
Interest Rate Model Calibration Using Semidefinite
Programming∗

A. d’Aspremont†

February 20, 2003

Abstract

We show that, for the purpose of pricing Swaptions, the Swap rate and the corresponding Forward rates
can be considered lognormal under a single martingale measure. Swaptions can then be priced as options
on a basket of lognormal assets and an approximation formula is derived for such options. This formula
is centered around a Black-Scholes price with an appropriate volatility, plus a correction term that can be
interpreted as the expected tracking error. The calibration problem can then be solved very efficiently using
semidefinite programming.

Keywords: Semidefinite Programming, Libor Market Model, Calibration, Basket Options.

1 Introduction

In the original Black & Scholes (1973) model, there is a one-to-one correspondence between the price of
an option and the volatility of the underlying asset. In fact, options are most often directly quoted in terms
of their Black & Scholes (1973) implied volatility. In the case of options on multiple assets such as basket
options, that one-to-one correspondence between market prices and covariance is lost. The market quotes
basket options in terms of their Black & Scholes (1973) volatility but has no direct way of describing the link
between this volatility and that of the individual assets in the basket. Today, this is not yet critically important
in equity markets where most of the trading in basket options is concentrated among a few index options, we
will see however that it is crucial in interest rate derivative markets where most of the volatility information
is contained in a rather diverse set of basket options.

Indeed, a large part of the liquidity in interest rate option markets is concentrated in European Caps
and Swaptions and, as always, market operators are faced with a modelling dilemma: on one hand, the
arbitrage-free price derived from a dynamic hedging strategy à la Black & Scholes (1973) and Merton (1973)
has become a central reference in the pricing and risk-management of financial derivatives, on the other
hand however, every market operator knows that the data they calibrate on is not arbitrage free because
of market imperfections. Beyond these discrepancies in the data, daily model recalibration and the non-
convexity of most current calibration methods only add further instability to the derivative pricing, hedging
and risk-management process by exposing these computations to purely numerical noise. One of the crucial
filters standing between those two sets of prices (market data and computed derivative prices) is the model
calibration algorithm.

Recent developments in interest rates modelling have led to a form of technological asymmetry on this
topic. Theoretically, models such as the Libor market model of interest rates (see Brace, Gatarek & Musiela
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(1997), Miltersen, Sandmann & Sondermann (1995)) or the affine Gaussian models (see El Karoui & Lacoste
(1992) or Duffie & Kan (1996)) allow a very rich modelling and pricing of the basic interest rate options (Caps
and Swaptions) at-the-money. However, due to the inefficiency and instability of the calibration procedure,
only a small part of the market covariance information that could be accounted for in the model is actually
exploited. To be precise, the most common calibration techniques (see for example Longstaff, Santa-Clara &
Schwartz (2000)) perform a completely implicit fit on the Caplet variances while only a partial fit is made on
the correlation information available in Swaptions. Because of these limitations, a statistical estimate must be
substituted to the market information on the Forward Libors correlation matrix as the numerical complexity
and instability of the calibration process makes it impossible to calibrate a full market covariance matrix. As
a direct consequence, these calibration algorithms fail in one of their primary mission: they are very poor
market risk visualization tools. The Forward rates covariance matrix plays an increasingly important role
in exotic interest rate derivatives modelling and there is a need for a calibration algorithm that allows the
retrieval of a maximum amount of covariance information from the market.

In the Libor market model, we write Swaps as baskets of Forwards. As already observed by Rebonato
(1998) among others, the weights in this decomposition are empirically very stable. In section two, we show
that this key empirical fact is indeed accurately reproduced by the model. We then show that the drift term
coming from the change of measure between the forward and the swap martingale measures can be neglected
in the computation of the Swaption price, thus allowing these options to be priced using the lognormal
approximations first detailed in Huynh (1994) and Musiela & Rutkowski (1997). In particular, this will allow
us to reduce the problem of pricing Swaptions in the Libor market model to that of pricing Swaptions in a
multidimensional Black & Scholes (1973) lognormal model. Section three is then focused on finding a good
pricing approximation for basket calls in this generic model. We derive a simple yet very precise formula
where the first term is computed as the usual Black & Scholes (1973) price with an appropriate variance and
the second term can be interpreted as approximating the expected value of the tracking error obtained when
hedging with the approximate volatility.

Besides its radical numerical performance compared to Monte-Carlo methods, the formula we obtain has
the advantage of expressing the price of a basket option in terms of a Black & Scholes (1973) covariance
that is a linear form in the underlying covariance matrix. This sets the multidimensional model calibration
problem as that of finding a positive semidefinite (covariance) matrix that satisfies a certain number of linear
constraints, in other words, the calibration becomes a semidefinite program. Recent advances in optimization
(see Nesterov & Nemirovskii (1994) or Vandenberghe & Boyd (1996)) have led to algorithms which solve
these problems with a complexity that is comparable to that of linear programs (see Nesterov & Todd (1998)).
This means that the general multidimensional market covariance calibration problem can be solved very
efficiently.

