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Introduction

Complexity.

In the course. . .

� Randomness helps. Getting a solution with a small probability of failure is
often much easier than solving the problem exactly.

� Random instances of some optimization problems are easier to solve.

Today. . .

� Focus on convexity and its impact on complexity.

� Convex approximations, duality.

� Applications in learning.
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Introduction

In optimization.

Twenty years ago. . .

� Solve realistic large-scale problems using naive algorithms.

� Solve small, naive problems using serious algorithms.

Twenty years later. . .

� Solve realistic problems in e.g. statistics, signal processing, using efficient
algorithms with explicit complexity bounds.

� Statisticians have started to care about complexity.

� Optimizers have started to care about statistics.
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Introduction

Convexity.

Convex Not convex

Key message from complexity theory: as the problem dimension gets large

� all convex problems are easy,

� most nonconvex problems are hard.
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Introduction

Convex problem.

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

f0, f1, . . . , fm are convex functions, the equality constraints are all affine.

� Strong assumption, yet surprisingly expressive.

� Good convex approximations of nonconvex problems.
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Introduction

First-order condition. Differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) +∇f(x)T (y − x)

First-order approximation of f is global underestimator
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Ellipsoid method

Ellipsoid method. Developed in 70s by Shor, Nemirovski and Yudin.

� Function f : Rn → R convex (and for now, differentiable)

� problem: minimize f

� oracle model: for any x we can evaluate f and ∇f(x) (at some cost)

∇f(x0)

x0

level curves of f

∇f(x0)
T (x − x0) ≥ 0

By evaluating ∇f we rule out a halfspace in our search for x?.
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Ellipsoid method

Suppose we have evaluated ∇f(x1), . . . ,∇f(xk),

x1

x2

xk

∇f(x1)

∇f(x2)

∇f(xk)

on the basis of ∇f(x1), . . . ,∇f(xk), we have localized x? to a polyhedron.

Question: what is a ‘good’ point xk+1 at which to evaluate ∇f?
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Ellipsoid algorithm

Idea: localize x? in an ellipsoid instead of a polyhedron.

E(k)

x(k+1)

∇f(x(k+1))

E(k+1)

Compared to cutting-plane method:

� localization set doesn’t grow more complicated

� easy to compute query point

� but, we add unnecessary points in step 4
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Ellipsoid Method

Challenges in cutting-plane methods:

� can be difficult to compute appropriate next query point

� localization polyhedron grows in complexity as algorithm progresses

Ellipsoid method:

� Simple formula for E(k+1) given E(k)

� vol(E(k+1)) < e−
1
2n vol(E(k))
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Ellipsoid Method: example

r
x(0)

rx(1)
r

x(2)

r

x(3)
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Duality

A linear program (LP) is written

minimize cTx
subject to Ax = b

x ≥ 0

where x ≥ 0 means that the coefficients of the vector x are nonnegative.

� Starts with Dantzig’s simplex algorithm in the late 40s.

� First proofs of polynomial complexity by Nemirovskii and Yudin [1979] and
Khachiyan [1979] using the ellipsoid method.

� First efficient algorithm with polynomial complexity derived by Karmarkar
[1984], using interior point methods.
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Duality

Duality. The two linear programs

minimize cTx maximize yT b
subject to Ax = b subject to c−ATy ≥ 0

x ≥ 0

have the same optimal values.

� Similar results hold for most convex problems.

� Usually both primal and dual have a natural interpretation.

� Many algorithms solve both problems simultaneously.
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Support Vector Machines
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Support Vector Machines

Simplest version. . .

� Input: A set of points (in 2D here) and labels (black & white).

� Output: A linear classifier separating the two groups.
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Text Classification

Example: word frequencies.

� In blue: good news

� In red: bad news.

Fall

J
u
m
p

Improving these results. . .

� Are we restricted to linear classifiers?

� What happens when the two classes are not perfectly separable?
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Linear Classification

The linear separation problem.

Inputs:

� Data points xj ∈ Rn, j = 1, . . . ,m.

� Binary Labels yj ∈ {−1, 1}, j = 1, . . . ,m.

Problem:

find w ∈ Rn

such that 〈w, xj〉 ≥ 1 for all j such that yj = 1

〈w, xj〉 ≤ −1 for all j such that yj = −1

Output:

� The classifier vector w.
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Linear Classification

Nonlinear classification.

