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Abstract

We derive a stochastic gradient algorithm for semidefinite optimization using randomization
techniques. The algorithm uses subsampling to reduce the computational cost of each iteration
and the subsampling ratio explicitly controls granularity, i.e. the tradeoff between cost per
iteration and total number of iterations. Furthermore, the total computational cost is directly
proportional to the complexity (i.e. rank) of the solution. We study numerical performance on
some large-scale problems arising in statistical learning.

1 Introduction

Beyond classic combinatorial relaxations [GW95], semidefinite programming has recently found a
new stream of applications in machine learning [LCB+02], geometry [WS06], statistics [dBEG06]
or graph theory [SBXD06]. All these problems have a common characteristic: they have relatively
low precision targets but form very large semidefinite programs for which obtaining second order
models is numerically hopeless which means that Newton based interior point solvers typically fail
before completing even a single iteration. Early efforts focused on exploiting structural properties
of the problem (sparsity, block patterns, etc), but this has proven particularly hard for semidefinite
programs. For very large problem instances, first-order methods remain at this point the only
credible alternative. This follows a more general trend in optimization which seeks to significantly
reduce the granularity of solvers, i.e. reduce the per iteration complexity of optimization algorithms
rather than their total computational cost, thus allowing at least some progress to be made on
problems that are beyond the reach of current algorithms.

In this work, we focus on the following spectral norm minimization problem

minimize
∥∥∥∑p

j=1 yjAj + C
∥∥∥
2
− bT y

subject to y ∈ Q,
(1)

in the variable y ∈ Rp, with parameters Aj ∈ Sn, for j = 1, . . . , p, b ∈ Rp and C ∈ Sn, where Q
is a compact convex set. Throughout the paper, we also implicitly assume that the set Q ⊂ Rp is
simple enough so that the complexity of projecting y on Q is relatively low compared to the other
steps in the algorithm.

The idea behind this paper stems from a recent result by [JLNS09], who used a mirror descent
stochastic approximation algorithm for solving bilinear matrix games (see [Nes09], [PJ92] or [NY83]
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for more background), where subsampling is used to perform matrix vector products and produce
an approximate gradient. Strikingly, the algorithm has a total complexity of O(n log n/ε2), when
the problem matrix is n×n, hence only requires access to a negligible proportion of the matrix co-
efficients as the dimension n tends to infinity. A similar subsampling argument was used in [JNT08]
to solve a variational inequality representation of maximum eigenvalue minimization problems.

In parallel, recent advances in large deviations and random matrix theory have produced a
stream of new randomization results for high dimensional linear algebra (see [FKV04, DKM06,
AM07, KV09] among many others), motivated by the need to perform these operations on very
large scale, sometimes streaming, data sets in applications such as machine learning, signal process-
ing, etc. Similar subsampling techniques have been successfully applied to support vector machine
classification [KBH08] or Fourier decomposition. Randomization results were used in [AK07] to
produce complexity bounds for certain semidefinite programs arising in combinatorial relaxations
of graph problems. Randomization was also used in [BLO02] and [BLO05] to approximate subdif-
ferentials of functions that are only differentiable almost everywhere. A randomized algorithm for
semidefinite programming based on random walk techniques was also developed in [PS07]. Finally,
a recent stochastic version by [Lan09] of the algorithm in [Nes07] has the potential to improve the
complexity bounds provided by the method in [JLNS09].

Our contribution here is to further reduce the granularity of first-order semidefinite program-
ming solvers by combining subsampling procedures with stochastic approximation algorithms to
derive stochastic gradient methods for spectral norm minimization with very low complexity per
iteration. In practice, significantly larger per iteration complexity and memory requirements mean
that interior point techniques often fail to complete a single iteration on very large problem in-
stances. CPU clock also runs much faster than RAM, so operations small enough to be performed
entirely in cache (which runs at full speed) are much faster than those requiring larger data sets.
Solver performance on very large problem instances is then often more constrained by memory
bandwidth than clock speed, hence everything else being equal, algorithms running many cheap
iterations will be much faster than those requiring fewer, more complex ones. Here, subsampling
techniques allow us to produce semidefinite optimization algorithms with very low cost per itera-
tion, where all remaining O(n2) operations have a small constant and can be performed in a single
pass over the data.

We also observe that the relative approximation error in computing the spectral norm (or
trace norm) of a matrix using subsampling is directly proportional to the numerical rank of that
matrix, hence another important consequence of using subsampling techniques to solve large-scale
semidefinite programs is that the total complexity of running the algorithm becomes explicitly
dependent on the complexity (i.e. rank) of its solution. Most algorithms exploiting the fact that
the solution has low rank are not convex (e.g. alternating minimization).

The paper is organized as follows. Section 2 surveys some key results on randomized linear
algebra and spectral norm approximations. In Section 3 we then derive a stochastic approxima-
tion algorithm for spectral norm minimization with very low cost per iteration and discuss some
extensions to statistical learning problems. Finally, we present some numerical experiments in
Section 4.

Notation

We write Sn the set of symmetric matrices of dimension n. For a matrix X ∈ Rm×n, we write ‖X‖F
its Frobenius norm, ‖X‖tr its trace norm, ‖X‖2 its spectral norm, σi(X) its i-th largest singular
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value and let ‖X‖∞ = maxij |Xij |, while X(i) is the i-th column of the matrix X and X(i) its i-th
row. We write vec(X) the vector of Rmn obtained by stacking up the columns of the matrix X
and NumRank(X) the numerical rank of the matrix X, where NumRank(X) = ‖X‖2F /‖X‖22.
Finally, when x ∈ Rn is a vector, we write ‖x‖2 its Euclidean norm, while ‖ · ‖ is a general norm
on Rm and ‖ · ‖∗ its dual norm.

2 Randomized linear algebra

In this section, we survey several results by [DKM06] which, after a single pass on the data, sample
columns to approximate matrix products and produce low rank matrix approximations with a
complexity of O(sn) where s is the sampling rate.

2.1 Randomized matrix multiplication

Algorithm 1 Matrix multiplication

Input: A ∈ Rm×n, B ∈ Rn×p and s such that 1 ≤ s ≤ n.
1: Define a probability vector q ∈ Rn such that

qi =
‖A(i)‖2‖B(i)‖2∑n
j=1 ‖A(j)‖2‖B(j)‖2

, i = 1, . . . , n.

2: Define subsampled matrices C ∈ Rm×s and R ∈ Rs×p as follows.
3: for i = 1 to s do
4: Pick j ∈ [1, n] with P(j = l) = ql.
5: Set C(i) = A(j)/

√
sqj and R(i) = B(j)/

√
sqj .

6: end for
Output: Matrix product CR approximating AB.

By construction, E[CR] = AB, and the following randomization result from [DKM07] controls
the precision of the approximations in algorithm 1.

Lemma 1 Let A ∈ Rm×n, B ∈ Rn×p, given a subsampling rate s such that 1 ≤ s ≤ n, suppose
that C ∈ Rm×s and R ∈ Rs×p are computed according to algorithm 1 above, then

E[‖AB − CR‖2F ] ≤ 1
s‖A‖

2
F ‖B‖2F

and if β ∈ [0, 1] with η = 1 +
√

8 log(1/β) then

‖AB − CR‖2F ≤
η2

s
‖A‖2F ‖B‖2F

with probability at least 1− β.

