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ABSTRACT. We show that several quantities controlling compressed sensing performance also directly control
algorithmic complexity. We describe linearly convergent restart schemes solving a broad range of compressed
sensing problems using first-order methods. The key term controlling convergence measures the sharpness of
the optimum and can be interpreted as a condition number, computed as the ratio between the true signal spar-
sity and the maximum signal size that can be recovered by the observation matrix. In a similar vein, Renegar’s
condition number is a data-driven computational complexity measure for convex programs, generalizing clas-
sical condition numbers for linear systems. We provide evidence that for a broad class of compressed sensing
problems, the worst case value of this algorithmic complexity measure taken over all signals matches the re-
stricted eigenvalue of the observation matrix, which controls compressed sensing performance. This condition
number also measures the robustness of the recovered solution with respect to a misspecification of the obser-
vation matrix A, a point rarely addressed by classical recovery results. Overall, this means that, in compressed
sensing problems, a single parameter directly controls computational complexity and recovery performance.

1. INTRODUCTION

Several recent results have highlighted a clear tradeoff between computational complexity on one side,
and statistical performance on the other (i.e., the number of samples required to recover the signal). We
focus on sparse recovery problems written

minimize ‖x‖
subject to Ax = b

(1)

in the variable x ∈ Rp, where A ∈ Rn×p is a sensing matrix and b ∈ Rn is the vector of observations. Here,
‖ · ‖ is a sparsity inducing norm (e.g., `1) whose properties will be specified below. Donoho and Tanner
[2005] and Candès and Tao [2006] have shown that, for certain matrices A, when the observations y are
generated by a sparse signal, i.e., when b = Ax∗ and Card(x∗) = k so the signal is sparse, O(k log p)
observations suffice for stable recovery of x∗ by solving problem (1) with the `1 norm, in which case (1)
is a linear program. These results have been generalized to many other recovery problems with various
assumptions on the signal structure (e.g., where x is a block-sparse vector, a low-rank matrix, etc.) and a
library of corresponding convex relaxations has been developed to recover these more complex structures.

Many algorithms have also been developed to solve compress sensing problems at scale. Besides spe-
cialized methods such as LARS [Efron et al., 2004], the classical FISTA [Beck and Teboulle, 2009] and
NESTA [Becker et al., 2011a] solvers use accelerated gradient methods to solve LASSO problems, with effi-
cient and flexible implementations covering a much wider range of compressed sensing instances developed
in e.g. [Becker et al., 2011b]. Several authors have also studied restart schemes and ODE interpretations
[O’Donoghue and Candes, 2015; Su et al., 2014; Giselsson and Boyd, 2014] to speed up convergence in this
context. More recently, linear convergence results have been obtained for recovery problems, with [Agarwal
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et al., 2011; Yen et al., 2014; Zhou et al., 2015] showing linear convergence of some first-order methods
using variants of the strong convexity assumption.

In sparse recovery problems, statistical performance is usually measured in terms of the number of sam-
ples required to guarantee stable recovery, while computational performance is usually measured in terms
of classical bounds on the computational cost of the corresponding convex optimization problems or M-
estimators. Early on, it was noticed, for example in [Donoho and Tsaig, 2008], that recovery problems which
are easier to solve from a statistical point of view (i.e., where more samples are available), are also easier
to solve numerically. The results in [Donoho and Tsaig, 2008] focused on homotopy methods and were
essentially empirical. More recently, the authors of [Chandrasekaran and Jordan, 2013; Amelunxen et al.,
2014] studied computational and statistical tradeoffs for increasingly tight convex relaxations of shrinkage
estimators. They show that recovery performance is directly linked to the Gaussian squared-complexity of
the tangent cone with respect to the constraint set and study the complexity of several convex relaxations. In
[Chandrasekaran and Jordan, 2013; Amelunxen et al., 2014] the structure of the convex relaxation is varying
and affecting both complexity and recovery performance, while in [Donoho and Tsaig, 2008] and in what
follows, the structure of the relaxation is fixed, but the data (i.e., the observation matrix A) varies.

Here, following results in [Roulet and d’Aspremont, 2017], we first describe linearly convergent restart
schemes solving a broad range of compressed sensing problems using first-order methods. The key term
controlling convergence measures the sharpness of the optimum can be interpreted as a condition number,
computed as the ratio between the true signal sparsity and the maximum signal size that can be recovered
by the observation matrix.

In a similar spirit, we show that the cone restricted eigenvalues introduced in [Bickel et al., 2009] corre-
spond to the worst-case value of Renegar’s condition number for problem (1) taken over a class of signals x0.
This means that a single quantity drives both the complexity of solving problem (1) and its recovery per-
formance, i.e., the number of samples required for exact recovery, and the solution’s robustness when the
observations y are noisy. This same condition number also controls the impact of misspecification in A
on the optimal solution to (1). From a compressed sensing perspective, this confirms that obtaining more
samples also makes the reconstructed solution more robust to experimental uncertainty in A.

2. SHARPNESS & LOWER BOUNDS

In what follows, we show that Nullspace Property conditions (see e.g. [Cohen et al., 2009]) produce
sharpness results on the optimum. In particular, in the `1 setting, we show that if x̂ solves the sparse
recovery problem (1), then

2− C
C
‖x− x̂‖1 ≤ ‖x‖1 − ‖x̂‖1

for any x such that Ax = b. This sharpness bound on the optimum will allow us to produce restart schemes
accelerating the performance of classical optimization algorithms. Furthermore, the constant C controlling
acceleration depends explicitly on both the sparsity of the solution and on the recovery threshold of the
observation matrix A. This directly links quantities controlling sparse recovery performance with measures
of computational complexity. For simplicity, we start by describing the `1 setting, we then generalize our
results to other sparsity inducing norms.