� The problem:

find w

such that 〈w, xj〉 ≥ 1 for all j such that yj = 1

〈w, xj〉 ≤ −1 for all j such that yj = −1

is linear in the variable w. Solving it amounts to solving a linear program.

� Suppose we want to add quadratic terms in x:

find w

such that 〈w, (xj, x2j)〉 ≥ 1 for all j such that yj = 1

〈w, (xj, x2j)〉 ≤ −1 for all j such that yj = −1

this is still a (larger) linear program in the variable w.

Nonlinear classification is as easy as linear classification.
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Classification

This trick means that we are not limited to linear classifiers:

Separation by ellipsoid Separation by 4th degree polynomial

Both are equivalent to linear classification. . . just increase the dimension.
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Classification: margin

Suppose the two sets are not separable. We solve instead

minimize 1Tu+ 1Tv

subject to 〈w, xj〉 ≥ 1− uj for all j such that yj = 1

〈w, xj〉 < −(1− vj) for all j such that yj = −1
u � 0, v � 0

Can be interpreted as a heuristic for minimizing the number of misclassified points.
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Robust linear discrimination

Suppose instead that the two data sets are well separated.

(Euclidean) distance between hyperplanes

H1 = {z | aTz + b = 1}
H2 = {z | aTz + b = −1}

is dist(H1,H2) = 2/‖a‖2

to separate two sets of points by maximum margin,

minimize (1/2)‖a‖2
subject to aTxi + b ≥ 1, i = 1, . . . , N

aTyi + b ≤ −1, i = 1, . . . ,M

(1)

(after squaring objective) a QP in a, b
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Classification

In practice. . .

� The data has very high dimension.

� The classifier is highly nonlinear.

� Overfitting is a problem: in high dimensional spaces it is always possible to
find a classifier, but the classifier itself can become somewhat meaningless.

◦ Maximizing the margin helps.

◦ Determine the tradeoff between error and margin by cross-validation.
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Support Vector Machines: Duality

Given m data points xi ∈ Rn with labels yi ∈ {−1, 1}.

� The maximum margin classification problem can be written

minimize 1
2‖w‖22 + C1Tz

subject to yi(w
Txi) ≥ 1− zi, i = 1, . . . ,m

z ≥ 0

in the variables w, z ∈ Rn, with parameter C > 0.

� The Lagrangian is written

L(w, z, α) =
1

2
‖w‖22 + C1Tz +

m∑
i=1

αi(1− zi − yiwTxi)

with dual variable α ∈ Rm
+ .
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Support Vector Machines: Duality

� The Lagrangian can be rewritten

L(w, z, α) =
1

2

∥∥∥∥∥w −
m∑
i=1

αiyixi

∥∥∥∥∥
2

2

−
∥∥∥∥∥

m∑
i=1

αiyixi

∥∥∥∥∥
2

2

+ (C1− α)Tz + 1Tα

with dual variable α ∈ Rn
+.

� Minimizing in (w, z) we form the dual problem

maximize −1
2 ‖
∑m

i=1αiyixi‖22 + 1Tα

subject to 0 ≤ α ≤ C

� At the optimum, we must have

w =

m∑
i=1

αiyixi and αi = C if zi > 0

(this is the representer theorem).
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Support Vector Machines: the kernel trick

� If we write X the data matrix with columns xi, the dual can be rewritten

maximize −1
2α

T diag(y)XTX diag(y)α+ 1Tα

subject to 0 ≤ α ≤ C

� This means that the data only appears in the dual through the gram matrix

K = XTX

which is called the kernel matrix.

� In particular, the original dimension n does not appear in the dual.

� SVM complexity only grows with the number of samples, typically O(m1.5).

� For linear classifiers: the magnitude of wi gives a hint on the importance of
variable i (for text: important words).
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Support Vector Machines: the kernel trick

Kernels.

� All matrices written K = XTX can be kernel matrices.

� Easy to construct from highly diverse data types.

Examples. . .

� Kernels for voice recognition

0.97 0.975 0.98 0.985 0.99 0.995
-1

-0.5

0

0.5

1
Voice excerpt

time / sec

Figure 4: Example of vocal waveform during a vowel. We see three cycles of the voice pitch;
within each cycle, the waveform looks a lot like an exponentially decaying sinusoid.