Proof. See Theorem 1 in [DKM07].

Note that using the adaptive probabilities qi is crucial here. The error bounds increase by a
factor n when qi = 1/n for example.
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2.2 Randomized low-rank approximation

Algorithm 2 Low-rank approximation

Input: X ∈ Rm×n and k, s such that 1 ≤ k ≤ s < n.
1: Define a probability vector q ∈ Rn such that qi = ‖X(i)‖22/‖X‖2F , for i = 1, . . . , n.
2: Define a subsampled matrix S ∈ Rm×s as follows.
3: for i = 1 to s do
4: Pick an index j ∈ [1, n] with P(j = l) = ql.
5: Set S(i) = X(j)/

√
sqj .

6: end for
7: Form the eigenvalue decomposition STS = Y diag(σ)Y T where Y ∈ Rs×s and σ ∈ Rs.

8: Form a matrix H ∈ Rm×k with H(i) = SY (i)/σ
1/2
i .

Output: Approximate singular vectors H(i), i = 1, . . . , k.

Algorithm 2 below computes the leading singular vectors of a smaller matrix S, which is a
subsampled and rescaled version of X. Here, the computational savings come from the fact that
we only need to compute singular values of a matrix of dimension m × s with s ≤ n. Recall that
computing k leading eigenvectors of a symmetric matrix of dimension s only requires matrix vector
products, hence can be performed in O(ks2 log s) operations using iterative algorithms such as the
power method or Lanczos method. The complexity is in fact O(kms logm) in our case because an
explicit factorization of the matrix is known, (see the appendix for details, as usual we omit the
precision target in linear algebra operations, implicitly assuming that it is much finer than ε), so
that the cost of computing k leading singular vectors of a matrix of size m× s is O(ksm logm).

This means that, given the probabilities qi, the total cost of obtaining k approximate singular
vectors using algorithm 2 is O(ksm logm) instead of O(knm logm) for exact singular vectors. Of
course, computing qi requires mn operations, but can be done very efficiently in a single pass over
the data. We now recall the following result from [DKM06] which controls the precision of the
approximations in algorithm 2.

Lemma 2 Let X ∈ Rm×n and 1 ≤ k ≤ s < n. Given a precision target ε > 0, if s ≥ 4/ε2 and
H ∈ Rm×k is computed as in algorithm 2, we have

E[‖X −HkH
T
k X‖22] ≤ ‖X −Xk‖22 + ε‖X‖2F

and if in addition s > 4η2/ε2 where η = 1 +
√

8 log(1/β) for β ∈ [0, 1], then

‖X −HkH
T
k X‖22 ≤ ‖X −Xk‖22 + ε‖X‖2F

with probability at least 1− β, where Xk is the best rank k approximation of X.

Proof. See Theorem 4 in [DKM06].

An identical precision bound holds in the Frobenius norm when s ≥ 4k/ε2. We now adapt these
results to our setting in the following lemma, which shows how to approximate the spectral radius
of a symmetric matrix X using algorithm 2.
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Lemma 3 Let X ∈ Rm×n and β ∈ [0, 1]. Given a precision target ε > 0, construct a matrix
S ∈ Rm×s by subsampling the columns of X as in algorithm 2. Let η = 1 +

√
8 log(1/β) and

s = η2
‖X‖22
ε2

NumRank(X)2 (2)

we have
E[|‖S‖2 − ‖X‖2|] ≤ ε

and
|‖S‖2 − ‖X‖2| ≤ ε

with probability at least 1− β.

Proof. Using the Hoffman-Wielandt inequality (see [SS90, Th. 3.1] or the proof of [DKM06, Th.2]
for example) we get

|‖S‖22 − ‖X‖22| ≤ ‖SST −XXT ‖F
hence

|‖S‖2 − ‖X‖2| ≤ ‖SST −XXT ‖F /‖X‖2
and Jensen’s inequality together with the matrix multiplication result in Lemma 1 yields

E[‖SST −XXT ‖F ] ≤
‖X‖2F√

s

and

‖SST −XXT ‖F ≤
η‖X‖2F√

s

with probability at least 1− β. Combining these two inequalities with the sampling rate in (2)

s = η2
‖X‖4F
ε2‖X‖22

yields the desired result.

The subsampling rate required to achieve a precision target ε has a natural interpretation.
Indeed

s = η2
‖X‖22
ε2

NumRank(X)2

is simply the squared ratio of the numerical rank of the matrix X over the relative precision tar-
get ε/‖X‖2, times a factor η2 controlling the confidence level. The numerical rank NumRank(X)
always satisfies 1 ≤ NumRank(X) = ‖X‖2F /‖X‖22 ≤ Rank(X) and can be seen as a stable relax-
ation of the rank of the matrix X (see [RV07] for a discussion). Note also that, by construction,
the subsampled matrix always has lower rank than the matrix X. The expectation bound is still
valid if we drop the factor η in (2).
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3 Stochastic approximation algorithm

Below, we will use a stochastic approximation algorithm to solve problem (1) when the gradi-
ent is approximated using the subsampling algorithms detailed above. We focus on a stochastic
approximation of problem (1) written

min
y∈Q

f(y) ≡ E
[∥∥∥π(s) (∑p

j=1 yjAj + C
)∥∥∥

2

]
− bT y (3)

in the variable y ∈ Rp and parameters Aj ∈ Sn, for j = 1, . . . , p, b ∈ Rp and C ∈ Sn, with 1 ≤ s ≤ n
controlling the sampling rate, where the function ‖π(s)(

∑p
j=1 yjAj + C)‖2 and a subgradient with

respect to y are computed using algorithms 1 and 2. For X ∈ Sn, we have written π(s)(X) the
subsampling/scaling operation used in algorithms 1 and 2 with

π(s)(X) = S, (4)

where 0 < s < n controls the sampling rate and S ∈ Rn×s is the random matrix defined in
algorithm 2 whose columns are a scaled sample of the columns of X. We will write S = π(s)(X) the

matrix obtained by subsampling rows as in algorithm 1. We also define A ∈ Rn2×p as the matrix
whose columns are given by A(j) = vec(Aj), j = 1, . . . , p.

3.1 Stochastic approximation algorithm

We show the following lemma approximating the gradient of the function ‖π(s)(
∑p

j=1 yjAj + C)‖2
with respect to y and bounding its quadratic variation.

Lemma 4 Given Aj ∈ Sn with A ∈ Rn2×p defined as above, for j = 1, . . . , p, b ∈ Rp, C ∈ Sn and
sampling rates s1 and s2, a (stochastic) subgradient of the function ‖π(s1)(

∑p
j=1 yjAj +C)‖2− bT y

with respect to y is given by the vector w ∈ Rp with

w = AT vec(vvT )u− b

where v ∈ Rn is a leading singular vector of the subsampled matrix S = π(s1)(
∑p

j=1 yjAj + C)
formed in algorithm 2 and u ∈ {−1, 1} is the sign of the associated eigenvalue. Furthermore, the
product AT vec(vvT ) can be approximated using algorithm 1 to form an approximate gradient

g = π(s2)(AT ) π(s2)(vec(vvT ))u− b,

which satisfies

E[g] = AT vec(vvT )u− b ∈ ∂f(y) and E[‖g‖22] ≤M2
∗ ≡ 2

‖A‖2F
s2

+ 2‖b‖22. (5)

Proof. Iterated expectations give E[g] = E[w] ∈ ∂f(y). The sampling probabilities qi used in
approximating the matrix vector product AT vec(vvT ) following algorithm 1 are defined as

qi =
‖A(i)‖2|vec(vvT )i|∑n2

j=1 ‖A(j)‖2|vec(vvT )j |
, i = 1, . . . , n2.
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As in [DKM07, Lemma 3], the quadratic variation of the approximate product π(s2)(AT ) π(s2)(vec(vvT ))
is then given by

E[‖π(s2)(AT ) π(s2)(vec(vvT ))‖2F ] =
∑n2

i=1
‖A(i)‖22 vec(vvT )2i

s2qi
.

