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Abstract
Here, we briefly detail how to install and run the sparse PCdecosed in [dEGJLO05].
Its aim is is to approximate, in the Frobenius-norm sensas#ipe, semidefinite symmetric
matrix by a rank-one matrix, with an upper bound on the cailiinof its eigenvector. The
code is partly written in MATLAB, partly in C with a MEX inte#fce.

1 Introduction

The code provided in the DSPCA package solves a relaxatitimec$parse PCA decomposition.
Let A € S" be a givenn x n positive semidefinite, symmetric matrix aikdoe an integer with
1 < k < n. The main function looks for a sparse eigenvector assatiaitth the largest eigenvalue
in A:

max xl Ax
subjectto ||z|| =1 Q)
Card(z) <k,

in the variabler € R"™. This problem is nonconvex andtractable, hence (for small scale prob-
lems) we solve a semidefinite relaxation given by:

max Tr(AX)

subjectto Tr(X) =1 @)
17|X)1 <k
X =0,

which is a semidefinite program (SDP) in the variallec S". For large scale problems, we solve
a penalized version of this problem:

max Tr(AX) — p17| X1
subjectto Tr(X) =1 3)
X =0,
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We refer the reader to [dEGJLO5] for further details. Thneak scale examples are provided
as
Car dver susKPl ot s. m Basi cHast i eTest . mandPi t Pr opsTest . mcorresponding to
§6.1, §6.2 and§6.3 in [dEGJLO5] respectively. We also provide a large scalergda implementing
the smooth minimization code by [Nes05] in C with calls to BRAnd LAPACK.

2 Installation & Sources

The source code, binaries and examples can be downloaded fro
http://ww. princet on. edu/ ~aspr enon/ DSPCA. ht m

The code has been tested with MATLAB 6.1 to 7.1 on WINDOWS arat DS X. The small
scale example use SEDUMI v1.1R2 from [Stu99]. Precompiledries for the large scale code
are provided for Mac OS X and WINDOWS. Simply copy th&l | ,. mnexw32 or. nexnmac file
into your working directory or add them to the path.

21 MacOSX

The Mac OS X version was built using gcc 3.3 and Xcode. The ¥qwdject is provided together
with the source files. Simply update the "search paths” ingtaect to reflect differences in
the MATLAB installation on your machine. The code uses thecfor-optimized) BLAS and
LAPACK implementations in the Apple provided vecLIB framexk. Note that vecLIB uses a
mix of CBLAS and f2c’'d LAPACK.

2.2 Windows

The Windows version was built MS VC++, again a project filensyided together with the source
files. Here, the code uses the BLAS and LAPACK libraries piediin the MATLAB installation.
Again, simply update the paths in the project settings teeceftlifferences in your MATLAB
installation.

2.3 Other Platforms

A MATLAB script Conpi | eCode. mwill compile the code directly from MATLAB. This has
not been tested yet on platforms other than WIN32 or Mac andsymuld adapt the header file
spar sesvd. h to the particular version of BLAS/LAPACK available on yowssem.

3 Content

3.1 Contents

The package contains two main MATLAB functionBr i mal Dec and DSPCA solving small
problems of type (2) and large ones of type (3) respectivdixamples and executables for
Pr i mal Dec andDSPCA are contained in the respective folders.
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A call toPri mal Dec is made as:
>> [resvec, resval, oval ] =Pri nal Dec(A, k)

where, referring to (2)

A € S, is the input matrix

(k + 1) is the target cardinality

resvec is the first eigenvectar* of the solutionX™*

resval is the explained variande*)? Ax*

oval is the objective valudr(AX*)
Both parameters tBr i mal Dec are required. Similarly, a call tboSPCA is made as:
>> [ X, U, u] =DSPCA( A, r ho, gapchange, naxi t er, i nf 0, al go)

where, referring to (3)

A € S, is the input matrix

p > 0 is a parameter controlling sparsity
e gapchange is the reduction in original gap (derived with target premisset very small)

mazxiter is the maximum number of iterations

in fo controls verbosity: O is silentp fo > 1 is the frequency of reporting

algo controls the method for computing the matrix exponentias full eigenvalue decom-
position (default), 2 is Padé approximation, 3 is partigeavalue decomposition

e X is the matrixX solution to the dual above
e [/ is the solution to the primal
e 1 IS the first eigenvector df

All parameters are required except for the matrix expoaeidigorithm option. Note that
DSPCAis a MATLAB wrapper to the mex functiogipar se_r ank_one_nex and botrDSPCA. m
and the appropriatepar se_r ank_one_nex executable must be copied to the necessary direc-
tory.



4 Example

We construct a simple sparse rank one matrix A with uniformseo

>> n=10;

>> ratio0=100;

>> testvec=[1 01 0101010];
>> testvec=testvec/(norm(testvec));
>> A=rand(n, n);

>> A=A A/ n+rati oxt estvec’ *testvec;

Such a small example can be solved with the described MATLARionPr i nal Dec that uses
SEDUMI to solve directly.

>> [resvec, resval, oval | =Pri mal Dec(A, 4)
resvec =

. 6123
. 0000
. 2863
. 0000
L2773
. 0000
. 1604
. 0000
. 6637
. 0000

oNeoNeoNolNololNololNoelNo

resval =

81. 2335

oval =

81. 2335
We can then run the large-scale functid®PCA on this small example as a comparison.

>> [ X, U, u] =DSPCA( A, 7, 1le- 2, 1000, 5000, 1) ;

DSPCA starting ...

Iter: 0.000e+000 (Obj: 1.0137e+002 Gap:

3.5847e+001 CPU Tine: 0Oh Om Os

Iter: 2.500e+002 oj .

6. 6354e+001 Gap: 4.4877e-002 CPU Tinme: Oh Om Os
>> u



- 0. 4449
0. 0003
-0. 4448
0. 0003
- 0. 4482
0. 0002
-0. 4501
0. 0003
- 0. 4480
0. 0003

We can finally compare this with the first eigenvector of Aagivhere:

o

. 4483
. 0057
. 4465
. 0066
. 4465
. 0063
. 4459
. 0045
. 4486
. 0037

eNeoNeolNolNolNolNolNoelo]

Notice that DSPCA imposed sparsity in the components wihsthallest magnitude. But what is
more important for real applications of sparse PCA is thégperance on large problems. Figure
1 shows the performance of DSPCA applied to a gene expredatarset of dimension 500. We
see that the partial eigenvalue decompositadgd=3) has the best performance by far among the
three implementations.

Examples are available as m-files in the package.
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