The basket option representation was used in El Karoui & Lacoste (1992) where Swaptions were written
as Bond Put options in the Linear Gauss Markov affine model. Rebonato (1998) and Rebonato (1999) detail
their decomposition as baskets of Forwards in the Libor market model. In parallel results, Brace & Womersley
(2000) used semidefinite programming and the order zero lognormal approximation to study the impact of
the model dimension on Bermudan Swaptions pricing. They rely on simulation results dating back to Huynh
(1994), Musiela & Rutkowski (1997) or lately Brace, Dun & Barton (1999) in an equity framework to justify
the lognormal volatility approximation of the swap process and they neglect the change of measure. A
big step in the same direction had also been made by Rebonato (1999) where the calibration problem was
reparametrized on a hypersphere. However, because it did not recognize the convexity of the problem, this
last method could not solve the key numerical issue. In recent works, Singleton & Umantsev (2001) studied
the effect of zero-coupon dynamics degeneracy on Swaption pricing in an affine term structure model while Ju
(2002) use a Taylor expansion of the characteristic function to derive basket and Asian option approximations.

This paper is organized around three contributions:

• In section two, we detail the basket decomposition of Swaps and recall some important results on the
market model of interest rates. We show that the weight’s volatility and the contribution of the forward
vs. swap martingale measure change can be neglected when pricing Swaptions in that model.

• In section three, we justify the classical lognormal basket option pricing approximation and compute
additional terms in the price expansion. We also study the implications in terms of hedging and the
method’s precision in practice.
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• In section four, we explicit the general calibration problem formulation and discuss its numerical per-
formance versus the classical methods. We specifically focus on the rank issue and its implications in
derivatives pricing. We show how the calibration result can be stabilized in the spirit of Cont (2001) to
reduce hedging transaction costs.

Numerical instability has a direct cost in both unnecessary hedging portfolio rebalancing and poor risk
modelling. By reducing the amount of numerical noise in the daily recalibration process and improving the
reliability of risk-management computations, we hope these methods will significantly reduce hedging costs.

2 Interest rate market dynamics

2.1 Zero coupon bonds and the absence of arbitrage

We begin here by quickly recalling the construction of the Libor Market Model along the lines of Brace et al.
(1997). We note B(t, T ) the discount factors (or Zero Coupon bonds) which represent the price in t of one
euro paid at time T . We note βT the value at time T of one euro invested in the savings account at t (today)

and continuously compounded with rate rs. We have βT = exp
(∫ T

t
rsds

)
. As in Heath, Jarrow & Morton

(1992), to preclude arbitrage between βT and an investment in the Z.C. we impose:

B(t, T ) = EQ
t

[
exp

(
−
∫ T

t

rsds

)]
(1)

for some measure Q. In what follows, we will use the Musiela parametrization of the Heath et al. (1992)
setup and the fundamental rate r(t, θ) will be the continuously compounded instantaneous forward rate at
time t, with duration θ. We suppose that the zero coupon bonds follow a diffusion process driven by a d
dimensional Q−Brownian motion W = {Wt, t ≥ 0} and because of the arbitrage argument in (1), we know
that the drift term of this diffusion must be equal to rs, hence we can write the zero coupon dynamics as:

dB(s, T )
B(s, T )

= rsds + σB(s, T − s)dWs (2)

where for all θ ≥ 0 the zero-coupon bond volatility process {σB(t, θ); θ ≥ 0} is Ft-adapted with values
in Rd. We assume that the function θ �−→ σB(t, θ) is absolutely continuous and the derivative τ(t, θ) =
∂/∂θ(σB(t, θ)) is bounded on R2 × Ω. All these processes are defined on the probability space (Ω, {Ft; t ≥
0},Q) where the filtration {Ft; t ≥ 0} is the Q-augmentation of the natural filtration generated by the d
dimensional Brownian motion W = {Wt, t ≥ 0}. The absence of arbitrage condition between all zero-
coupons and the savings account then amounts to impose to the process:

B(t, T )
βt

= B(0, T ) exp
(
−
∫ t

0

σB(s, T − s)dWs − 1
2

∫ t

0

∣∣σB(s, T − s)
∣∣2 ds

)
(3)

to be a martingale under the measure Q for all T > 0.

2.2 Libor rates, Swap rates and the Libor market model

2.2.1 Libors and Swaps

We note Lδ(t, θ) the forward δ-Libor rate, defined by:

1
1 + δLδ(t, θ)

=
B(t, t + δ + θ)

B(t, t + θ)

and we note K(t, T ) = L(t, T − t) the forward Libor with constant maturity date (FRA).
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A Swap rate is then defined as the fixed rate that zeroes the present value of a set of periodical exchanges
of fixed against floating coupons on a Libor rate of given maturity at future dates T fixed

i and T floating
i . This

means:

swap(t, T, Tn) =
B(t, T floating) − B(t, T floating

n+1 )

Level(t, T fixed, T fixed
n )

where, with coverage(Ti, Ti+1) the coverage (time interval) between Ti and Ti+1 computed with the ap-
propriate basis (different for the floating and fixed legs) and B(t, T float

i ) the discount factor with maturity
T float

i , we have defined Level(t, T fixed, T fixed
n ) as the average of the discount factors for the fixed calendar

of the Swap weighted by their associated coverage

Level(t, T fixed, T fixed
n ) =

n∑
i=iT

coverage(T fixed
i , T fixed

i+1 )B(t, T fixed
i ).