With qi defined as above, we get

n2∑
i=1

‖A(i)‖22 vec(vvT )2i
s2qi

≤

(∑n2

i=1 ‖A(i)‖2|vec(vvT )i|
)2

s2

≤
‖A‖2F ‖vvT ‖2F

s2

by the Cauchy-Schwarz inequality, because ‖vec(vvT )‖22 = ‖vvT ‖2F = ‖v‖42 = 1, hence the desired
result.

Note that this procedure is not advantageous when ‖AT ‖F � ‖AT ‖2 and s2 is small. We
now use this result to produce an explicit bound on the complexity of solving problems (3) and
(1) by subsampling using a stochastic approximation algorithm. In this section, we let ‖ · ‖ be a
general norm on Rp, we write ‖ · ‖∗ its dual norm and define δ∗(p) as the smallest number such
that ‖y‖2 ≤ δ∗(p)‖y‖∗ for all y ∈ Rp. Following the notation in [JLNS09, §2.3], we let ω(x) be a
distance generating function, i.e. a function such that

Qo =

{
x ∈ Q : ∃y ∈ Rp, x ∈ argmin

u∈Q
[yTu+ ω(u)]

}

is a convex set. We assume that ω(x) is strongly convex on Qo with modulus α with respect to the
norm ‖ · ‖, which means

(y − x)T (∇ω(y)−∇ω(x)) ≥ α‖y − x‖2, x, y ∈ Qo.

We then define a prox-function V (x, y) on Qo ×Q as follows:

V (x, y) ≡ ω(y)− [ω(x) +∇ω(x)T (y − x)],

which is nonnegative and strongly convex with modulus α with respect to the norm ‖ · ‖. The
prox-mapping associated to V is then defined as

PQ,ωx (y) ≡ argmin
z∈Q

{yT (z − x) + V (x, z)}. (6)

Finally, we define the ω diameter of the set Q as:

Dω,Q ≡ (max
z∈Q

ω(z)−min
z∈Q

ω(z))1/2 (7)

and we let γl for l = 0, . . . , N be a step size strategy.
The following results control the convergence of the robust stochastic approximation algorithm 3

(see [JLNS09], [Nes09], [PJ92] or [NY83] for further details). We call ȳ the optimal solution of
problem (3), the lemma below characterizes convergence speed in expectation.

7



Algorithm 3 Spectral norm minimization using subsampling

Input: Matrices Aj ∈ Sn, for j = 1, . . . , p, b ∈ Rp and C ∈ Sn, sampling rates s1 and s2.
1: Pick initial y0 ∈ Q
2: for l = 1 to N do
3: Compute v ∈ Rn, the leading singular vector of the matrix π(s1)(

∑p
j=1 yl,jAj+C), subsampled

according to algorithm 2 with k = 1 and s = s1.
4: Compute the approximate subgradient gl = π(s2)(AT ) π(s2)(vec(vvT )) − b, by subsampling

the matrix product using algorithm 1 and s = s2.
5: Set yl+1 = PQ,ωyl (γlgl).
6: Update the running average ỹN =

∑N
k=0 γlyl/

∑N
k=0 γl.

7: end for
Output: An approximate solution ỹN ∈ Rp of problem (3) with high probability.

Lemma 5 Given N > 0, let M∗ be defined as in (5) by

M2
∗ = 2

‖A‖2F
s2

+ 2‖b‖22,

using a fixed step size strategy with

γl =
Dω,Q

δ∗(p)M∗

√
2

αN
, l = 1, . . . , N

we have, after N iterations of algorithm 3

E[f(ỹN )− f(ȳ)] ≤ Dω,Qδ∗(p)M∗

√
2
αN

and
f(ỹN )− f(ȳ) ≥ ε

with probability less than
Dω,Qδ∗(p)M∗

ε

√
2
αN .

Proof. By construction E[‖g‖2∗] ≤ δ2∗(p)M2
∗ , the rest follows from [JLNS09, §2.3] for example.

Lemma 5 means that we need at most

N =
2D2

ω,Qδ
2
∗(p)M

2
∗

αε2β2

iterations to get an ε solution to problem (3) with confidence at least 1 − β. Typically, the prox
function ω and the norm are chosen according to the geometry of Q, to minimize N . The choice of
norm also affects δ∗(p) and obtaining better bounds on M∗ in (5) for generic norms would further
tighten this complexity estimate.

We now call y∗ the solution to the original (deterministic) spectral norm minimization prob-
lem (1) and bound the suboptimality of ỹN in the (true) problem (1) with high probability.
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Theorem 1 If the sampling rate s1 is set to

s1 = η2

∥∥∥∑p
j=1 y

∗
jAj + C

∥∥∥2
2

ε2
NumRank

(∑p
j=1 y

∗
jAj + C

)2
(8)

then after

N =
2D2

ω,Qδ
2
∗(p)M

2
∗

αε2β2
(9)

iterations of algorithm 3, we have∥∥∥∥∥∥
p∑
j=1

ỹN,jAj + C

∥∥∥∥∥∥
2

− bT ỹN −

∥∥∥∥∥∥
p∑
j=1

y∗jAj + C

∥∥∥∥∥∥
2

+ bT y∗ ≤ 2ε

with probability at least 1− β.

Proof. Recall that we have written y∗ the solution to the original (deterministic) problem (1),
ȳ the solution to the approximate (stochastic) problem (3) and ỹN the N -th iterate of algorithm 3
above. Lemma 5 on the convergence of ỹN to the solution of the stochastic problem in (3) means

f(ỹN )− f(ȳ) ≤ ε

with probability at least 1− β. By definition, ȳ minimizes the stochastic problem, so in particular
f(ȳ) ≤ f(y∗), with f the objective value of the stochastic problem, so we have in fact

f(ỹN )− f(y∗) ≤ ε. (10)

with probability at least 1 − β. Now, with s1 defined as above, Lemma 3 on the quality of the
subsampling approximation to ‖.‖2 shows that if the sampling rate is set as in (8) then

E
[∣∣∣∥∥∥∑p

j=1 y
∗
jAj + C

∥∥∥
2
−
∥∥∥π(s) (∑p

j=1 y
∗
jAj + C

)∥∥∥
2

∣∣∣] ≤ ε
and Jensen’s inequality yields∣∣∣∥∥∥(∑p

j=1 y
∗
jAj + C

)∥∥∥
2
− bT y∗ − f(y∗)

