients
0 100 200 300 400 500 600

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

PCA
DSPCA

R
an

d
in

de
x

Number of nonzero coefficients

Figure 4: Rand index versus sparsity: colon cancer (left) & lymphoma (right).

For lymphoma, we can also look at another measure of cluster validity. We measure the impact
of sparsity on the separation between the true clusters, defined as the distance between the cluster
centers. Figure 5 shows how this separation varies with the sparsity of the factors. The lymphoma
clusters with 108 genes have a separation of 63, after which separation drops sharply. Notice that
the separation of CL and FL is very small to begin with and the sharp decrease in separation is
mostly due to CL and FL getting closer to DLCL.

3.3 Feature selection

Using the sparse factor analysis derived above, our next objective is to track the action of the
selected genes. See [GWBV02] for an example illustrating the possible relation of selected genes

10

0 100 200 300 400 500 600
0

20

40

60

80

100

120

CL−FL
CL−DLCL
DLCL−FL
Sum

S
ep

ar
at

io
n

of nonzeros

Figure 5: Separation versus sparsity for the lymphoma data set.

in this data set to colon cancer using Recursive Feature Elimination with Support Vector Machines
(RFE-SVM) for feature selection. Another study in [HK05] compares RFE-SVM results on the
colon cancer data set to those genes selected by the Rankgenesoftware in [SMP+03] on the colon
cancer and lymphoma data sets.

We implemented RFE-SVM and determined the regularization parameter using cross-validation.
On the colon cancer data, the clustering results show that factor two contains the most predictive
power. Table 2 shows 7 genes that appeared in the top 10 most important genes (ranked by mag-
nitude) in the results of DSPCA and RFE-SVM. For comparison,we include ranks computed
using another sparse PCA package: SPCA from [ZHT06] with a sparsity level equal to the results
of DSPCA (we use the functionspcafor colon cancer andarrayspcafor lymphoma, both from
[ZH05]). DSPCA identifies 2 genes from the top 10 genes of RFE-SVM that are not identified by
SPCA. After removing the true first component which explains58.1% of the variation, DSPCA,
SPCA, and PCA explain 1.4%, 1.1%, and 7.2% of the remaining variation respectively.

Since the first factor of the lymphoma DSPCA results classifies DLCL, we combine FL and CL
into a single group for RFE-SVM and compare the results to factor one of DSPCA. Table 3 shows
5 genes that appeared in the top 15 most important genes of allthree feature selection methods.
An additional 2 genes were discovered by DSPCA and SPCA but not by RFE-SVM. DSPCA,
SPCA, and PCA explain 13.5%, 9.7%, and 28.5% of the variationrespectively, providing another
example where DSPCA maintains more of the clustering effects than SPCA given equal sparsity.
Both RFE-SVM and SPCA are faster than DSPCA, but RFE-SVM doesnot produce factors in the
sense of PCA and SPCA is nonconvex and has no convergence guarantees.

4 Conclusion

We showed that efficient approximations of the gradient allowed large scale instances of the sparse
PCA relaxation algorithm in [dEGJL07] to be solved at a moderate computational cost. This

11

DSPCA RFE-SVM SPCA GAN Description
2 1 11 J02854 Myosin regulator light chain 2, smooth muscle isoform (human)

4 3 9 X86693 H.sapiens mRNA for hevin like protein

5 6 1 T92451 Tropomyosin, fibroblast and epithelial muscle-type (human)

7 4 5 H43887 Complement factor D precursor (H. sapiens)

8 9 NA H06524 Gelsolin precursor, plasma (human)

9 2 NA M63391 Human desmin gene, complete cds

10 7 6 T47377 S-100P Protein (Human).

Table 2: Feature selection on colon cancer data set: Columns 1-3 are respective ranks.
7 genes (out of 2000) were in the top 10 list of genes for both DSPCA (factor two) and
RFE-SVM (with C=.005). 5 of the genes were top genes in SPCA.

DSPCA RFE-SVM SPCA GAN Description
1 1 1 GENE1636X *Fibronectin 1; Clone=139009

2 NA 6 GENE1637X Cyclin D2/KIAK0002=overlaps with middle of KIAK0002

cDNA; Clone=359412

3 14 2 GENE1641X *Fibronectin 1; Clone=139009

4 NA 9 GENE1638X MMP-2=Matrix metalloproteinase 2=72 kD type IV

collagenase precursor=72 kD gelatinase=gelatinase

A=TBE-1;Clone=323656

6 2 3 GENE1610X *Mig=Humig=chemokine targeting T cells; Clone=8

10 3 4 GENE1648X *cathepsin B; Clone=297219

15 8 8 GENE1647X *cathepsin B; Clone=261517

Table 3: Feature selection on lymphoma data set: Columns 1-3 are respective ranks. 5
genes (out of 4026) were in the top 15 list of genes for both DSPCA (factor one), RFE-
SVM (classifying DLCL or not DLCL with C=.001), and SPCA (factor one). DSPCA and
SPCA have an additional 2 top genes not found in the top 15 genes of RFE-SVM.