3 Linearity

Prior to presenting the central idea of Fourier analysis, there is one more supporting concept to

explore: Linearity. Very roughly, linearity is the idea that scaling the input to a system will result

in scaling the output by the same amount – which was implicit in the choice of using the ratio of

input to output amplitudes in the graph of figure 1 i.e. the ratio of input to output did not depend

on the absolute level of input (at least within reasonable bounds). Linearity is an idealization, but

happily it is widely obeyed in nature, particularly if circumstances are restricted to small deviations

around some stable equilibrium.

In signal processing, we use ‘system’ to mean any process that takes a signal (e.g. a sound

waveform) as input and generates another signal as output. A linear system is one that has the

linearity property, and this constitutes a large class of real- world systems including acoustic envi-

ronments or channels with rigid boundaries, as well as other domains including radio waves and

mechanical systems consisting of rigid connections, ideal springs. and dampers. Of course, most

scenarios of interest also involve some nonlinear components, e.g. the vocal folds that convert

steady air pressure from the lungs into periodic pressure waves in the (largely linear) vocal tract.

Linearity has an important and subtle consequence: superposition. The property of superposi-

tion means that if you know the outputs of a particular system in response to two different inputs,

then the output of the system in response to the sum of the two inputs is simply the sum of the

two outputs. Figure 5 illustrates this. The left columns show inputs, and the right columns show

8

� Kernels for gene sequence alignment
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Support Vector Machines: the kernel trick

� Kernels for images
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� Kernels for text classification

Ryanair Q3 profit up 30%, stronger than expected. (From Reuters.)
DUBLIN, Feb 5 (Reuters) - Ryanair (RYA.I: Quote, Profile , Research)
posted a 30 pct jump in third-quarter net profit on Monday, confounding
analyst expectations for a fall, and ramped up its full-year profit goal
while predicting big fuel-cost savings for the following year (. . . ).

profit loss up down jump fall below expectations ramped up

3 0 2 0 1 1 0 1 1
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Compressed Sensing
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Compressed Sensing

Consider the following underdetermined linear system

n

m

A x =

=

b

where A ∈ Rm×n, with n� m.

Can we find the sparsest solution?
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Compressed Sensing

� Signal processing: We make a few measurements of a high dimensional
signal, which admits a sparse representation in a well chosen basis (e.g.
Fourier, wavelet). Can we reconstruct the signal exactly?

� Coding: Suppose we transmit a message which is corrupted by a few errors.
How many errors does it take to start losing the signal?

� Statistics: Variable selection in regression (LASSO, etc).
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Compressed Sensing

Why sparsity?

� Sparsity is a proxy for power laws. Most results stated here on sparse vectors
apply to vectors with a power law decay in coefficient magnitude.

� Power laws appear everywhere. . .

◦ Zipf law: word frequencies in natural language follow a power law.

◦ Ranking: pagerank coefficients follow a power law.

◦ Signal processing: 1/f signals

◦ Social networks: node degrees follow a power law.

◦ Earthquakes: Gutenberg-Richter power laws

◦ River systems, cities, net worth, etc.
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Compressed Sensing

Frequency vs. word in Wikipedia (from Wikipedia).
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Compressed Sensing

Frequency vs. magnitude for earthquakes worldwide. [Christensen et al., 2002]
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Compressed Sensing

10 Internet Mathematics
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Figure 3. Log-log plot of the PageRank distribution of the Brown domain
(*.brown.edu). A vast majority of the pages (except those with very low Page-
Rank) follow a power law with exponent close to 2.1. The plot almost flattens
out for pages with very low PageRank.
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Figure 4. Log-log plot of the PageRank distribution of the WT10g corpus. The
slope is close to 2.1. Note that the plot looks much sharper than the corresponding
plot for the Brown web. Also, the tapering at the top is much less pronounced.Pages vs. Pagerank on web sample. [Pandurangan et al., 2006]
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Compressed Sensing
14 The structure and function of complex networks
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(a) collaborations

in mathematics (b) citations (c) World Wide Web

(d) Internet (e) power grid
(f) protein

interactions

FIG. 6 Cumulative degree distributions for six different networks. The horizontal axis for each panel is vertex degree k (or in-
degree for the citation and Web networks, which are directed) and the vertical axis is the cumulative probability distribution of
degrees, i.e., the fraction of vertices that have degree greater than or equal to k. The networks shown are: (a) the collaboration
network of mathematicians [182]; (b) citations between 1981 and 1997 to all papers cataloged by the Institute for Scientific
Information [351]; (c) a 300 million vertex subset of the World Wide Web, circa 1999 [74]; (d) the Internet at the level of
autonomous systems, April 1999 [86]; (e) the power grid of the western United States [416]; (f) the interaction network of
proteins in the metabolism of the yeast S. Cerevisiae [212]. Of these networks, three of them, (c), (d) and (f), appear to have
power-law degree distributions, as indicated by their approximately straight-line forms on the doubly logarithmic scales, and
one (b) has a power-law tail but deviates markedly from power-law behavior for small degree. Network (e) has an exponential
degree distribution (note the log-linear scales used in this panel) and network (a) appears to have a truncated power-law degree
distribution of some type, or possibly two separate power-law regimes with different exponents.