2.1. The `1 setting. We first briefly recall key results on sparse recovery using the `1 norm, then use these
results to produce sharpness bounds on the recovery problem.

Definition 2.1. (Nullspace Property [Cohen et al., 2009]) The matrix A satisfies the Nullspace Property
(NSP) of order k with constant C > 1 iff

‖x‖1 ≤ C‖xT c‖1, (NSP)

for any x ∈ N (A) and T ⊂ [1, p] with Card(T ) ≤ k.
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Given a matrix A ∈ Rn×p and observations b = Ax∗ on a signal x∗ ∈ Rp, recovery is performed by
solving the following `1 minimization program

minimize ‖x‖1
subject to Ax = b

(2)

in the variable x ∈ Rn. We call x̂ the optimal solution of this problem. The nullspace property means this
convex program recovers all signals up to some sparsity threshold on these sparse recovery problems.

Proposition 2.2. Given a coding matrix A ∈ Rn×p satisfying the Nullspace Property (NSP) at order k with
constant 1 < C < 2, then sparse recovery x̂ = x∗ is guaranteed if Card(x∗) ≤ k, and

‖x̂− x∗‖1 ≤
2C

2− C
inf

{Cardu≤k}
‖u− x∗‖1

where x̂ solves the `1-minimization LP and x∗ is the true signal.

Proof. (see e.g. Cohen et al. [2009] Th. 4.3). If A satisfies the NSP at order 2k with constant C, then

‖z‖1 ≤ C‖zT c‖1
for any z ∈ N (A) and T ⊂ [1, p] with Card(T ) ≤ 2k, means

‖z‖1 ≥
C

C − 1
‖zT ‖1.

Now let T = supp(x∗) and let x 6= x∗ such that Ax = b, so z = x− x∗ satisfies Az = 0, then

‖x‖1 = ‖x∗T + zT ‖1 + ‖zT c‖1
≥ ‖x∗T ‖1 − ‖zT ‖1 + ‖zT c‖1
= ‖x∗‖1 + ‖z‖1 − 2‖zT ‖1

and C < 2 means

‖z‖1 − 2‖zT ‖1 > ‖z‖1 −
C

C − 1
‖zT ‖1 ≥ 0

hence ‖x‖1 > ‖x∗‖1, so x̂ = x∗. The error bound follows from similar arguments.

We can use these last results to bound suboptimality using the distance to the optimal set. We get the
following proposition bounding the sharpness of the optimum of problem (1).

Proposition 2.3. Given a coding matrix A ∈ Rn×p satisfying the Nullspace Property (NSP) at order k with
constant 1 < C < 2. Let x̂ be the solution of program (2) for b = Ax∗ with Card(x∗) ≤ k. Let x ∈ Rp
satisfy Ax = b, we have

‖x‖1 − ‖x̂‖1 ≥
2− C
C
‖x− x̂‖1 (Sharp)

with x̂ = x∗.

Proof. The hypotheses of Proposition (2.2) are satisfied so x̂ = x∗, z = x − x̂ ∈ N (A) and following
the proof of that proposition we get

‖x‖1 − ‖x̂‖1 ≥ ‖z‖1 − 2‖zT ‖1
and

‖z‖1 ≥
C

C − 1
‖zT ‖1

yields the desired result.

The nullspace property (NSP) ensures that there are no (approximately) sparse vectors in the nullspace of
the observation matrix A. We can give a more concrete geometric meaning to the constant C in (NSP) by
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connecting it with the diameter of a section of the `1 ball by the nullspace of the matrix A (see e.g. Kashin
and Temlyakov [2007] for more details).

Lemma 2.4. Suppose A ∈ Rn×p satisfies

1

2
diam(Bp

1 ∩N (A)) = sup
Ax=0
‖x‖1≤1

‖x‖2 ≤ k−1/2
D

then A satisfies (NSP) at order kT with constant

C =
1

1−
√
kT /kD

(3)

provided kT < kD.

Proof. For any x ∈ N (A) and support set T with Card(T ) ≤ kT ,

‖xT ‖1 ≤
√
kT ‖x‖2 ≤

√
kT /kD ‖x‖1,

which means
‖xT c‖1 ≥ (1−

√
kT /kD)‖x‖1

hence the desired result.

Precise estimates of the diameter of random sections of norm balls can be computed using classical
results in geometric functional analysis. The low M∗ estimates in [Pajor and Tomczak-Jaegermann, 1986]
for example show that when E is random subspace of codimension k (e.g. the nullspace of a random
matrix A), then

diam(Bp
1 ∩ E) ≤ c

√
log(n/k)

k
with high probability, where c > 0 is an absolute constant. In this case, Proposition 2.3 means that if x̂
solves the recovery problem in (1), then (Sharp) reads

‖x‖1 − ‖x̂‖1 ≥

(
1− c

√
Card(T ) log(n/k)

k

)
‖x− x̂‖1 (4)

where T is the support of the true signal x∗. This means that the sharpness of the optimum of (1) is
essentially controlled by the ratio of the true signal size Card(T ) with the maximum signal size k that can
be recovered w.h.p. by the observation matrix A.

2.2. General sparsity inducing norms. We now generalize the results above using the notion of sparsity
structures introduced by Juditsky et al. [2014], which allows a common treatment of popular norms such
as the `1 norm, group-`1 norms and the nuclear norm. Sparsity structures define sparsity (or simplicity) of
signals through projectors.