∣∣∣ ≤ ε.
which bounds the difference between the minimum of the (true) problem in (1) and the value f(y∗)
of its stochastic approximation in (3), combining this with inequality (10) we finally get that

f(ỹN )−
∥∥∥(∑p

j=1 y
∗
jAj + C

)∥∥∥
2

+ bT y∗ ≤ 2ε.

with probability at least 1 − β. Applying Jensen’s inequality to ‖ · ‖2, using the fact that the
subsampling procedure is unbiased, i.e. E[π(s)(X)] = X for any X ∈ Sn, shows that∥∥∥∥∥∥

p∑
j=1

ỹN,jAj + C

∥∥∥∥∥∥
2

− bT ỹN =
∥∥∥E [π(s) (∑p

j=1 ỹN,jAj + C
)]∥∥∥

2
− bT ỹN,j

≤ E
[∥∥∥π(s) (∑p

j=1 ỹN,jAj + C
)∥∥∥

2

]
− bT ỹN,j

= f(ỹN )
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where the expectation is taken w.r.t. the sampling probability. Hence

f(ỹN )−
∥∥∥(∑p

j=1 y
∗
jAj + C

)∥∥∥
2

+ bT y∗ ≤ 2ε.

implies ∥∥∥∥∥∥
p∑
j=1

ỹN,jAj + C

∥∥∥∥∥∥
2

− bT ỹN −

∥∥∥∥∥∥
p∑
j=1

y∗jAj + C

∥∥∥∥∥∥
2

+ bT y∗ ≤ 2ε

which is the desired result.

This result allows us to bound the oracle complexity of solving (1) by subsampling. In practice
of course, both the spectral norm and the numerical rank of the solution matrix

∑p
j=1 y

∗
jAj + C

are unknown and guarantees of successful termination (with high probability) depend on the type
of stopping criterion available. Given an exact stopping criterion certifying that y ∈ Rp is optimal
(e.g. a target objective value), we can search for the minimum sampling rate in (8) by e.g. starting
from a low target and doubling the sampling rate until we obtain an optimal solution. On the other
hand, if an exact stopping criterion is not available and a more conservative stopping condition is
used (e.g. the surrogate duality gap detailed in §3.3) it is possible for the algorithm to become
more expensive than standard subgradient techniques. These two scenarios are detailed below.

• Exact stopping criterion. We assume here that we have a reasonably efficient test for
the optimality of the current iterate ỹN , e.g. a specific target for the objective value below
which the optimization procedure can be stopped. In this case, even if we have no a priori
knowledge of the rank of the solution matrix, we can search for it, starting with a low guess.
The simple lemma below explicitly summarizes the complexity of this procedure.

Lemma 6 Suppose we start from a sampling rate s = 1 and run algorithm 3 repeatedly,
doubling the sampling rate until the stopping criterion certifies the solution is optimal. Then,
with probability at least 1− dlog2(s1)eβ, algorithm 3 needs to be run at most

dlog2(s1)e

times, where s1 is given in (8), before finding an optimal solution to (1).

Proof. Starting from s = 1, we simply need to double the sampling rate at most dlog2(s1)e
before it becomes larger than s1. At the sampling rate s = s1, algorithm 3 will produce an
optimal solution with prob. 1− β.

In this scenario, Lemma 5 shows that the number of iterations required to reach a target
precision ε with confidence greater than 1− βdlog2(s1)e grows as

N total = O

(
dlog2(s1)eD2

ω,Qδ
∗(p)2

(
‖A‖2F /s2 + ‖b‖22

)
αε2β2

)
(11)

where s1 is given in (8), and the cost of each iteration is detailed in §3.2 below and the overall
complexity of the method is summarized in Table 1. In fact, we will see in §3.2 that the

10



complexity of each iteration is dominated by a term O(sn log n), where s is the sampling rate,
and because

dlog2(s1)e∑
i=1

2i ≤ 2dlog2(s1)e+1 ≤ 4s1

we then observe that searching for the minimal sampling rate by repeatedly solving (3) for
increasing sampling rates will be less than four times as expensive as solving the problem in
the oracle case.

• Conservative stopping criterion. Typically, producing a conservative stopping oracle
means computing a surrogate duality gap and we will show in §3.3 how this can be done
efficiently in some examples. In this case however, it is possible for a conservative stopping
criterion to repeatedly fail to detect optimality when searching for the sampling rate s1.
The complexity of the subsampling algorithm can then become larger than that of the basic
subgradient method.

To summarize, when an exact stopping criterion is available, the complexity of finding an optimal
solution is equivalent to that of the oracle complexity described in Theorem 1 and the total number
of iterations is bounded by (11). However, when only a conservative stopping condition is available,
the algorithm can become more expensive than the classical subgradient method. Note that this
early stopping issue is shared by many first-order algorithms, as the theoretical upper bounds
available for most first-order methods are usually overly conservative, often by one or two orders
of magnitude [Nes07, §6]. In these cases too, a conservative stopping criterion is often used to stop
the algorithm early. The next section provides a detailed analysis of the complexity of an iteration
of algorithm 3 as a function of ε, s1 and s2 and the problem data.

3.2 Complexity

We now study in detail the complexity of algorithm 3. Suppose we are given a precision target ε
and fix the sampling rate s2 arbitrarily between 1 and n2, with the sampling rate s1 set as in
Theorem 1. The cost of each iteration in algorithm 3 breaks down as follows.

• On line 3: Computing the leading singular vector v, using algorithm 2 with k = 1. This
means first forming the matrix (

∑p
j=1 yl,jAj +C) and computing the probabilities qi at a cost

of O(n2) operations. Forming the matrix S = π(s1)(
∑p

j=1 yl,jAj+C) costs O(ns1) operations.
It remains to compute the leading singular vector of S using the Lanczos method at a cost of
O(s1n log n) (cf. §5.1 for details). The total numerical cost of this step is then bounded by
c1n

2 + c2ns1 where c1 and c2 are absolute constants. Here, c1 is always less than ten while c2
is the number of iterations required by the Lanczos method to reach a fixed precision target
(typically 1e-8 or better here) hence we have c1 � c2.

• On line 4: Computing the approximate subgradient

gl = π(s2)(AT ) π(s2)(vec(vvT ))− b,

by subsampling the matrix product using algorithm 1. This means again forming the vector
q at a cost of O(n2) (the row norms of A can be precomputed). Computing the subsampled
matrix vector product then costs O(ps2). Both of these complexity bounds have low constants.
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• On line 5: Computing the projection yl+1 = PQ,ωyl (γlgl), whose numerical cost will be denoted
by c(p).

Let us remark in particular that all O(n2) operations above only require one pass over the data,
which means that the entire data set does not need to fit in memory. Using the bound on the
quadratic variation of the gradient computed in Lemma 4, we can then bound the number of
iterations required by algorithm 3 to produce a ε-solution to problem (1) with probability at least
1− β. Let us call Y ∗ =

∑p
j=1 y

∗
jAj + C, and recall that η = 1 +

√
8 log(1/β), Table 1 summarizes

these complexity bounds and compares them with complexity bounds for a stochastic approximation
algorithm without subsampling.