degree distribution overall but unimodal distributions
within domains [338].

2. Maximum degree

The maximum degree kmax of a vertex in a network
will in general depend on the size of the network. For
some calculations on networks the value of this maxi-
mum degree matters (see, for example, Sec. VIII.C.2).
In work on scale-free networks, Aiello et al. [8] assumed
that the maximum degree was approximately the value
above which there is less than one vertex of that degree in
the graph on average, i.e., the point where npk = 1. This
means, for instance, that kmax ∼ n1/α for the power-law
degree distribution pk ∼ k−α. This assumption however
can give misleading results; in many cases there will be
vertices in the network with significantly higher degree
than this, as discussed by Adamic et al. [6].

Given a particular degree distribution (and assuming
all degrees to be sampled independently from it, which
may not be true for networks in the real world), the prob-
ability of there being exactly m vertices of degree k and

no vertices of higher degree is
(n
m

)

pm
k (1−Pk)n−m, where

Pk is the cumulative probability distribution, Eq. (7).
Hence the probability hk that the highest degree on the
graph is k is

hk =
n

∑

m=1

(

n

m

)

pm
k (1 − Pk)n−m

= (pk + 1 − Pk)n − (1 − Pk)n, (10)

and the expected value of the highest degree is kmax =
∑

k khk.
For both small and large values of k, hk tends to zero,

and the sum over k is dominated by the terms close to the
maximum. Thus, in most cases, a good approximation
to the expected value of the maximum degree is given
by the modal value. Differentiating and observing that
dPk/dk = pk, we find that the maximum of hk occurs
when
(

dpk

dk
− pk

)

(pk +1−Pk)n−1 + pk(1−Pk)n−1 = 0, (11)

or kmax is a solution of

dpk

dk
# −np2

k, (12)

Cumulative degree distribution in networks. [Newman, 2003]
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Compressed Sensing

� Getting the sparsest solution means solving:

minimize Card(x)

subject to Ax = b

which is a (hard) combinatorial problem in x ∈ Rn.

� A classic heuristic is to solve instead:

minimize ‖x‖1
subject to Ax = b

which is equivalent to an (easy) linear program.
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Compressed Sensing

Example: we fix A, we draw many sparse signals e and plot the probability of
perfectly recovering e by solving

minimize ‖x‖1
subject to Ax = Ae

in x ∈ Rn, with n = 50 and m = 30.
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Compressed Sensing

� For some matrices A, when the solution e is sparse enough, the solution of the
linear program problem is also the sparsest solution to Ax = Ae. [Donoho
and Tanner, 2005, Candès and Tao, 2005]

� Let k = Card(e), this happens even when k = O(m) asymptotically, which is
provably optimal.
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Semidefinite Programming
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Semidefinite Programming

A linear program (LP) is written

minimize cTx

subject to Ax = b

x ≥ 0

where x ≥ 0 means that the coefficients of the vector x are nonnegative.
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Semidefinite Programming

A semidefinite program (SDP) is written

minimize Tr(CX)

subject to Tr(AiX) = bi, i = 1, . . . ,m

X � 0

where X � 0 means that the matrix variable X ∈ Sn is positive semidefinite.

� Nesterov and Nemirovskii [1994] showed that the interior point algorithms
used for linear programs could be extended to semidefinite programs.

� Key result: self-concordance analysis of Newton’s method (affine invariant
smoothness bounds on the Hessian).
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Semidefinite Programming

� Modeling

◦ Linear programming started as a toy problem in the 40s, many applications
followed.

◦ Semidefinite programming has much stronger expressive power, many new
applications being investigated today (cf. this talk).

◦ Similar conic duality theory.

� Algorithms

◦ Robust solvers for solving large-scale linear programs are available today
(e.g. MOSEK, CPLEX, GLPK).