We begin by briefly recalling the setting in [Juditsky et al., 2014]. Consider X and E , two Euclidean
spaces, and a map B : X → E . In most cases, notably including the `1 and nuclear norm, X = E and
we may think of B as the identity map, but it is useful to consider more general B to model group norms
as well. In this setting, the problem under consideration is that of finding a sparse representation Bx of a
signal, given noisy observations y = Ax.

Definition 2.5. (Sparsity structure [Juditsky et al., 2014]) A sparsity structure on E is defined as a norm
‖ · ‖ on E , together with a family P of linear maps of E into itself, satisfying three assumptions:

(1) Every P ∈ P is a projector, P 2 = P ,
(2) Every P ∈ P is assigned a weight ν(P ) ≥ 0 and a linear map P̄ on E such that PP̄ = 0,
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(3) For any P ∈ P and f, g ∈ E , one has

‖P ∗f + P̄ ∗g‖∗ ≤ max(‖f‖∗, ‖g‖∗),

where ‖ · ‖∗ is the dual norm of ‖ · ‖ and P ∗ is the conjugate mapping of the linear map P .

The last condition in Definition 2.5 is arguably the least intuitive and Lemma 4.1 connects it, in some
cases, with the more intuitive notion of decomposable norm. For k ≥ 0, let

Pk = {P ∈ P : ν(P ) ≤ k}.

The notion of sparsity is defined as follows: a vector w is said to be k-sparse if there exists P ∈ Pk such
that Pw = w. A signal x is said to be k-sparse if its representation Bx is k-sparse.
`1 norm. In the the `1 norm case, the sparsity structure is defined over E = X = Rp, the map B reduces to
the identity, and P is the set of projectors on coordinate subspaces of Rp, that is, P contains all projectors
which zero out all coordinates of a vector except for a subset of them, which are left unaffected. The
companion maps are the complementary projectors: P̄ = I−P . Naturally, the complexity level corresponds
to the number of coordinates preserved by P , i.e., ν(P ) = Rank(P ). These definitions recover the usual
notion of sparsity.
Nuclear norm. The nuclear norm is defined for matrices X ∈ Rp×q with singular values σi(X) as ‖X‖ =∑min(p,q)

k=1 σk(X). It can be cast as a sparsity system by setting X = E = Rp×q, B = I . Its associated
family of linear maps is

P : X 7→ PleftXPright,

and
P̄ : X 7→ (I − Pleft)X(I − Pright),

where Pleft ∈ Rp×q and Pright ∈ Rp×q are orthogonal projectors. Their weights are defined as ν(P ) =
max (Rank(Pleft),Rank(Pright)) defining therefore k-sparse matrices as matrices of rank at most k.

Definition 2.5 allows us to revisit all the results of Section 2.1. This is essentially a direct generalization,
with the caveat that since we do not assume P + P̄ = I (which roughly corresponds to decomposable
norms), the recovery conditions in [Juditsky et al., 2014] that we recall below differs slightly from (NSP).
In the setting discussed above, let x̂ ∈ X solve the following optimization problem

minimize ‖Bx‖
subject to Ax = b

(5)

in the variable x ∈ X . [Juditsky et al., 2014] then show a slightly more general version of the following
stable recovery result.

Proposition 2.6. Suppose x̂ ∈ X solves the recovery problem (5) with observations b = Ax∗ where x∗ is
the true signal, up to a precision ε, and that the true signal x is nearly sparse, i.e. there exists P ∈ Pk such
that

‖(I − P )Bx‖ ≤ δx
Assume also that the following condition holds

‖PBz‖ − ‖P̄Bz‖+ ‖Bz‖ ≤ ‖Bz‖P , (6)

for any z ∈ X , P ∈ Pk, then

‖Bx̂−Bx∗‖ ≤ ε+ 2δx
1− γ

(7)

where ‖ · ‖ is the norm defined in Def. 2.5.
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Proof. See [Juditsky et al., 2014, Prop. 3.1].

The condition in (6) is slightly stronger than the classical nullspace property but ensures stable recovery
when problem (5) is only solved approximately. This result also allows us to produce a direct generalization
of Proposition 2.3, as follows.

Proposition 2.7. Given a sparsity systemP satisfying assumption (6) in Proposition 2.6, let x̂ be the solution
of program (5) for b = Ax∗ with Card(x∗) ≤ k. If x ∈ X satisfies Ax = b, then

‖x‖1 − ‖x̂‖1 ≥ (1− γ)‖x− x̂‖1 (Sharp-Gen)

with x̂ = x∗.

Proof. If P satisfies assumption (6) in Proposition 2.6, then [Juditsky et al., 2014, Prop. 3.1] shows that
x̂ = x∗. For z ∈ N (A) we have

‖P̄Bz‖ − ‖PBz‖ ≥ (1− γ)‖Bz‖

which combined with [Juditsky et al., 2014, Lem. 3.1] and the fact that Ax = b yields the desired result.

This last bound is a direct generalization of the sharpness result in Proposition 2.3, with (Sharp-Gen)
extending the inequality in (Sharp). While the coefficient (1 − γ) in (Sharp-Gen) is perhaps less intuitive
than the condition number in (Sharp), we observe that here too this same coefficient controls both recovery
stability in the error bound (7) of Prop. 2.6, and sharpness (hence computational complexity as we will see
below) in bound (Sharp-Gen).