Here (T float
i , ...) is the calendar for the floating leg of the swap and (T fixed

i , ...) is the calendar for the fixed
leg (the notation is there to highlight the fact that they don’t match in general). In a representation that will
be critically important in the pricing approximations that follow, we remark that we can write the Swaps as
baskets of Forward Libors (see for ex. Rebonato (1998)).

Lemma 1 We can write the Swap as a basket of Forwards:

swap(t, T, Tn) =
n∑

i=iT

ωi(t)K(t, T float
i ) where ωi(t) =

coverage(T float
i , T float

i+1 )B(t, T float
i+1 )

Level(t, T fixed
0 , T fixed

n )
(4)

with TiT
= T and 0 ≤ ωi(t) ≤ 1.

Proof. With B(t, T float
i ) = B(t, T float

i+1 )(1 + δK(t, T float
i )), we can write the Swap:

swap(t, T, Tn) =

∑n
i=iT

coverage(T float
i , T float

i+1 )B(t, T float
i+1 )K(t, T float

i )

Level(t, T fixed
0 , T fixed

n )

which is the desired representation. As the corresponding forward Libor rates are positive, we have B(t, Ti+1)
≤ B(t, Ti) ≤ B(t, Ti−1) for i ∈ [iT + 1, N − 1] hence 0 ≤ ωi(t) ≤ 1, i.e. the weights are positive and
bounded by one.

In practice, the weights ωi(t) prove to have very little variance compared to their respective FRA (see Re-
bonato (1998) among others). This approximation of Swaps as baskets of Forwards with constant coefficients
is the key factor behind the Swaption pricing methods that we detail here.

2.2.2 The Libor market model

As Libor rates and Swaps were gaining importance as the fundamental variables on which the market activity
was concentrated, a set of options was created on these market rates: the Caps and Swaptions. Adapting the
common practice taken from equity markets and the Black & Scholes (1973) framework, market operators
looked for a model that would set the dynamics of the Libors or the Swaps as lognormal processes. Intuitively,
the lognormal assumption on prices can be justified as the effect of a central limit theorem on returns because
the prices are seen as driven by a sequence of independent shocks on returns. That same reasoning cannot
be applied to justify the lognormality of Libor or Swap rates, which are rates of return themselves. The key
justification behind this assumption must then probably be found in the legibility and familiarity of the pricing
formulas that are obtained: the market quotes the options on Libors and Swaps in terms of their Black (1976)
volatility by habit, it then naturally tries to model the dynamics of these rates as lognormal.

Everything works fine when one looks at these prices and processes individually, however some major
difficulties arise when one tries to define yield curve dynamics that jointly reproduce the lognormality of
Libors and Swaps. In fact, it is not possible to find arbitrage free dynamics à la Heath et al. (1992) that make
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both Swaps and Libors lognormal under the appropriate forward measures (see Musiela & Rutkowski (1997)
or Jamshidian (1997) for an extensive discussion of this). Here we choose to adopt the Heath et al. (1992)
model structure defined in Brace et al. (1997) (see also Miltersen et al. (1995) or Sandmann & Sondermann
(1997)) where the Libor rates are specified as lognormal under the appropriate forward measures but we will
see in a last section that for the purpose of pricing options on Swaps, one can in fact approximate the swap
by a lognormal diffusion. Hence in a very reassuring conclusion on the model, observed empirically in Brace
et al. (1999), we notice that it is in fact possible to specify Heath et al. (1992) dynamics that are reasonably
close to the market practice, i.e. lognormal on Forwards and close (in a sense that will be made clear later)
to lognormal on Swaps. In particular, we verify that the key assumption in this approximation, namely the
stability of the weights ωi(t), is indeed accurately reproduced by the Libor market model.

The model starts from the key assumption that for a given maturity δ (for ex. 3 months) the associated
forward Libor rate process has a log-normal volatility structure:

dL(t, θ) = (...)dt + L(t, θ)γ(t, θ)dWt (5)

where the deterministic function γ : R2
+ �−→ Rd

+ is bounded by some γ̄ ∈ R+ and piecewise continuous. As
for all Heath et al. (1992) based models, these dynamics are fully specified by the definition of the volatility
structure and the forward curve today. With that in mind, we derive the appropriate zero-coupon volatility
expression. Using the Ito formula combined with (3) we get as in Brace et al. (1997):

dL(t, θ) =
(

∂L(t, θ)
∂θ

+
(1 + δL(t, θ))

δ
σB(t, θ + δ)(σB(t, θ + δ) − σB(t, θ))

)
dt

+
1
δ

(1 + δL(t, θ)) (σB(t, θ + δ) − σB(t, θ))dWt

Then to get the right volatility structure we have to impose in (2):

σB(t, θ + δ) − σB(t, θ) =
δL(t, θ)

1 + δL(t, θ)
γ(t, θ) (6)

The Libor process becomes:

dL(t, θ) =
(

∂

∂θ
L(t, θ) + γ(t, θ)σB(t, θ + δ)L(t, θ)

)
dt + L(t, θ)γ(t, θ)dWt

As in Musiela & Rutkowski (1997), we set σB(t, θ) = 0 for all θ ∈ [0, δ[ and we get, together with the
recurrence relation (6) and for θ ≥ δ :

σB(t, θ) =
�δ−1θ�∑

k=1

δL(t, θ − kδ)
1 + δL(t, θ − kδ)

γ(t, θ − kδ) (7)

With the volatility of the zero coupon defined above and the value of the forward curve today, we have fully
specified the yield curve dynamics.