◦ Not (yet) true for semidefinite programs. Very active work now on first-order
methods, motivated by applications in statistical learning (matrix
completion, NETFLIX, structured MLE, . . . ).
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Mixing rates for Markov chains
& maximum variance unfolding
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Mixing rates for Markov chains & unfolding

� Let G = (V,E) be an undirected graph with n vertices and m edges.

� We define a Markov chain on this graph, and let wij ≥ 0 be the transition
rate for edge (i, j) ∈ V .

Larger example

50 nodes, 200 edges

max-degree best constant optimal
ρ = ‖W − (1/n)11T‖ .971 .947 .902

τ = 1/ log(1/ρ) 33.5 18.3 9.7

ICM 2006 Madrid, August 29, 2006 22
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Mixing rates for Markov chains & unfolding

� Let π(t) be the state distribution at time t, its evolution is governed by the
heat equation

dπ(t) = −Lπ(t)dt
with

Lij =


−wij if i 6= j, (i, j) ∈ V
0 if (i, j) /∈ V∑

(i,k)∈V wik if i = j

the graph Laplacian matrix, which means

π(t) = e−Ltπ(0).
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Mixing rates for Markov chains & unfolding

[Sun, Boyd, Xiao, and Diaconis, 2006]

� Maximizing the mixing rate of the Markov chain means solving

maximize t

subject to L(w) � t(I− (1/n)11T )∑
(i,j)∈V d

2
ijwij ≤ 1

w ≥ 0

in the variable w ∈ Rm, with (normalization) parameters d2ij ≥ 0.

� Since L(w) is an affine function of the variable w ∈ Rm, this is a semidefinite
program in w ∈ Rm.
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Mixing rates for Markov chains & unfolding

[Weinberger and Saul, 2006, Sun et al., 2006]

� The dual means solving

maximize Tr(X(I− (1/n)11T ))

subject to Xii − 2Xij +Xjj ≤ d2ij, (i, j) ∈ V
X � 0,

in the variable X ∈ Sn.

� This is a maximum variance unfolding problem.
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Mixing rates for Markov chains & unfolding• similar to semidefinite embedding for unsupervised learning of
manifolds (Weinberger & Saul 2004)

• surprise: duality between fastest mixing Markov process and maximum
variance unfolding

ICM 2006 Madrid, August 29, 2006 46

From [Sun et al., 2006]: we are given pairwise 3D distances for k-nearest
neighbors in the point set on the right. We plot the maximum variance point set
satisfying these pairwise distance bounds on the right.
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The NETFLIX challenge
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NETFLIX

� Video On Demand and DVD by mail service in the United States, Canada,
Latin America, the Caribbean, United Kingdom, Ireland, Sweden, Denmark,
Norway, Finland.

� About 25 million users and 60,000 films.

� Unlimited streaming, DVD mailing, cheaper than CANAL+ :)

� Online movie recommendation engine.
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Collaborative prediction

� Users assign ratings to a certain number of movies:

U
se

rs

Movies

� Objective: make recommendations for other movies. . .
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NETFLIX
25/11/12 21:31Netflix

Page 1 of 10http://movies.netflix.com/WiHome

Your taste preferences
created this row.

Visually-striking
Action & Adventure.

As well as your interest in…

Top 10 for alexandre

Popular on Netflix

Visually-striking Action & Adventure

Exciting Movies

 Instant
Queue

 DVDs
alexandre d'Aspr… Your Account Help

Movies, TV shows, actors, directors, genres  
  Just for

Kids
 Taste

Profile
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Collaborative prediction

Infer user preferences and movie features from user ratings.

� A linear prediction model

ratingij = uTi vj

where ui represents user characteristics and vj movie features.

� This makes collaborative prediction a matrix factorization problem, We look
for a linear model by factorizing M ∈ Rn×m as:

M = UTV

where U ∈ Rn×k represents user characteristics and V ∈ Rk×m movie features.

� Overcomplete representation. . . We want k to be as small as possible, i.e. we
seek a low rank approximation of M .
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Collaborative prediction

� We would like to solve

minimize Rank(X) + c
∑

(i,j)∈S

max(0, 1−XijMij)

non-convex and numerically hard. . .

� Relaxation result in Fazel et al. [2001]: replace Rank(X) by its convex
envelope on the spectahedron to solve:

minimize ‖X‖∗ + c
∑

(i,j)∈S

max(0, 1−XijMij)

where ‖X‖∗ is the nuclear norm, i.e. sum of the singular values of X.