2.3. Restarting First-Order Methods. In this section we seek to solve the recovery problem (1) assuming
that the sharpness bounds (Sharp) hold. The NESTA method detailed in [Becker et al., 2011a] uses the
smoothing argument in [Nesterov, 2005] to solve (1). In practice, this means using the optimal algorithm in
[Nesterov, 1983] to minimize

fµ(x) , sup
‖u‖∞≤1

uTx− µ‖u‖22/2

for some µ > 0, which approximates the `1 norm uniformly up to µp/2. This is the classical Huber function,
which has a Lipschitz continuous gradient with constant equal to 1/µ. Starting at a point x0, t iterations of
the optimal algorithm in [Nesterov, 1983] will then yield a point xt satisfying

‖xt‖1 − ‖x̂‖1 ≤
2‖x0 − x∗‖22

µt2
+
µp2

2

and the optimal bound is reached for µ =
√

2‖x0 − x∗‖2/(t
√
p) and reads

‖xt‖1 − ‖x̂‖1 ≤
3
√
p‖x0 − x∗‖2

t
(8)

As in [Roulet and d’Aspremont, 2017], we write A(x0, t) , xt the output of this algorithm and describe a
restart scheme exploiting the sharpness result in (Sharp) to improve the computational complexity of solving
problem (1). In fact, when Proposition 2.3 holds, combining (9) and (Sharp) yields

‖xt‖1 − ‖x̂‖1 ≤
3
√
p‖x0 − x∗‖2

t

≤
3
√
pC

t(2− C)
(‖x0‖1 − ‖x̂‖1)

hence if we pick t such that
3
√
pC

t(2− C)
< 1
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the simple, constant restart scheme running summarized in Algorithm 1. After τ outer iterations, hence a
total of N = tτ inner iterations, the algorithm will produce a point yτ satisfying

‖y‖1 − ‖x̂‖1 ≤
(

3
√
pC

t(2− C)

)N/t
minimizing this last bound in t yields the following proposition.

Proposition 2.8. Given a coding matrix A ∈ Rn×p satisfying the Nullspace Property (NSP) at order 2k
with constant C < 2. Let x̂ be the solution of program (2) for b = Ax∗ with Card(x∗) ≤ k. After running
a total of N inner iterations in Algorithm 1, we get a point y ∈ Rp such that

‖y‖1 − ‖x̂‖1 ≤ exp

(
−N(2− C)

3e
√
pC

)
(9)

for t = 3e
√
pC/(2− C), hence N/t restarts.

Recall from (3) that for random observations, we have

2− C
C

= 1− 2
√
kT /kD

where kT is roughly the largest signal size that can be recovered by the observations A and kT is the size
of the true signal. This means that the complexity of the optimization problem (1) decreases with the
complexity of the statistical recovery problem, with both quantities being controlled by the oversampling
ratio kD/kT .

Algorithm 1 Restart Scheme
Input: Initial point y0 ∈ Rp

For i = 1 . . . , τ compute
yi = A(yi−1, t) (Restart)

Output: A point yτ approximately solving (1).

3. RENEGAR’S CONDITION NUMBER & RESTRICTED EIGENVALUES

Renegar’s condition number is a data-driven computational complexity measure for convex programs,
generalizing classical condition numbers for linear systems. In what follows, we show that for a broad class
of compressed sensing problems, the worst case value of this algorithmic complexity measure taken over
all signals matches the restricted eigenvalue of the observation matrix, which controls compressed sensing
performance.

3.1. Computational complexity. We begin by addressing computational complexity aspects of problem (1).
Computational complexity for convex optimization problems is often described in terms of polynomial func-
tions of the problem size. This produces a clear link between problem structure and computational complex-
ity but fails to account for the nature of the data. If we use linear systems as a basic example, unstructured
linear systems of dimension n can be solved with complexity O(n3) regardless of the matrix values, but
iterative solvers will converge much faster on systems that are better conditioned. The seminal work of
[Renegar, 1995a, 2001] extends this notion of conditioning to optimization problems, producing data-driven
bounds on the complexity of solving conic programs, and showing that the number of outer iterations of
interior point algorithms increases as the distance to ill-posedness decreases.
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In what follows, we study the complexity of the oracle certifying optimality of a candidate solution x∗

to (1) as a proxy for the problem of computing an optimal solution to this problem. As we will see below,
certifying optimality means solving a pair of alternative conic linear systems of the form

Ax = 0, x ∈ C (10)

and
−AT b ∈ C∗ (11)

for a given cone C ⊂ Rp. Several references have connected Renegar’s condition number C(A) (which
will be defined more precisely below) and the complexity of solving conic linear systems using various
algorithms [Renegar, 1995a; Freund and Vera, 1999b; Epelman and Freund, 2000; Renegar, 2001; Vera
et al., 2007; Belloni et al., 2009]. In particular, Vera et al. [Vera et al., 2007] link C(A) to the complexity of
solving the primal dual pair (10)–(11) using a barrier method. They show that the number of outer barrier
method iterations grows as

O (
√
νC log (νC C(A))) ,

where νC is the barrier parameter, while the conditioning (hence the complexity) of the linear systems
arising at each interior point iteration is controlled by C(A)2. This link was also tested empirically on
linear programs using the NETLIB library of problems in [Ordóñez and Freund, 2003], where computing
times and number of iterations were regressed against estimates of the condition number computed using
the approximations for C(A) detailed in [Freund and Vera, 2003].

Studying the complexity of computing an optimality certificate in (10) gives insights on the performance
of oracle based optimization techniques such as the ellipsoid method. Of course, these abstract methods are
very different from those used to solve problem (1) in pratice. However, we will observe in the numerical
experiments of Section 4 that the condition number is strongly correlated with the empirical performance of
efficient recovery algorithms such as LARS [Efron et al., 2004] and Homotopy [Donoho and Tsaig, 2008;
Asif and Romberg, 2014].