2.3 Interest rate options: Caps and Swaptions

2.3.1 Caps

Let us note again β(t), the value of the savings account. In a forward Cap on principal 1 settled in arrears at
times Tj , j = 1, ..., n, the cash-flows are (L(Tj−1, 0)−K)+δ paid at time Tj . The price of the Cap at time t
is then computed as:

Capt =
n∑
1

EQ
t

[
βt

βTj

(L(Tj−1, 0) − k)+ δ

]
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2.3.2 Swaptions

To simplify the notations, we will consider that the calendars described above for the floating and the fixed
legs of the swap are set by T float

i = iδ and T fixed
i = ibδ, in the common case where the fixed coverage is a

multiple of the floating coverage (for ex. quarterly floating leg, annual fixed leg). For simplicity, we will note
the coverage function for the fixed leg of the swap as a function of the floating dates, allowing the floating
dates to be used as reference in the entire swap definition. From now on (Ti)i∈[1,N ] = (T float

i )i∈[1,N ] and
we define the coverage function for the fixed leg as cvg(i, b)δ = 1{i mod b=0}bδ. We set iT = �δ−1T �. Using
these simplified notations the Swap in (4) becomes:

swap(t, T, TN ) =
B(t, T ) − B(t, TN+1)

Level(t, T, TN )
with Level(t, T, TN ) =

N∑
i=iT

δcvg(i, b)B(t, Ti+1)

The price of a payer Swaption with maturity T and strike k, written on this swap is then given at time t ≤ T
by:

Swaptiont = EQ
t

[
N∑

i=iT

β(t)
β(Ti+1)

cvg(i, b)δ (swap(T, T, TN ) − k)+
]

(8)

The expression above computes the price of the Swaption as the sum of the corresponding Swaplet prices.
Because a Caplet is an option on a one period Swap, Caplet and Swaption prices can be computed in the
same fashion. In the two sections that follow, we show how to rewrite this pricing expression to describe the
Swaption (and the Caplet) as a basket option.

2.4 Caps and Swaptions in the Libor market model

2.4.1 Caps and the forward martingale measure

With the Cap price computed as:

Capt =
n∑

j=1

B(t, Tj)E
Tj

t

[
(L(Tj−1, 0) − K)+ δ

]
where ETj is the expectation under the forward martingale measure QTj defined by:

dQTj

dQ
= [B(0, T )βT ]−1 = εT (σB(·, Tj − ·))

where we have noted εT (·) the exponential martingale defined by:

εT (σB(·, Tj − ·)) = exp

(∫ Tj

0

σB(s, Tj − s)dWs − 1
2

∫ Tj

0

∥∥σB(s, Tj − s)
∥∥2

ds

)
Let us now define the forward Libor process (or FRA) dynamics, the underlying K(t, T ) = L(t, T − t) of
the Caplet paid at time T + δ, which is given in the Libor market model setup in (5) by:

dK(t, T ) = γ(t, T − t)K(t, T )
[
σB(t, T − t + δ)dt + dWt

]
or again:

dK(t, T ) = γ(t, T − t)K(t, T )dWT+δ
t (9)

hence K(t, T ) is lognormally distributed under PT+δ. The pricing of Caplets can be done using the Black
(1976) formula with variance VT such that:

VT =
∫ T

t

‖γ(s, T − s)‖2
ds

Let us note that the Caplet variance used in the Black (1976) pricing formula is a linear form in the covariance.
Recovering the same kind of result in the Swaption pricing approximation will be the key to the calibration
algorithm design.
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2.4.2 Swaptions and the forward swap martingale measure

In (8) the price of a payer Swaption is computed as the sum of the corresponding Swaplet prices, which is
not the most appropriate format for pricing purposes. Using a change of equivalent probability measure, we
now find another expression that is more suitable for our analysis. As in Musiela & Rutkowski (1997), we
can define the forward swap martingale probability measure QLV L equivalent to QT , with:

dQLV L

dQT
|t =

∑N
i=iT

cvg(i, b)β(T )/β(Ti+1)

EQT

t

[∑N
i=iT

cvg(i, b)β(T )/β(Ti+1)
]

= B(t, T )β(T )
N∑

i=iT

δcvg(i, b)β−1(Ti+1)
Level(t, T, TN )

This equivalent probability measure corresponds to the choice of the ratio of the level payment over the
savings account as a numeraire and the above relative bond prices are QT−local martingale. The change of
measure is identified with an exponential (local) QT−martingale and we define the process ht such that:

εTN
(h·) = B(t, T )β(T )

∑N
i=iT

δcvg(i, b)β−1(Ti+1)
Level(t, T, TN )

which imposes:

ht =
N∑

i=iT

δcvg(i, b)B(t, Ti+1)
Level(t, T, TN )

 i∑
j=iT

δK(t, Tj)
1 + δK(t, Tj)

γ(t, Tj − t)

 (10)

and because the volatility is bounded, we verify that εTN
(h·) is in fact a martingale. Again as in Musiela &

Rutkowski (1997) we can apply Girsanov’s theorem to show that the process:

dWLV L
t = dWT

t +
N∑

i=iT

δcvg(i, b)B(t, Ti+1)
level(t, T, TN )

i∑
j=iT

δK(t, Tj)
1 + δK(t, Tj)

γ(t, Tj − t)

 dt (11)

is a QLV L-Brownian motion.

Lemma 2 We can rewrite the Swaption price as:

Swaptiont = Level(t, T, TN )EQLV L

t

[
(swap(T, T, TN ) − k)+

]
(12)

where the swap rate is a martingale under the new probability measure QLV L.

Proof. The pricing formula is a direct consequence of the change of measure above and because the
Swap is defined by the ratio of a difference of zero-coupon prices over the level payment, it is a (local)
martingale under the new probability measure QLV L (below, we will see that the swap rate is in fact a
QLV L−martingale).

This change of measure first detailed by Jamshidian (1997), allows to price Swaptions as classical Call
options on a swap, under an appropriate measure.

2.5 Swap dynamics

We now study the dynamics of the swap rate under the QLV L probability, looking first for an appropriate
representation of the volatility function using the ”basket of forwards” decomposition swap(t, T, TN ) =∑N

i=iT
ωi(t)K(t, Ti) detailed in (4).
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Lemma 3 The weights ωk(s) in the swap decomposition follow:

dωk(s) = ωk(s)
N∑

i=iT

ωi(s)
(
σB(s, Tk+1 − s) − σB(s, Ti+1 − s)

)
dWLV L

s

Proof. As the ratio of a zero coupon bond on the level payment and by construction of QLV L, the weights
ωi(t) must be QLV L−martingales (they are positive bounded). Using the forward zero-coupon dynamics,
we then get:

d

(
B(s, Tk)

Level(t, T, TN )

)
= (...)ds +

B(t, Tk)
Level(t, T, TN )

σB(s, Tk − s)dWT
s

− B(t, Tk)
Level(t, T, TN )

N∑
i=iT

δcvg(i, b)B(t, Ti+1)
Level(t, T, TN )

σB(s, Ti+1 − s)dWT
s

where WT
s is a QT -Brownian motion.

We then use this result to decompose the Swap volatility as the sum of the weights volatility term and a
term that mimics a basket volatility (the volatility of a basket with constant coefficients). We write the swap
volatility as:

dswap(s, T, TN ) =
N∑

i=iT

ωi(s)K(s, Ti) (γ(s, Ti − s) + η(s, Ti)) dWLV L
s (13)

where the basket volatility term and the weight’s residual contribution are given by:

N∑
i=iT

ωi(s)K(s, Ti)γ(s, Ti − s) and η(s, Ti) =

σB(s, Ti+1 − s) −
N∑

j=iT

ωj(s)σB(s, Tj+1 − s)


Again, the empirical stability of the weights ωi(t) is the key fact at the origin of the Swaption pricing approxi-
mations that will follow and one of our goals below will be to show that this stability is accurately reproduced
by the model.

2.6 The forward Libors under the forward Swap measure

We study here the dynamics of the forward Libors under the forward Swap measure. For purely technical
purposes, we start by bounding under QLV L the variance of the forward rates K(s, Tk), this will allow us to
bound the contribution of the weights to the total swap variance.

Lemma 4 With m > 1, we can bound the L2 norm of K(u, Tk) under QLV L by:

E[K(s, Tk)m] ≤ K(t, Tk)mMm
m (s) (14)

where Mm(s) = exp
(
(s − t)

(
mγ̄2/2 + mγ̄2δ(N − iT )

))
.

Proof. Using (11) we can write:

K(s, Tk) = K(t, Tk) exp
(∫ s

t

γ(u, Tk − u)dWLV L
u +

∫ s

t

α(u, Tk)γ(u, Tk − u)du

)
where

α(s, Tk) = −
N∑

i=iT

ωi(s)

 i∑
j=iT

φj(s)γ(s, Tj − s)

+
k∑

i=iT

φi(s)γ(s, Ti − s)
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with φi(t) = δK(s, Ti)/(1 + δK(s, Ti)). The corresponding forward Libor rates are positive and we have
0 ≤ φi(t) ≤ 1 and as in Brace et al. (1997) remark 2.3, we can bound the Forwards by a lognormal process:

K(s, Tk) ≤ K(t, Tk) exp
(∫ s

t

γ(u, Tk − u)dWLV L
u +

∫ s

t

ᾱ(u, Tk)du

)
for s ∈ [t, T ]

where we can use a convexity inequality on the norm ‖.‖2 to obtain:∥∥∥∥∥∥
N∑

i=iT

ωi(s)

 i∑
j=iT

φj(s)γ(s, Tj − s)γ(s, Tk − s)

∥∥∥∥∥∥
2

≤ δ2(N − iT )2γ̄4

because
∥∥∥∑k

i=iT
φi(t)γ(s, Ti − s)γ(s, Tk − s)

∥∥∥2

≤ δ2(k − iT )2γ̄4, hence ᾱ(s, Tk) = δ(N − iT )γ̄2 which

shows the desired result.