12

allowed us to apply sparse PCA to clustering and feature selection on two classic gene expression
data sets. In both cases, sparse PCA efficiently isolate relevant genes while maintaining most of
the original clustering power of PCA.

Acknowledgements

We are very grateful to the organizers of the BIRS workshop onOptimization and Engineering
Applications where this work was presented. The authors would also like to acknowledge support
from grants NSF DMS-0625352, Eurocontrol C20083E/BM/05 and a gift from Google, Inc.

References

[ABN+99] A. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D.Mack, and A. J. Levine. Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues
probed by oligonucleotide arrays.Cell Biology, 96:6745–6750, 1999.

[AED+00] A. Alizadeh, M. Eisen, R. Davis, C. Ma, I. Lossos, and A. Rosenwald. Distinct types of diffuse
large b-cell lymphoma identified by gene expression profiling. Nature, 403:503–511, 2000.

[CJ95] J. Cadima and I. T. Jolliffe. Loadings and correlations in the interpretation of principal com-
ponents.Journal of Applied Statistics, 22:203–214, 1995.

[CT05] E. J. Candès and T. Tao. Decoding by linear programming. Information Theory, IEEE Trans-
actions on, 51(12):4203–4215, 2005.

[d’A05] A. d’Aspremont. Smooth optimization with approximate gradient.ArXiv: math.OC/0512344,
2005.

[dEGJL07] A. d’Aspremont, L. El Ghaoui, M.I. Jordan, and G. R. G. Lanckriet. A direct formulation for
sparse PCA using semidefinite programming.SIAM Review, 49(3):434–448, 2007.

[DT05] D. L. Donoho and J. Tanner. Sparse nonnegative solutions of underdetermined linear equations
by linear programming.Proc. of the National Academy of Sciences, 102(27):9446–9451, 2005.

[GWBV02] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using
support vector machines.Machine Learning, 46:389–422, 2002.

[HK05] T. M. Huang and V. Kecman. Gene extraction for cancer diagnosis by support vector machines-
an improvement.Artificial Intelligence in Medicine, 35:185–194, 2005.

[JTU03] I. T. Jolliffe, N.T. Trendafilov, and M. Uddin. A modified principal component technique based
on the LASSO.Journal of Computational and Graphical Statistics, 12:531–547, 2003.

[MVL03] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later.SIAM Review, 45(1):3–49, 2003.

[MWA06a] B. Moghaddam, Y. Weiss, and S. Avidan. Generalizedspectral bounds for sparse LDA. In
International Conference on Machine Learning, 2006.

13

[MWA06b] B. Moghaddam, Y. Weiss, and S. Avidan. Spectral bounds for sparse PCA: Exact and greedy
algorithms.Advances in Neural Information Processing Systems, 18, 2006.

[Nes83] Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[Nes05] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005.

[Pat98] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity of
optimal eigenvalues.Mathematics of Operations Research, 23(2):339–358, 1998.

[SMP+03] Y. Su, T. M. Murali, V. Pavlovic, M. Schaffer, and S. Kasif. Rankgene: identification of
diagnostic genes based on expression data.Bioinformatics, 19:1578–1579, 2003.

[SSR06] N. Srebro, G. Shakhnarovich, and S. Roweis. An investigation of computational and informa-
tional limits in gaussian mixture clustering.Proceedings of the 23rd international conference
on Machine learning, pages 865–872, 2006.

[Stu99] J. Sturm. Using SEDUMI 1.0x, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11:625–653, 1999.

[Tib96] R. Tibshirani. Regression shrinkage and selectionvia the LASSO.Journal of the Royal statis-
tical society, series B, 58(1):267–288, 1996.

[Vap95] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[ZH05] H. Zou and T. Hastie. Regularization and variable selection via the elastic net.Journal of the
Royal Statistical Society Series B(Statistical Methodology), 67(2):301–320, 2005.

[ZHT06] H. Zou, T. Hastie, and R. Tibshirani. Sparse Principal Component Analysis.Journal of Com-
putational & Graphical Statistics, 15(2):265–286, 2006.

[ZZS02] Z. Zhang, H. Zha, and H. Simon. Low rank approximations with sparse factors I: basic algo-
rithms and error analysis.SIAM journal on matrix analysis and its applications, 23(3):706–
727, 2002.

[ZZS04] Z. Zhang, H. Zha, and H. Simon. Low rank approximations with sparse factors II: penal-
ized methods with discrete Newton–like iterations.SIAM journal on matrix analysis and its
applications, 25(4):901–920, 2004.

14