� This is a convex semidefinite program in X.
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Collaborative prediction

NETFLIX challenge.

� NETFLIX offered $1 million to the team who could improve the quality of its
ratings by 10%, and $50.000 to the first team to improve them by 1%.

� It took two weeks to beat the 1% mark, and three years to reach 10%.

� Very large number of scientists, students, postdocs, etc. working on this.

� The story could end here. But all this work had surprising outcomes. . .
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Phase Recovery

Molecular imaging

Origin: X-ray crystallography

Knowledge of phase crucial to build electron density map

Initial success in certain cases by using very specific prior knowledge: Nobel
Prize for Hauptman and Karle (1985)

Still important today: e.g. macromolecular crystallography for drug design

(from [Candes et al., 2011b])

� CCD sensors only record the magnitude of diffracted rays, and loose the phase

� Fraunhofer diffraction: phase is required to invert the 2D Fourier transform
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Phase Recovery

Focus on the phase retrieval problem, i.e.

find x

such that |〈ai, x〉|2 = b2i , i = 1, . . . , n

in the variable x ∈ Cp.

� [Shor, 1987, Lovász and Schrijver, 1991] write

|〈ai, x〉|2 = b2i ⇐⇒ Tr(aia
∗
ixx
∗) = b2i

� [Chai et al., 2011] and [Candes et al., 2011a] formulate phase recovery as a
matrix completion problem

Minimize Rank(X)

such that Tr(aia
∗
iX) = b2i , i = 1, . . . , n

X � 0
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Phase Recovery

[Recht et al., 2007, Candes and Recht, 2008, Candes and Tao, 2010] show that
under certain conditions on A and x0, it suffices to solve

Minimize Tr(X)

such that Tr(aia
∗
iX) = b2i , i = 1, . . . , n

X � 0

which is a (convex) semidefinite program in X ∈ Hp.

� Solving the convex semidefinite program yields a solution to the combinatorial,
hard reconstruction problem.

� Apply results from collaborative filtering (NETFLIX) to molecular imaging.
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Phase Recovery

Merci!

A. d’Aspremont Collège de France, Nov. 2012. 59/59



*

References

O. Bunk, A. Diaz, F. Pfeiffer, C. David, B. Schmitt, D.K. Satapathy, and JF Veen. Diffractive imaging for periodic samples: retrieving
one-dimensional concentration profiles across microfluidic channels. Acta Crystallographica Section A: Foundations of Crystallography, 63
(4):306–314, 2007.

E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):4203–4215, 2005.

E. J. Candes, T. Strohmer, and V. Voroninski. Phaselift : exact and stable signal recovery from magnitude measurements via convex
programming. To appear in Communications in Pure and Applied Mathematics, 2011a.

E.J. Candes and B. Recht. Exact matrix completion via convex optimization. preprint, 2008.

E.J. Candes and T. Tao. The power of convex relaxation: Near-optimal matrix completion. Information Theory, IEEE Transactions on, 56(5):
2053–2080, 2010.

E.J. Candes, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix completion. Arxiv preprint arXiv:1109.0573, 2011b.

A. Chai, M. Moscoso, and G. Papanicolaou. Array imaging using intensity-only measurements. Inverse Problems, 27:015005, 2011.

K. Christensen, L. Danon, T. Scanlon, and P. Bak. Unified scaling law for earthquakes, 2002.

D. L. Donoho and J. Tanner. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. of the National
Academy of Sciences, 102(27):9446–9451, 2005.

M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to minimum order system approximation. Proceedings
American Control Conference, 6:4734–4739, 2001.

J.R. Fienup. Phase retrieval algorithms: a comparison. Applied Optics, 21(15):2758–2769, 1982.

R. Gerchberg and W. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35:
237–246, 1972.

D. Griffin and J. Lim. Signal estimation from modified short-time fourier transform. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 32(2):236–243, 1984.

R.W. Harrison. Phase problem in crystallography. JOSA A, 10(5):1046–1055, 1993.

N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373–395, 1984.

L. G. Khachiyan. A polynomial algorithm in linear programming (in Russian). Doklady Akademiia Nauk SSSR, 224:1093–1096, 1979.

L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991.

J. Miao, T. Ishikawa, Q. Shen, and T. Earnest. Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells, and
single protein complexes. Annu. Rev. Phys. Chem., 59:387–410, 2008.
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