We now use this bound to study the impact of the weights ωi(t) in the swap volatility decomposition.

2.7 Swaps as baskets of forwards

For simplicity, in what follows we will suppose that T float
i = T fixed

i and hence b = 1. The Swaption pricing
formula that will be derived in the next section relies on two fundamental approximations:

• The weights ωi(s) for s ∈ [t, T ] (which are QLV L-martingales) will be approximated by their value
today ωi(t).

• We will neglect the change of measure between the forward martingale measures QT to QTN+1 and
the forward Swap martingale measure QLV L.

This is possible here because the weights in (4) are positive, monotone and sum to one. In this section,
we try to quantify the error created by these approximations. Because the payoff of the Call options under
consideration are Lipschitz, we approximate the Swap and forward Libor dynamics in L2 under the QLV L

swap martingale measure.

Remark 5 If the Forward rate curve is flat (K(s, Ti) = K(s, Tj) for i, j = iT , ..., N ) we have:

N∑
i=iT

ωi(s)K(s, Ti)η(s, Ti) = K(s, Ti)
N∑

i=iT

ωi(s)

σB(s, Ti − s) −
N∑

j=iT

ωj(s)σB(s, Tj − s)

 = 0

In light of this fact, we will study the size of the weights’ contribution to the swap volatility in terms of the
slope of the Forward rate curve within the maturity range of the swap’s floating leg.

In the development below, we will use this fact to rewrite the weight’s part in the Swap’s volatility :

ELV L

∥∥∥∥∥
N∑

i=iT

ωi(s)K(s, Ti)η(s, Ti)

∥∥∥∥∥
2
 = ELV L

∥∥∥∥∥
N∑

i=iT

ωi(s) (K(s, Ti) − swap(s, T, TN )) η(s, Ti)

∥∥∥∥∥
2


(15)
This sets the weight’s contribution as the average product of a difference of Forwards with a difference of ZC
bond volatilities. We can expect this later term to be negligible relative to the basket volatility term in (13).

We now some basic properties of the weights ωi(s). We note ‖·‖n =
(
ELV L [‖·‖n]

)1/n
, the Ln norm.

Lemma 6 The weights ωi(s) defined in (4) are bounded above with:

ωi(s) ≤ 1
N − iT

+ δswap(s, T, TN )

and satisfy ‖ωi(s)‖n ≤ ωi(t) for s ∈ [t, T ].

9



Proof. Because the weights ωi(s) satisfy
∑N

i=iT
ωi(t) = 1, 0 ≤ ωi(t) ≤ 1 and are decreasing with i

because the Forward rates are always positive. With:

|ωj(s) − ωi(s)| ≤ δswap(s, T, TN ) for i, j = iT , ..., N

we get:

ωi(s) ≤ 1
N − iT

+ δswap(s, T, TN ) for s ∈ [t, T ]

and ‖ωi(s)‖n ≤ ‖ωi(s)‖1 = ωi(t), for s ∈ [t, T ] and n ≥ 1, because the weights are positive QLV L−martingales.

The next result provides a bound on the variance contribution of the weights inside the Swap rate volatility.

Lemma 7 The L2 norm of the weight’s contribution in the swap volatility (13) is bounded by:

ELV L

∥∥∥∥∥
N∑

i=iT

ωi(s)K(s, Ti)η(s, Ti)

∥∥∥∥∥
2
 (16)

≤ max
j

‖(K(s, Tj) − swap(s, T, TN ))‖2
8 M2

4 γ̄2δ2maxj∈[iT ,N ]K(t, Tj)2(N − iT )2

Proof. Let us note again swap(s, T, TN ) =
∑N

i=iT
ωi(s)K(s, Ti), the swap rate, which we see here

as the average level of the Forward rate curve between T and TN . The squared L2 norm of the weights’
contribution is bounded above by:

ELV L

[
N∑

i=iT

ωi(s) ‖(K(s, Ti) − swap(s, T, TN )) η(s, Ti)‖2

]

using a convexity inequality with
∑N

i=iT
ωi(t) = 1, 0 ≤ ωi(t) ≤ 1. To bound η(s, Tk) in this expression, we

use the definition of σB(s, Tk − s) in (7) and the fact that the Forwards K(s, Tj) are always positive to get:

ELV L
[
‖η(s, Ti)‖4

]
≤ ELV L


∥∥∥∥∥∥

N∑
i=iT

ωi(s)

 k∑
j=i

δK(s, Tj)γ(s, Tj − s)