We now briefly recall optimality conditions for problem (1) and two equivalent constructions for the
condition number of a conic linear system. Define the tangent cone at point x with respect to the norm ‖ · ‖,
that is, the set of descent directions for the norm ‖ · ‖ at x, as

T (x) = cone{z : ‖x+ z‖ ≤ ‖x‖}. (12)

The simple lemma below characterizes unique optimal solutions to problem (1) in terms of T (x).

Lemma 3.1. The point x∗ is the unique minimizer of (1) if and only if Null(A) ∩ T (x∗) = {0}.

Proof. This follows from standard KKT conditions (see for example [Chandrasekaran et al., 2012,
Prop 2.1]).

In other words, x∗ is the unique optimizer if and only if the following problem is infeasible

find z
s.t. Az = 0

z ∈ T (x∗), z 6= 0,
(P)

in the variable z ∈ Rp. To certify feasibility, it is sufficient to exhibit a solution. One way of certifying
infeasibility of (P) is to solve the dual problem

find u
s.t. −ATu ∈ T (x∗)◦, u 6= 0,

(D)

in the variable u ∈ Rn, where T (x∗)◦ is the polar cone of T (x∗). Renegar’s condition number [Renegar,
1995a,b; Peña, 2000] provides a data-driven measure of the complexity of this task. It is rooted in the
sensible idea that certifying infeasibility is easiest if the problem is far from being feasible. Formally, the
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distance to feasibility ρx∗(A) is defined as follows. Let MP
x∗ = {A ∈ Rn×p : (P) is infeasible}. Then,

using the spectral norm as matrix norm,

ρPx∗(A) , inf
∆A
{‖∆A‖2 : A+ ∆A /∈MP

x∗}. (13)

Renegar’s condition number for problem (P) with respect to x∗ is then defined as the scale-invariant recip-
rocal of this distance

Cx∗(A) ,
‖A‖2
ρPx∗(A)

. (14)

We can also define conically restricted minimal singular value of A as follows

µx∗(A) = inf
z∈T (x∗)

‖Az‖2
‖z‖2

. (15)

Interestingly, this last quantity turns out to be equal to the distance to infeasibility and we have the following
result.

Lemma 3.2. Distance to feasibility and cone restricted eigenvalues match, i.e. ρPx∗(A) = µx∗(A).

Proof. When (P) is feasible, both vanish. Otherwise, see [Freund and Vera, 1999a, Th. 2], or simplified
versions in [Belloni and Freund, 2009, Lem. 3.2] and [Amelunxen and Lotz, 2014].

Notice that, if T (x∗) were the whole space Rp, and if ATA were full-rank (never the case if n < p), then
µ(A) would be the smallest singular value of A. As a result, C(A) would reduce to the classical condition
number of A (and to∞ when ATA is rank-deficient ). Renegar’s condition number is necessarily smaller
(better) than the latter, as it further incorporates the notion that A need only be well-conditioned along those
directions that matter with respect to the norm ‖ · ‖ at x∗. Later, we will remove the dependence on x∗ by
considering a worst-case condition number over classes of “simple” signals.

When the primal problem (P) is feasible, so that µx∗(A) = 0, the condition number as defined here is
infinite. While this correctly captures the fact that, in that regime, statistical recovery does not hold, it does
not properly capture the fact that, when (P) is ”comfortably” feasible, certifying so is easy, and algorithms
terminate quickly (although they return a useless estimator). From both a statistical and a computational
point of view, the truly delicate cases correspond to problem instances for which both (P) and (D) are only
barely feasible or infeasible. This is illustrated in simple numerical example in [Boyd and Vandenberghe,
2004, §11.4.3] and in our numerical experiments, corresponding to the peaks in the CPU time plots of
the right column in Figure 3: problems where sparse recovery barely holds/fails are relatively harder. For
simplicity, we only focused here on distance to feasibility for problem (P). However, it is possible to
symmetrize the condition numbers used here as described in [Amelunxen and Lotz, 2014, §1.3], where a
symmetric version of the condition number is defined as

R(A) = min

{
‖A‖
ρPx∗(A)

,
‖A‖
ρDx∗(A)

}
This quantity peaks for programs that are nearly feasible/infeasible. Naturally, the condition number also
controls the sensitivity of the solution to changes in the matrix A, with [Renegar, 1994, 1995b] for ex-
ample directly bounding changes in the solution to (10) in terms of C(A) and changes ∆A in the system
matrix. This means that C(A) also measures the robustness of the solution to the recovery with respect to
misspecification of the observation matrix A, a point rarely addressed by classical recovery results.

3.2. Statistical performance. We now focus on the link between condition number and the statistical per-
formance of the solution of problem (1). To this end, assume now that the observations y are affected by
noise and that we solve a robust version of problem (1), written

minimize ‖x‖
subject to ‖Ax− b‖2 ≤ δ‖A‖2,

(16)
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in the variable x ∈ Rp, with the same design matrix A ∈ Rn×p, observations y ∈ Rn and noise level δ > 0.

3.2.1. Recovery bounds using C(A). The following classical result bounds the reconstruction error in terms
of C(A).

Lemma 3.3. Suppose we observe y = Ax0 +w where ‖w‖2 ≤ δ‖A‖2 and let x∗ be an optimal solution of
problem (16). We get the following error bound:

‖x∗ − x0‖2 ≤ 2
δ‖A‖2
µx0(A)

= 2δ · Cx0(A). (17)

Proof. We recall the short proof of [Chandrasekaran et al., 2012, Prop. 2.2]. Both x∗ and x0 are feasible
for (16) and x∗ is optimal, so that ‖x∗‖ ≤ ‖x0‖. Thus, the error vector x∗ − x0 is in the tangent cone
T (x0) (12). By the triangle inequality,

‖A(x∗ − x0)‖2 ≤ ‖Ax∗ − y‖2 + ‖Ax0 − y‖2 ≤ 2δ‖A‖2.