Complexity Stoch. Approx. Stoch. Approx. with Subsampling

Per Iter. c4n
2p+ c(p) c2n log n η2

‖Y ∗‖22
ε2

NumRank(Y ∗)2

+c1n
2 + c3ps2 + c(p)

Num. Iter.
2D2

ω,Qδ
∗(p)2(‖AT ‖22+‖b‖22)

αε2β2

2D2
ω,Qδ

∗(p)2(‖A‖2F /s2+‖b‖
2
2)

αε2β2

Table 1: Complexity of solving problem (1) using subsampled stochastic approximation
method versus original algorithm. Here c1, . . . , c4 are absolute constants with c1, c3 � c2, c4.

We observe that subsampling affects the complexity of solving problem (1) in two ways. De-
creasing the (matrix product) subsampling rate s2 ∈ [1, n2] decreases the cost of each iterations
but increases the number of iterations in the same proportion, hence has no explicit effect on the
total complexity bound. In practice of course, because of higher cache memory speed and better
bandwidth on smaller problems, cheaper iterations tend to run more efficiently than more com-
plex ones. Note that the second subsampling step detailed in Lemma 4 is not advantageous when
‖AT ‖F � ‖AT ‖2. When this second subsampling step is skipped the term

(
‖A‖2F /s2 + ‖b‖22

)
is

replaced by
(
‖AT ‖22 + ‖b‖22

)
in the bound on the number of iterations, and the term c3ps2 becomes

c3pn
2 (or less if the matrices are structured).

The impact of the (singular vector) subsampling rate s1 ∈ [1, n] is much more important how-
ever, since computing the leading eigenvector of the current iterate is the most complex step in
the algorithm when solving problem (1) using stochastic approximation. Because c1, c3 � c2, the
complexity per iteration of solving large-scale problems essentially follows

n log n η2
‖Y ∗‖22
ε2

NumRank(Y ∗)2

hence explicitly depends on both the numerical rank of the solution matrix Y ∗ =
∑p

j=1 y
∗
jAj + C

and on the relative precision target ε/‖Y ∗‖2. This means that problems with simpler solutions will
be solved more efficiently than problems whose solutions has a high rank.

The choice of norm ‖·‖ and distance generating function also has a direct impact on complexity
through c(p) and δ∗(p)M∗. Unfortunately here, subsampling error bounds are only available in the
Frobenius and spectral norms hence part of the benefit of choosing optimal norm/distance gener-
ating function combinations is sometimes lost in the norm ratio bound δ∗(p). However, choosing a
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norm/prox function combination according to the geometry of Q can still improve the complexity
bound compared to a purely Euclidean setting.

Finally, subsampling could have a more subtle effect on complexity. By construction, solutions
to problem (1) tend to have multiple leading singular values which coalesce near the optimum. In-
troducing noise by subsampling can potentially break this degeneracy and increase the gap between
leading eigenvalues. Since the complexity of the algorithm depends in great part on the complex-
ity of computing a leading singular vector using iterative methods such as the power method or
the Lanczos method (cf. Appendix), and the complexity of these methods decreases as the gap
between the two leading singular values increases, subsampling can also improve the efficiency of
iterative singular value computations. However, outside of simple perturbative regimes, not much
is understood at this point about the effect of subsampling on the spectral gap.

3.3 Surrogate Duality Gap

In practice, we often have no a priori knowledge of NumRank(Y ∗)2 and if the sampling rate s
is set too low, it’s possible for the algorithm to terminate at a suboptimal point Y where the
subsampling error is less than ε (if the error at the true optimal point Y ∗ is much larger than ε). In
order to search for the optimal sampling rate s as in Lemma 6, we first need to check for optimality
in (1) and we now show how to track convergence in algorithm 3 by computing a surrogate duality
gap, at a cost roughly equivalent to that of computing a subgradient. The dual of problem (1) is
written

maximize Tr(CX)− SQ(w)
subject to wj = bj −Tr(AjX), j = 1, . . . , p

‖X‖tr ≤ 1,
(12)

in the variables X ∈ Sn and w ∈ Rp, where SQ(v) is the support function of the set Q, defined as

SQ(w) ≡ max
y∈Q

wT y.

For instance, when Q is an Euclidean ball of radius B, problem (12) becomes

maximize Tr(CX)−B‖w‖2
subject to wj = bj −Tr(AjX), j = 1, . . . , p

‖X‖tr ≤ 1,
(13)

in the variables X ∈ Sn and w ∈ Rp. The leading singular vector v in algorithm 3 always satisfies
‖vvT ‖tr ≤ 1, hence we can track convergence in solving (1) by computing the following surrogate
duality gap ∥∥∥∥∥∥

p∑
j=1

yjAj + C

∥∥∥∥∥∥
2

− bT y − vTCv + SQ(w) (14)

where wj = bj − vTAjv for j = 1, . . . , p.

3.4 Minimizing the sum of the k largest singular values

Motivated by applications in statistical learning, we now discuss direct extensions of the results
above to the problem of minimizing the sum of the k largest singular values of an affine combination
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of matrices, written

min
y∈Q

k∑
i=1

σi

(∑p
j=1 yjAj + C

)
− bT y (15)

in the variable y ∈ Rp, with parameters Aj ∈ Sn, for j = 1, . . . , p, b ∈ Rp and C ∈ Sn. As in the
previous section, we also form its stochastic approximation

min
y∈Q

f(y) ≡ E
[∑k

i=1 σi

(
π(s)

(∑p
j=1 yjAj + C

))]
− bT y (16)

in the variable y ∈ Rp, with 1 ≤ s ≤ n controlling the sampling rate. We now prove an analog of
Lemma 3 for this new objective function.

Lemma 7 Let X ∈ Rm×n and β ∈ [0, 1]. Given a precision target ε > 0, k ≥ 1 and a matrix
S ∈ Rm×s constructed by subsampling the columns of X as in algorithm 2, let η = 1 +

√
8 log(1/β)

and

s = η2
(
∑k

i=1 σi(X))2

ε2
NumRank(X)2

k2
κ(X)4Rank(X) (17)

where κ(X) = σ1(X)/σr(X) with r = min {k,Rank(X)}, we have

E
[∑k

i=1 |σi(X)− σi(S)|
]
≤ ε

and
k∑
i=1

|σi(X)− σi(S)| ≤ ε

with probability at least 1− β.

Proof. Because Rank(SST ) ≤ Rank(XXT ) by construction, we always have

k∑
i=1

∣∣σ2i (X)− σ2i (S)
∣∣ =

k∑
i=1

|σi(X)− σi(S)| (σi(X) + σi(S))

≥ σr(X)
k∑
i=1

|σi(X)− σi(S)|

where r = min {k,Rank(X)}. Because the sum of the k largest singular values is a unitarily
invariant norm on Sn (see [HJ91, §3.4]), Mirsky’s theorem (see [SS90, Th. 4.11] for example) shows
that

k∑
i=1

∣∣σ2i (X)− σ2i (S)
∣∣ =

k∑
i=1

∣∣σi(XXT )− σi(SST )
∣∣

≤
k∑
i=1

σi(XX
T − SST )
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and because, by construction, the range of SST is included in the range of XXT , we must have
Rank(XXT − SST ) ≤ Rank(XXT ) and

k∑
i=1

σi(XX
T − SST ) ≤

√
Rank(X) ‖XXT − SST ‖F

Jensen’s inequality together with the matrix multiplication result in Lemma 1 yield

E[‖SST −XXT ‖F ] ≤
‖X‖2F√

s

and

‖SST −XXT ‖F ≤
η‖X‖2F√

s

with probability at least 1− β. Combining these inequalities with the sampling rate in (17)

s = η2
‖X‖4F Rank(X)

ε2σr(X)2

and using
‖X‖4F

(
∑k

i=1 σi(X))2σr(X)2
≤ NumRank(X)2

k2
κ(X)4

yields the desired result.