∥∥∥∥∥∥
4


with the convention
∑k

j=i = −∑i
j=k if i > k. If we recall that γ(s, Tk − s) : R2

+ → Rd
+ is a bounded input

parameter with E
[
‖γ(s, Tk − s)‖2

]
≤ γ̄2, we can use (14) and the previous lemma to get:

ELV L
[
‖η(s, Tk)‖4

]
≤ M4

4 γ̄4δ4maxj∈[iT ,N ]K(t, Tj)4(N − iT )4

With these bounds we can rewrite the original inequality, using two successive Cauchy inequalities:

ELV L

[
N∑

i=iT

ωi(s) (K(s, Ti) − swap(s, T, TN ))2 ‖η(s, Ti)‖2

]

≤
N∑

i=iT

‖ωi(s)‖4 ‖(K(s, Ti) − swap(s, T, TN ))‖2
8 ‖η(s, Ti)‖2

4

≤ max
j

‖(K(s, Tj) − swap(s, T, TN ))‖2
8 M2

4 γ̄2δ2maxj∈[iT ,N ]K(t, Tj)2(N − iT )2

Which gives the desired result.

With δK(t, Tk) 
 10−2 and (K(s, Ti) − swap(s, T, TN ))2 
 10−3 in practice, we notice that the
contribution of the weights to the swap volatility is several orders of magnitude below that of the basket and
we will neglect it in the Swaptions pricing approximations that follow. Before detailing the key approximation
result, we introduce some new notations.

10



Notation 8 We define KLV L(s, Ti) such that:

dKLV L(s, Ti) = KLV L(s, Ti)γ(s, Ti − s)dWLV L
s

with KLV L(t, Ti) = K(t, Ti). We also define the following residual volatilities:

ξk(s) = KLV L(s, Tk)γ(s, Tk − s) − γw(s)

with γw(s) =
∑N

i=iT
ωi(t)KLV L(s, Ti)γ(s, Tk − s).

We now approximate the Swap rate with a basket of lognormal martingales parametrized by the Forward
rate volatilities γ(s, Tk − s) and their initial value K(t, Ti), the weights in this decomposition being equal to
ωi(t).

Proposition 9 We can replace the Swap process by a basket Ys of lognormal martingales weighted by con-
stant coefficients, with:

E

[(
sup

t≤s≤T
(swap(s, T, TN ) − Ys)

)2
]

≤ 3 max
j∈[iT ,N ]

‖ξj(s)‖2
4 + 3

(
KLV L(t, Tk)δγ̄2 (N − iT )

)2
exp

(
(T − t)

(
δγ̄2 (N − iT ) + γ̄2/2

))
+3 max

j∈[iT ,N ]
‖(K(s, Tj) − swap(s, T, TN ))‖2

8 M2
4 γ̄2δ2maxj∈[iT ,N ]K(t, Tj)2(N − iT )2

where

dYs =
N∑

i=iT

ωi(t)KLV L(s, Ti)γ(s, Ti − s)dWLV L
s

with Yt = swap(t, T, TN ).

Proof. With the swap rate dynamics computed as in (13), we get:

d(swap(s, T, TN ) − Ys) =
N∑

k=iT

(ωk(s) − ωk(t)) KLV L(s, Tk)γ(s, Tk − s)dWLV L
s

+
N∑

k=iT

ωk(s)
(
K(s, Tk) − KLV L(s, Tk)

)
γ(s, Tk − s)dWLV L

s

+
N∑

k=iT

ωk(s)K(s, Tk)η(s, Tk)dWLV L
s

We can bound the norm of the last term in this decomposition using the result in (16). If we look at the first
term and note ∆k,s = K(s, Tk) − KLV L(s, Tk) with ∆k,t = 0 we have:

d∆k,s = ∆k,s

(
N∑

i=iT

ωi(s)
(
σB(s, Tk − s) − σB(s, Ti − s)

)
γ(s, Tk − s)

)

+KLV L(s, Tk)

(
N∑

i=iT

ωi(s)
(
σB(s, Tk − s) − σB(s, Ti − s)

)
γ(s, Tk − s)

)
ds

+∆k,sγ(s, Tk − s)dWLV L
s

hence:

∆k,T = KLV L(T, Tk)
∫ T

t

(
µk,s exp

(∫ s

t

µk,udu

)
ds

)

11



where

µk,s =
N∑

i=iT

ωi(s)
(
σB(s, Tk − s) − σB(s, Ti − s)

)
γ(s, Tk − s)

With ‖µk,s‖2 ≤ (N − iT ) δγ̄2 we can bound the norm of ∆k,T by:

‖∆k,T ‖2 ≤ K(t, Tk) exp
(
(T − t)

(
δγ̄2 (N − iT ) + γ̄2/2

))
Focusing on the second term, as in (15) with this time

∑N
i=iT

ωi(s) − ωi(t) = 0 and

ξk(s) = KLV L(s, Tk)γ(s, Tk − s) − γw(s),

we can write: ∥∥∥∥∥
N∑

k=iT

(ωk(s) − ωk(t)) KLV L(s, Tk)γ(s, Tk − s)

∥∥∥∥∥
2

2

≤ max
j∈[iT ,N ]

‖ξj(s)‖2
4

The bound obtained is a function of the norm of the residual volatilities ‖ξi(s)‖2
4 and of the spread term

‖(K(s, Ti) − swap(s, T, TN ))‖2
8. We conclude using Doob’s inequality.