Furthermore, by definition of µx0 (15),

‖A(x∗ − x0)‖2 ≥ µx0(A) ‖x∗ − x0‖2.

Combining the two concludes the proof.

Notice that, in the above lemma, the condition number is evaluated at x0 (the true signal) rather than at x∗

(the estimator). This will be convenient when considering worst cases over classes of target signals.
This means that Renegar’s condition number defined in (14) also controls the statistical performance

of estimators built on solving the approximate recovery problem (16). This at least partially explains the
common empirical observation (see, e.g., [Donoho and Tsaig, 2008]) that problem instances where statistical
estimation succeeds are computationally easy to solve. In fact, we will see in what follows that the worst-
case value of the distance to infeasibility coincides with classical measures of recovery performance, such
as restricted eigenvalues [Bickel et al., 2009] in the `1 case.

On paper, the computational complexities of (1) and (16) are very similar (in fact, infeasible start primal-
dual algorithms designed for solving (1) actually solve problem (16) with δ small). In our experiments, we
did observe sometimes significant differences in behavior between the noisy and noiseless case.

3.2.2. Generalized restricted eigenvalues. We now further specify the sparsity inducing norms in order to
study Renegar’s condition number on a class of signals that share the same sparsity properties. We use
again the framework of sparsity structure introduced by Juditsky et al. [Juditsky et al., 2014], recalled in
the previous section. Given a sparsity structure and k ≥ 0, Lemma 3.2 shows that the worst-case distance to
infeasibility on the class of k-sparse signals can be written as

µk(A) , inf
P∈P, ν(P )=k,
x∈X , PBx=Bx,

inf
z∈T (x)

‖Az‖2
‖z‖2

,

(the first infimum covers all signals x of sparsity k), where the tangent cone is defined here as

T (x) = cone{z ∈ X : ‖Bx+Bz‖ ≤ ‖Bx‖}.

In the following lemma, we show that this worst-case distance to infeasibility µk is directly related to
generalized restricted eigenvalues.

Lemma 3.4. Given a sparsity structure (‖ · ‖,P), for P ∈ P , let

CP =
⋃

{x∈X :PBx=Bx}

T (x), and DP = {z ∈ X , ‖P̄Bz‖ ≤ ‖PBz‖}. (18)
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Then, CP ⊆ DP . Hence, for any k ≥ 0,

µk(A) ≥ σk(A) = inf
P∈Pk, z∈X ,
‖P̄Bz‖≤‖PBz‖

‖Az‖2
‖z‖2

.

Proof. Let P ∈ P and z ∈ T (x) for x ∈ X such that PBx = Bx. Using [Juditsky et al., 2014,
Lem. 3.1], we have

‖Bx‖+ ‖P̄Bz‖ − ‖PBz‖ ≤ ‖Bx+Bz‖ ≤ ‖Bx‖.

So ‖P̄Bz‖ ≤ ‖PBz‖ and z ∈ DP .

The inverse of the generalized restricted eigenvalue therefore also bounds the worst case computational
complexity through the condition number. We remark that, in general, one does not have µk(A) = σk(A).
A simple counterexample can be derived for the nuclear norm. Indeed, let E = X = R2×2, B be the identity
and (‖ · ‖,P) be the nuclear norm and its associated family of linear maps. Let

Q =

(
1 0
0 0

)
and U =

(
0 u
u 0

)
with u 6= 0. Setting P : X → QXQ, so that P ∈ P , we have ‖PU‖ = ‖P̄U‖ = 0, hence U ∈ DP . Now
let

XP = {X ∈ X : PX = X} =

{(
x 0
0 0

)
: x ∈ R

}
.

For anyX ∈ XP , ‖X+U‖ =
√
x2 + 4u2 > |x| = ‖X‖, hence U /∈ ∪X∈XP

T (X), showing thatDP * CP .
As shown below however, with the additional assumption that the norm is strictly decomposable, that

is, P̄ = I − P and that B is bijective (non-overlapping groups) the bound in Lemma 3.4 is tight and
µk(A) = σk(A).

Lemma 3.5. Given a sparsity structure (‖ · ‖,P), assume that for any P ∈ P , P̄ = I −P . Then CP = DP
and, for any k ≥ 0, we have

µk(A) = σk(A).

Proof. Let P ∈ P and z ∈ X , ‖P̄Bz‖ ≤ ‖PBz‖. Let w = −PBz. We have Pw = w and

‖w +Bz‖ = ‖(I − P )Bz‖ = ‖P̄Bz‖ ≤ ‖PBz‖ = ‖w‖.

Thus, z ∈ T (x) for x such that w = Bx, and PBx = Bx implies z ∈ CP .

In the `1 case, our definition for µk(A) = σk(A) matches the definition of restricted eigenvalue in [Bickel
et al., 2009], with

σk(A) = inf
S⊂[1,p]:Card(S)=k
z∈Rp: ‖zSc‖1≤‖zS‖1

‖Az‖2
‖z‖2

.