Once again, the subsampling rate in the above lemma has a clear interpretation,

s1 = η2
(
∑k

i=1 σi(X))2

ε2
NumRank(X)2

k2
κ(X)4Rank(X)

is the product of a term representing relative precision, a term reflecting the rank of X and a term
in κ(X) representing its (pseudo) condition number. Note that the bound can be further refined
when σr ≤ ε. Lemma 7 allows us to compute the gradient by subsampling when using algorithm 3
to solve problem (15). The remaining steps in the algorithm are identical, except that the matrix
vvT is replaced by a combination of matrices formed using the k leading singular vectors, with
Frobenius norm

√
k. The cost of each iteration is dominated by the term

c2ks1m log n + c1nm+ c3ps2 + c(p)

with s1 defined above, and the total number of iterations growing as

2D2
ω,Qδ

∗(p)2
(
k‖A‖2F /s2 + ‖b‖22

)
αε2β2

.

When ‖AT ‖F � ‖AT ‖2 and s2 is small, the second subsampling step detailed in Lemma 4 is
skipped and the cost per iteration becomes

c2ks1m log n + c1nm+ c3pmn+ c(p)

and the total number of iterations grows as

2D2
ω,Qδ

∗(p)2
(
k‖AT ‖22 + ‖b‖22

)
αε2β2

because M2
∗ ≤ 2

(
k‖AT ‖22 + ‖b‖22

)
in this case.
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4 Applications & numerical results

In this section, we first detail a few instances of problem (1) arising in statistical learning. We then
study the numerical performance of the methods detailed here on large scale problems.

4.1 Spectral norm minimization

For a given matrix A ∈ Sn, we begin by studying a simple instance of problem (1) written

minimize ‖A+ U‖2
subject to |Uij | ≤ ρ, i, j = 1, . . . , n

(18)

in the matrix U ∈ Sn. This problem is closely related to a relaxation for sparse PCA (see
[dEGJL07]) and we use it in the next section to test the numerical performance of algorithm 3.
The complexity of the main step in the algorithm (i.e. computing the gradient) is controlled by
the sampling rate in Lemma 3, which is written

s1 = η2
‖A+ U∗‖22

ε2
NumRank(A+ U∗)2

where U∗ ∈ Sn is the optimal solution to problem (18). The prox function used here is the square
Euclidean norm, and the prox-mapping is then a simple Euclidean projection on the box [−ρ, ρ]n

2
.

The cost of each iteration is then dominated by the term

c2s1n log n + (c1 + c3 + 1)n2.

with s1 defined above, and the total number of iterations grows as

4dlog2(s1)en2ρ2

ε2β2
,

because the gradient always has norm one in this problem and the second subsampling step in
Lemma 4 is not beneficial.

4.2 Matrix factorization and collaborative filtering

Matrix factorization methods have been heavily used to solve collaborative filtering problems (e.g.
the Netflix problem) and we refer the reader to [Sre04], [Bac07], [RFP07] or [CR08] for details.
[Sre04] focuses on the following problem instance

minimize ‖X‖tr + c
∑

(i,j)∈S

max(0, 1−XijMij) (19)

in the variable X ∈ Rm×n, where M is a sparse matrix of ratings, S is the set of known ratings
(typically small), and c > 0 is a parameter controlling the rank versus accuracy tradeoff. Here,
the trace norm can be understood as a convex lower bound on the rank function (as in [FHB01])
but sometimes also has a direct interpretation in terms of learning (see [Sre04]). The dual of this
problem is written

maximize
∑

ij Yij
subject to ‖Y ◦M‖2 ≤ 1

0 ≤ Yij ≤ c
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in the variable Y ∈ Rn×m, where Y ◦ M is the Schur (componentwise) product of Y and M .
Because M is usually sparse, this problem is typically sparse too (i.e. most of the coefficients of Y
can be set to c). This last problem is equivalent to

minimize ‖Y ◦M‖2
subject to

∑
ij Yij = 1

0 ≤ Yij ≤ d

for some d > 0, which is a particular instance of (1). In the numerical experiments that follow, we
focus on a simpler formulation of (15) written

minimize
∑k

i=1 σi(X)
subject to Xij = Mij , (i, j) ∈ S

|Xij | ≤ B
(20)

in the variable X ∈ Rm×n, for some k ∈ [1, n] and B > 0, which is also a particular instance
of problem (15). We assume n ≥ m. This replaces the hinge-loss penalty in problem (19) with
equality constraints. The classic trace heuristic uses ‖X‖tr instead of

∑k
i=1 σi(X) but we will see

in what follows that minimizing the later term also tends to produce low rank solutions.
In this particular case, the complexity of the main step in the algorithm (i.e. computing the

gradient) is controlled by the sampling rate in Lemma 7, which can be simplified here to

s1 = η2
‖Y ∗‖2tr
ε2

κ(Y ∗)2Rank(Y ∗)

where Y ∗ =
∑p

j=1 y
∗
jAj + C and κ(Y ∗) = σ1(Y

∗)/σr(Y
∗) with r = Rank(Y ∗). The prox function

used here is the square Euclidean norm, and the prox-mapping is then a simple Euclidean projection
on the box [−B,B]m×n for the coefficients whose rating is not given. As in (3.4), the cost of each
iteration is dominated by the term

c2s1m log n + (c1 + c3 + 1)nm.

with s1 defined above, and the total number of iterations growing as

4dlog2(s1)enmB2k

ε2β2
,

because the gradient has Frobenius norm
√
k in this case. This bound can be further refined

when σr ≤ ε. In practice, the complexity of solving problem (20) can often be further reduced
using the simple observation that an optimal solution of (15) will also be optimal in (20) whenever
Rank(Y ∗k ) < k, where Y ∗k is the optimal solution to (15) here. Once again, the sampling rate
s has a natural interpretation as the product of a relative precision term, a term reflecting the
condition number of the solution and the rank of the optimal solution. It means in particular that
problems whose solutions have a lower rank are explicitly easier to solve than problems with more
complex (higher rank) solutions. Of course, much faster specialized algorithms are available for
this problem, but those methods that exploit the fact that the solution is low-rank (like alternating
minimization) are non-convex.
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4.3 Numerical experiments

In this section, we test the quality of the subsampling approximations detailed in Section 2 on
various matrices. We also evaluate the performance of the algorithms detailed above on large scale
problem instances. Numerical code reproducing these experiments is available from the author’s
webpage.

Randomized low-rank approximations. Here, we first measure the quality of the randomized
low-rank matrix approximation on both randomly generated matrices and on covariance matrices
formed using gene expression data. Because the spectrum of naive large scale random matrices
is very structured, these examples are too simple to appropriately benchmark numerical error in
algorithm 2. Fortunately, as we will see below, generating random symmetric matrices with a given
spectral measure is straightforward.