This, we believe, makes for an interesting link between the statistical notion of restricted eigenvalue, and
the computational notion of Renegar condition number.
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4. NUMERICAL RESULTS

4.1. Sharpness & restart. We test the restart scheme in Algorithm 1 on `1-recovery problems with random
design matrices. Throughout the experiments, we use the NESTA code described in [Becker et al., 2011a].
We generate a random design matrix A ∈ Rn×p with i.i.d Gaussian coefficients. We then normalize A so
that AAT = I (to fit NESTA’s format) and generate observations b = Ax∗ where x∗ ∈ Rp is a k-sparse
vector whose nonzero coefficients are all ones. In Figure 1 we compare the performance of running NESTA
with and without restart, for various values of the number of inner iteration t and outer iterations τ . We
observe that restart can improve performance but that this improvement can be neutralized if the number of
outer iterations is set much too high. Here, we have set p = 500, m = 300 and k = 50. To minimize the
number of moving parameters, we do not use continuation in [Becker et al., 2011a] hence directly implement
the method in [Nesterov, 2005].
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FIGURE 1. Restarted NESTA (solid blue line), versus NESTA (dotted black line). Left:
Using 5 restart and 250 max inner iterations. Right: Using 10 restart and 100 max inner iterations.

We also check the result in Proposition 2.8 on toy problems with p = 100, k = 5 and increasing values
of m, with m = {25, 30, 50}. As m grows, the matrix A satisfies the nullspace property (NSP) with
diminishing values of C. The complexity bound in (9) improves as m increases and the recovery problem
becomes less ill-posed, which is confirmed by the numerical experiments reported in Figure 2.

4.2. Renegar’s condition number and compressed sensing performance. We first describe how we ap-
proximate the value of Cx0(A), we then detail numerical experiments on synthetic data sets.

4.2.1. Computing Cx0(A). The condition number Cx0(A) appears here in upper bounds on computational
complexities and statistical performances. In order to test numerically whether this quantity truly explains
those features (as opposed to merely appearing in a wildly pessimistic bound), we explicitly compute it in
numerical experiments.

We focus on the `1 norm. To compute Cx0(A), we propose a heuristic which computes µx0(A) in (15),
the value of a nonconvex minimization problem over the cone of descent directions T (x0). The closure of
the latter is the polar of the cone generated by the subdifferential to the `1-norm ball at x0 [Chandrasekaran
et al., 2012, §2.3]. Let S ⊂ {1, . . . , p} denote the support of x0, S̄ denote its complement, and |S̄| denote
the cardinality of S̄. Then, with s = sign(x0),

T (x0) = cone
{
z ∈ Rp : zS = sS , zS̄ ∈ [−1, 1]|S̄|)

}◦
=
{
z ∈ Rp : ‖zS̄‖1 ≤ −sTSzS = −sT z

}
.
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FIGURE 2. Restarted NESTA versus number of iterations for m = {25, 30, 50}.

Thus, µx0(A) is the square root of

min
z∈Rp

zTATAz s.t. ‖z‖2 = 1 and ‖zS̄‖1 ≤ −sT z. (19)

Let λ denote the largest eigenvalue of ATA. If it were not for the cone constraint, solutions of this problem
would be the dominant eigenvectors of λI − ATA, which suggests a projected power method [Deshpande
et al., 2014] as follows. Given an initial guess z(0) ∈ Rp, ‖z(0)‖2 = 1, iterate

ẑ(k+1) = Projx0
(
(λI −ATA)z(k)

)
, z(k+1) = ẑ(k+1)/‖ẑ(k+1)‖2, (20)

where we used the orthogonal projector to T (x0),

Projx0(z̃) = arg min
z∈Rp

‖z − z̃‖22 s.t. ‖zS̄‖1 ≤ −sT z. (21)

This convex, linearly constrained quadratic program is easily solved with CVX Grant et al. [2001]. As can
be seen from KKT conditions, this iteration is a generalized power iteration Journée et al. [2008]

z(k+1) ∈ arg max
z∈Rp

zT (λI −ATA)z(k) s.t. ‖z‖2 ≤ 1 and ‖zS̄‖1 ≤ −sT z.

From the latter, it follows that ‖Az(k)‖2 decreases monotonically with k. Indeed, owing to convexity of
f(z) = 1

2z
T (λI − ATA)z, we have f(z) − f(z(k)) ≥ (z − z(k))

T (λI − ATA)z(k). The next iterate
z = z(k+1) maximizes this lower bound on the improvement. Since z = z(k) is admissible, the improvement
is nonnegative and f(z(k)) increases monotonically.

Thus, the sequence ‖Az(k)‖2 converges, but it may do so slowly, and the value it converges to may
depend on the initial iterate z(0). On both accounts, it helps greatly to choose z(0) well. To obtain one,
we modify (19) by smoothly penalizing the inequality constraint in the cost function, which results in a
smooth optimization problem on the `2 sphere. Specifically, for small ε1, ε2 > 0, we use smooth proxies
h(x) =

√
x2 + ε2

1 − ε1 ≈ |x| and q(x) = ε2 log(1 + exp(x/ε2)) ≈ max(0, x). Then, with γ > 0 as
Lagrange multiplier, we consider

min
‖z‖2=1

‖Az‖22 + γ · q
(
sT z +

∑
i∈S̄

h(zi)
)
.

We solve the latter locally with Manopt [Boumal et al., 2014], itself with a uniformly random initial guess
on the sphere, to obtain z(0). Then, we iterate the projected power method. The value ‖Az‖2 is an upper
bound on µx0(A), so that we obtain a lower bound on Cx0(A). Empirically, this procedure, which is random
only through the initial guess on the sphere, consistently returns the same value, up to five digits of accuracy,
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which suggests the proposed heuristic computes a good approximation of the condition number. Similarly
positive results have been reported on other cones in Deshpande et al. [2014], where the special structure
of the cone even made it possible to certify that this procedure indeed attains a global optimum in proposed
experiments. Similarly, a generalized power method was recently shown to converge to global optimizers
for the phase synchronization problem (in a certain noise regime) Boumal [2016]. This gives us confidence
in the estimates produced here.