SupposeX ∈ Sn is a matrix with normally distributed coefficients, Xij ∼ N (0, 1), i, j = 1, . . . , n.
If we write its QR decomposition, X = QR with Q, R ∈ Rn×n, then the orthogonal matrix Q
is Haar distributed on the orthogonal group On (see [Dia03] for example). This means that to
generate a random matrix with given spectrum µ ∈ Rn, we generate a normally distributed matrix
X, compute its QR decomposition and the matrix Qdiag(µ)QT will be uniformly distributed on the
set of symmetric matrices with spectrum µ. Because the spectral measure of “natural” covariance
matrices often follows a power law (Tracy-Widom in the Gaussian case, see [Joh01] and [EK07] for
a discussion), we sample the spectrum µ from a beta distribution with various exponents to get
realistic random matrices with a broad range of numerical ranks. We also use a covariance matrix
formed using the gene expression data set in [ABN+99].

In Figure 1, we plot relative error ε/‖X‖2 against the numerical rank NumRank(X) in loglog
scale with 20% subsampling and n = 500 on random matrices generated as above and on the gene ex-
pression covariance from [ABN+99]. We notice that, on these experiments, the relative error grows
at most linearly with the numerical rank of the matrix, as predicted by Lemma 3. We then plot the
histogram in semilog scale of relative error ε/‖X‖2 over theoretical bound ηNumRank(X)/

√
s

for random matrices with n = 500. In Figure 2, we plot relative error ε/‖X‖2 versus sampling rate
s, in loglog scale, for a gene expression covariance with n = 500. Once gain, the error decreases
as 1/

√
s as predicted by Lemma 3. We also plot the median speedup factor (over ten runs) in

computing largest magnitude eigenvalues using ARPACK with and without subsampling on a gene
expression covariance matrix with n = 2000, for various values of the sampling ratio s/n. Note
that both exact and subsampled eigenvalues are computed using direct MEX calls to ARPACK
by [LSY98], as eigs (MATLAB’s interface to ARPACK) carries a massive overhead. In all the
experiments above, the confidence level used in computing η was set to 99%.

Stochastic approximation with subsampling. In Figure 3, we generate a sample ratings
matrix X = V V T for the collaborative filtering problem (20) in §4.2, where V is a discrete feature
matrix V ∈ [0, 4]n×3, with n = 100. We “observe” only 30% of the coefficients in V and solve
problem (20) with k = 4 and B = 10 to approximately reconstruct the full ratings matrix. We
plot objective value versus CPU time in seconds for this sample matrix factorization problem,
using a stochastic approximation algorithm with deterministic gradient or the subsampled gradient
algorithm 3 with subsampling ratio s1/n set at 20%. We also plot surrogate duality gap versus
CPU time on the same example. We notice that while the subsampled algorithm converges much
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Figure 1: Left: Loglog plot of relative error ε/‖X‖2 versus numerical rank NumRank(X)
with 20% subsampling and n = 500 on random matrices (blue dots) and gene expression
covariance (red square). The dashed line has slope one in loglog scale. Right: Histogram
plot in semilog scale of relative error ε/‖X‖2 over theoretical bound ηNumRank(X)/

√
s

for random matrices with n = 500.
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Figure 2: Left: Loglog plot of relative error ε/‖X‖2 versus sampling rate s for a gene
expression covariance with n = 500. The dashed line has slope -1/2 in loglog scale. Right:
Plot of median speedup factor in computing largest magnitude eigenvalue, using ARPACK
with and without subsampling on a gene expression covariance matrix with n = 2000, for
various values of the sampling ratio s/n.
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Figure 3: Left: Objective value versus CPU for a sample matrix factorization problem
in dimension 100, using a deterministic gradient (squares) or a subsampled gradient with
subsampling rate set at 20% (circles). Right: Surrogate duality gap versus CPU time on
the same example.

faster than the deterministic one, the quality of the surrogate dual points and duality gap produced
using subsampled gradients as in §3.3 is worst than in the deterministic case.

In Table 2, using the same 20% sampling rate we compare CPU time versus problem dimension
n for subsampled and deterministic algorithms when solving the following instance of problem (1)

minimize ‖C +X‖2
subject to ‖X‖∞ ≤ ρ

in the variable X ∈ Sn where C is a covariance matrix constructed using the n variables in the gene
expression data set of [ABN+99] with maximum variance, for various values of n, and ρ = 1/2. We
run 200 iterations of the deterministic algorithm and run the stochastic algorithm until it reaches
the best value found by the deterministic method. Finally, using random ratings data generated
as above, we solve sample collaborative filtering solve problems (20) with k = 4 and B = 10 for
ratings matrix of various dimensions n. We run 5000 iterations of the deterministic algorithm and
run the stochastic algorithm until it reaches the best value found by the deterministic method.

Of course, specialized software packages solve much larger problems and this example is only
here to illustrate the potential speedup. We report median CPU time over ten sample problems
in Table 3. Here, subsampling speeds up the algorithm by an order of magnitude, however the
stochastic approximation algorithm is still not competitive with (non convex) local minimization
techniques over low rank matrices.
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n Deterministic Subsampling Speedup factor

500 5 5 0.92
750 19 13 1.40

1000 32 24 1.31
1500 107 58 1.84
2000 281 120 2.34

Table 2: CPU time (in seconds) versus problem dimension n for deterministic and sub-
sampled stochastic approximation algorithms on spectral norm minimization problems.

n Deterministic Subsampling Speedup factor

100 154 23 6.67
200 766 63 12.2
500 4290 338 12.7

Table 3: Median CPU time (in seconds) versus problem dimension n for deterministic and
subsampled stochastic approximation algorithms on collaborative filtering problems.

5 Appendix

The complexity results detailed above heavily rely on the fact that extracting one leading eigen-
vector of a symmetric matrix X ∈ Sn can be done by computing a few matrix vector products.
While this simple fact is easy to prove using the power method when the eigenvalues of X are well
separated, the problem becomes significantly more delicate when the spectrum of X is clustered.
The section that follows briefly summarizes how modern numerical methods solve this problem in
practice.

5.1 Computing one leading eigenvector of a symmetric matrix

We start by recalling how packages such as LAPACK [ABB+99] form a full eigenvalue (or Schur)
decomposition of a symmetric matrix X ∈ Sn. The algorithm is strikingly stable and, despite its
O(n3) complexity, often competitive with more advanced techniques when the matrix X is small.
We then discuss the problem of approximating one leading eigenpair of X using Krylov subspace
methods with complexity growing as O(n2 log n) with the dimension (or less when the matrix is
structured).

Full eigenvalue decomposition. Full eigenvalue decompositions are computed by first reducing
the matrix X to symmetric tridiagonal form using Householder transformations, then diagonalizing
the tridiagonal factor using iterative techniques such as the QR or divide and conquer methods for
example (see [Ste01, Chap. 3] for an overview). The classical QR algorithm (see [GVL90, §8.3])
implicitly relied on power iterations to compute the eigenvalues and eigenvectors of a symmetric
tridiagonal matrix with complexity O(n3), however more recent methods such as the MRRR al-
gorithm by [DP03] solve this problem with complexity O(n2). Starting with the third version of
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LAPACK, the MRRR method is part of the default routine for diagonalizing a symmetric matrix
and is implemented in the STEGR driver (see [DPV06]).