4.2.2. Sparse recovery performance. We conduct numerical experiments in the `1 case to illustrate the
connection between the condition number Cx0(A), the computational complexity of solving (1), and the
statistical efficiency of the estimator (16). Importantly, throughout the experiments, the classical condition
number of A will remain essentially constant, so that the main variations cannot be attributed to the latter.

We follow a standard setup, similar to some of the experiments in Donoho and Tsaig [2008]. Fixing the
ambient dimension p = 300 and sparsity k = Card(x0) = 15, we let the number of linear measurements n
vary from 1 to 150. For each value of n, we generate a random signal x0 ∈ Rp (uniformly random support,
i.i.d. Gaussian entries, unit `2-norm) and a random sensing matrix A ∈ Rn×p with i.i.d. standard Gaussian
entries. Furthermore, for a fixed value δ = 10−2, we generate a random noise vector w ∈ Rn with i.i.d.
standard Gaussian entries, normalized such that ‖w‖2 = δ‖A‖2, and we let y = Ax0 + w. This is repeated
100 times for each value of n.

For each triplet (A, x0, y), we first solve the noisy problem (16) with the L1-Homotopy algorithm (τ =
10−7) Asif and Romberg [2014], and report the estimation error ‖x∗ − x0‖2. Then, we solve the noiseless
problem (1) with L1-Homotopy and the TFOCS routine for basis pursuit (µ = 1) Becker et al. [2011b].
Exact recovery is declared when the error is less than 10−5, and we report the empirical probability of exact
recovery, together with the number of iterations required by each of the solvers. The number of iterations
of LARS Efron et al. [2004] is also reported, for comparison. For L1-Homotopy, we report the computation
time, normalized by the computation time required for one least-squares solve inA, as in [Donoho and Tsaig,
2008, Fig. 3], which accounts for the growth in n. Finally, we compute the classical condition number of
A, κ(A), as well as (a lower bound on) the cone restricted condition number Cx0(A), as per the previous
section. As it is the computational bottleneck of the experiment, it is only computed for 20 of the 100
repetitions.

The results of Figure 3 show that the cone-restricted condition number explains both the computational
complexity of (1) and the statistical complexity of (16): fewer samples mean bad conditioning which in
turn implies high computational complexity. We caution that our estimate of Cx0(A) is only a lower bound.
Indeed, for small n, the third plot on the left shows that, even in the absence of noise, recovery of x0 is
not achieved by (16). Lemma 3.3 then requires Cx0(A) to be infinite. But the computational complexity of
solving (1) is visibly favorable for small n, where far from the phase transition, problem (P) is far from infea-
sibility, which is just as easy to verify as it is to certify that (P) is infeasible when n is comfortably larger than
needed. This phenomenon is best explained using a symmetric version of the condition number Amelunxen
and Lotz [2014] (omitted here to simplify computations).

We also solved problem (1) with interior point methods (IPM) via CVX. The number of iterations ap-
peared mostly constant throughout the experiments, suggesting that the practical implementation of such
solvers renders their complexity mostly data agnostic in the present setting. Likewise, the computation time
required by L1-Homotopy on the noisy problem (16), normalized by the time of a least-squares solve, is
mostly constant (at about 150). This hints that the link between computational complexity of (1) and (16)
remains to be fully explained.

APPENDIX

The last condition in Definition 2.5 is arguably the least intuitive. Lemma 4.1 below connects it, in some
cases, with the more intuitive notion of decomposable norm.
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FIGURE 3. We plot the cone-restricted condition number of A (upper left), explaining both
the computational complexity of problem (1) (right column) and the statistical complexity
of problem (16) (second on the left). Central curves represent the mean (geometric mean
in log-scale plots), red curves correspond to 10th and 90th percentile. We observe that
high computing times (peaks in the right column) are directly aligned with instances where
sparse recovery barely holds/fails (left), i.e. near the phase transition around n = 70, where
the distance to feasibility for problem (P) also follows a phase transition.
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Lemma 4.1. Assume B = I, condition iii) above, which reads

‖P ∗f + P̄ ∗g‖∗ ≤ max(‖f‖∗, ‖g‖∗),
for any f, g ∈ E , implies

‖u‖ ≥ ‖Pu‖+ ‖P̄ u‖.
for any u ∈ E .

Proof. We combine the conjugacy result for squared norm [Boyd and Vandenberghe, 2004, Example
3.27] showing that the conjugate of a squared norm ‖x‖2/2 is the squared conjugate norm ‖x‖2∗/2, with the
result in [Rockafellar, 1970, Th. 16.3], to show

(‖P ∗f + P̄ ∗g‖2∗/2)∗ = inf
u
{‖u‖2/2 : Pu = y, P̄ u = z}

Also, the dual of the norm max(‖f‖∗, ‖g‖∗) is the norm ‖y‖+‖z‖, hence taking the conjugate of condition
iii) implies

inf
u
{‖u‖ : Pu = y, P̄ u = z} ≥ ‖y‖+ ‖z‖

or again
‖u‖ ≥ ‖Pu‖+ ‖P̄ u‖.

which is the desired result.

This means in particular that ‖u‖ = ‖Pu‖ + ‖P̄ u‖ when P̄ = I − P , in which case sparsity systems
match the decomposable norms setting in [Negahban et al., 2009]. The condition P̄ = I−P holds for the `1
norm and some group sparsity problems detailed below, but not for the nuclear norm.
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