Overall, the complexity of forming a full Schur decomposition of a symmetric matrix X ∈ Sn
is then 4n3/3 flops for the Householder tridiagonalization, followed by O(n2) flops for the Schur
decomposition of the tridiagonal matrix using the MRRR algorithm.

Computing one leading eigenpair. We now give a brief overview of the complexity of com-
puting leading eigenpairs using Krylov subspace methods and we refer the reader to [Ste01, §4.3],
[GVL90, §8.3, §9.1.1] or [Saa92] for a more complete discussion. Let u ∈ Rn be a given vector, we
form the following Krylov sequence {

u,Xu,X2u, . . . ,Xku
}

by computing k matrix vector products. If we call Kk(X,u) the subspace generated by these vectors
and write X =

∑n
i=1 λixix

T
i a spectral decomposition of X, assuming, for now, that

λ1 > λ2 ≥ . . . ≥ λn,

one can show using Chebyshev polynomials (see e.g. [Ste01, §4.3.2] for details) that

tan∠ (x1,Kk(X,u)) .
tan∠(x1, u)(

1 + 2
√
η + η2

)k−1 where η =
λ1 − λ2
λ2 − λn

,

in other words, after a few iterations, Krylov subspaces contain excellent approximations of leading
eigenpairs of X.

This result is exploited by the Lanczos procedure to extract approximate eigenpairs of X called
Ritz pairs (see [GVL90, Chap. 9] or [Ste01, §5.1.2] for a complete discussion). In practice, the
matrix formed by the Krylov sequence is very ill-conditioned (as Xku gets increasingly close to the
leading eigenvector) so the Lanczos algorithm simultaneously updates an orthogonormal basis for
Kk(X,u) and a partial tridiagonalization of X. The Lanczos procedure is described in Algorithm 4
and requires k matrix vector products and an additional 4nk flops. Note that the only way in which
the data in X is accessed is through the matrix vector products Xuj .

In theory, one could then diagonalize the matrix Tk (which costs O(k2) using the MRRR al-
gorithm as we have seen above) to produce Ritz vectors. In practice, key numerical difficulties
often arise. First, finite precision arithmetics cause a significant loss of orthogonality in Uk. This
is remedied by various reorthogonalization strategies (cf. [Ste01, §5.3.1]). A more serious problem
is clustered or multiple eigenvalues in the spectrum periphery. In fact, it is easy to see that Krylov
subspace methods cannot isolate multiple eigenvalues. Assume that the leading eigenvalue has
multiplicity two for example, we then have

Aku = ((xT1 u)x1 + (xT2 u)x2)λ
k
1 + (xT3 u)x3λ

k
3 + . . .+ (xTnu)xnλ

k
n

and everything happens as if the eigenvalue λ1 was simple and the matrix X had a larger nullspace.
This is not a problem in the optimization problems discussed in this paper, since we need only one
eigenvector in the leading invariant subspace, not the entire eigenspace.

Clustered eigenvalues (i.e. a small gap between the leading eigenvalue and the next one, not
counting multiplicities) are much more problematic. The convergence of Ritz vectors cannot be
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Algorithm 4 Lanczos decomposition.

Input: Matrices X ∈ Sn and initial vector u1 ∈ Rn.
1: Set u0 = 0 and β0 = 0.
2: for j = 1 to k do
3: Compute v = Xuj .
4: Set αj = uTj v.
5: Update v = v − αjuj − βj−1uj−1.
6: Set βj = ‖v‖2.
7: Set uj+1 = v/βj .
8: end for

Output: A Lanczos decomposition

XUk = UkTk + βkuk+1e
T
k ,

where Uk ∈ Rn×k is orthogonal and Tk ∈ Sk is symmetric tridiagonal.

established by the classical Chebyshev bounds described above, and various references provide a
more refined analysis of this scenario (see [PSS82], [VdSVdV87], [KW92] among others). Success-
ful termination of a deterministic Lanczos method can never be guaranteed anyway, since in the
extreme case where the starting vector is orthogonal to the leading eigenspace, the Krylov subspace
contains no information about leading eigenpairs. In practice, Lanczos solvers use random initial
points. In particular, [KW92, Th.4.2] show that, for any matrix X ∈ Sn (including matrices with
clustered spectrum), starting the algorithm at a random u1 picked uniformly over the sphere means
the Lanczos decomposition will produce a leading Ritz pair with relative precision ε in

kLan ≤ log(n/δ2)

4
√
ε

iterations, with probability at least 1 − δ. This is of course a highly conservative bound and in
particular, the worst case matrices used to prove it vary with kLan.

This means that computing one leading eigenpair of the matrix X requires computing at most
kLan matrix vector products (we can always restart the code in case of failure) plus 4nkLan flops.
When the matrix is dense, each matrix vector product costs n2 flops, hence the total cost of
computing one leading eigenpair of X is

O

(
n2 log(n/δ2)

4
√
ε

)
flops. When the matrix is sparse, the cost of each matrix vector product is O(s) instead of O(n2),
where s is the number of nonzero coefficients in X. Idem when the matrix X has rank r < n and an
explicit factorization is known (which is the case in the algorithms detailed in the previous section),
in which case each matrix vector product costs O(nr) which is the cost of two n by r matrix vector
products, and the complexity of the Lanczos procedure decreases accordingly.

The numerical package ARPACK by [LSY98] implements the Lanczos procedure with a reverse
communication interface allowing the user to efficiently compute the matrix vector product Xuj .
However, it uses the implicitly shifted QR method instead of the more efficient MRRR algorithm
to compute the Ritz pairs of the matrix Tk ∈ Sk.
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5.2 Other sampling techniques

For completeness, we recall below another subsampling procedure in [AM07]. More recent “volume
sampling” techniques produce improved error bounds (some with multiplicative error bounds) but
the corresponding optimal sampling probabilities are much harder to compute, we refer the reader
to [KV09] for more details. The key idea behind this result is that, as the matrix dimension n
grows and given a fixed, scale invariant precision target ‖X‖F /ε, the norm ‖X‖∞ of individual
coefficients in X typically becomes negligible and we can randomly discard the majority of them
while keeping important spectral features of X mostly intact.

Lemma 8 Given X ∈ Sn and ε > 0, we define a subsampled matrix S whose coefficients are
independently distributed as:

Sij =

{
Xij/p with probability p,

0 otherwise.
(21)

when i ≥ j, and Sij = Sji otherwise. Assume that 1 ≥ p ≥ (8 log n)4/n, then

‖X − S‖2 ≤ 4‖X‖∞
√
n/p.

with probability at least 1− exp(−19(log n)4).

Proof. See [AM07, Th. 1.4].

At first sight here, bounding the approximation error means letting the probability p grow
relatively fast as n tends to infinity. However, because ‖X‖∞/ε is typically much smaller than
‖X‖F /ε, this subsampling ratio p can often be controlled. Adaptive subsampling, i.e. letting p
vary with the magnitude of the coefficients in X, can further improve these results (see [AM07, §4]
for details). The average number of nonzero coefficients in the subsampled matrix can be bounded
using the structure of X. Note that the constants in this result are all very large (in particular,
1 ≥ p ≥ (8 log n)4/n implies n ≥ 109) so despite its good empirical performance in low dimensions,
the result presented above has to be understood in an asymptotic sense.
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