The term ‖ξi(s)‖2
4 is equivalent to the variance contribution of the second factor of the covariance matrix

and ‖(K(s, Ti) − swap(s, T, TN ))‖2
8 is a spread of rates, so we neglect both terms relative to the central

volatility γw(s) and we consider the Swaption as an option on the basket Ys. We notice that because we
approximate one martingale by another, the error is in fact uniformly bounded in L2. Because of these
properties and the fact that the option’s payoff is Lipschitz, in the Swaption price approximations that follow,
we will be treating the Swaption as an option on a basket of lognormal Forwards.

3 Basket price approximation

Basket options, i.e. options on a basket of goods, have become a pervasive instrument in financial engineering.
Besides the Swaptions described in the previous section, this class of instruments includes index options and
exchange options in the equity markets, or yield curve options and spread options in fixed income markets.
In these markets, baskets provide raw information about the correlation between instruments which is central
to the pricing of exotic derivatives. In this section, we detail an efficient pricing approximation technique that
leads to very natural closed-form basket pricing formulas with excellent precision results.

The classical ”noise addition in decibels” order zero lognormal approximation was studied by Huynh
(1994), Musiela & Rutkowski (1997) and Brace et al. (1999) when the underlying instruments follow a Black
& Scholes (1973) like lognormal diffusion. Here, we approximate the price of a basket using stochastic ex-
pansion techniques similar to those used by Fournié, Lebuchoux & Touzi (1997) or Fouque, Papanicolaou &
Sircar (2000) on other stochastic volatility problems. This provides a theoretical justification for the classical
price approximation and allows us to compute additional terms, better accounting for the stochastic nature
of the basket volatility. In fact, the first correction can be interpreted as a first order approximation of the
hedging tracking error as defined in El Karoui, Jeanblanc-Picqué & Shreve (1998).

3.1 Generic multivariate lognormal model

We suppose that the market is composed of n risky assets Si
t , i = 1, . . . , n plus one riskless asset Mt. We

assume that these processes are defined on a probability space (Ω, F,Q) and are adapted to the natural filtra-
tion {Ft, 0 ≤ t ≤ T}. We suppose that there exists a forward martingale measure Q as defined in El Karoui,
Geman & Rochet (1995) (the notation Q is left voluntarily non specific for our purposes here because it can
either be associated with the forward market of maturity T and constructed by taking the savings account as
a numeraire or it could be the level payment induced martingale measure as in the Swaption pricing formulas
treated in the first section). In this market, the dynamics of the forwards F i

t are given by dF i
s = F i

sσ
i
sdWs
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and Ms = 1 for s ∈ [t, T ], where Wt is a d-dimensional Q-Brownian motion adapted to the filtration {Ft}
and σs =

(
σi

s

)
i=1,...,n

∈ Rn×d is the volatility matrix and we note Γs ∈ Rn×n the corresponding covariance

matrix defined as (Γs)i,j =< σi
s, σ

j
s >. We study the pricing of an option on a basket of forwards given

by Fω
t =

∑n
i=1 ωiF

i
t where ω = (ωi)i=1,...,n ∈ Rn. The terminal payoff of this option at maturity T is

computed as:

h (Fω
T ) =

(
n∑

i=1

ωiF
i
T − k

)+

for a strike price k. The key observation at the origin of the following approximations is that the basket
process dynamics are close to lognormal. The simple formula for basket prices that we will get is specifically
centered around a deterministic approximation of the basket volatility:

dFω
s = Fω

s

(
n∑

i=1

ω̂i,sσ
i
s

)
dWs with ω̂i,s =

ωiF
i
s∑n

i=1 ωiF i
s

(17)

3.2 Diffusion approximation

The classical order zero formula approximates the sum of lognormals as a lognormal variable while matching
the two first moments. This method has its origin in the electrical engineering literature as a classic problem
in signal processing where it represents, for example, the addition of noise in decibels (see Schwartz & Yeh
(1981) among others). The same method was then used in finance by Huynh (1994), Musiela & Rutkowski
(1997) for equity baskets or Brace et al. (1999) for Swaptions. Here we justify this empirical result and look
for an extra term that better accounts for the (mildly) stochastic nature of the basket volatility and improves
the pricing approximation outside of the money. The approximation above simply expresses the fact that
if all the forward volatility vectors were equal then the basket diffusion would then be exactly lognormal.
It is then quite natural to look for an extra term by developing the above approximation around the central
first-order volatility vector

∑n
j=1 ω̂i,tσ

j
s . As in the previous section, we first define the residual volatility ξi

s

as the difference between the original volatility σi
s and the central basket volatility

∑n
j=1 ω̂j,tσ

j
s and we set

ξi
s = σi

s −
∑n

j=1 ω̂j,tσ
j
s , for i = 1, ..., n and s ∈ [t, T ]. We also note σω

s =
∑n

j=1 ω̂j,tσ
j
s (notice that σω

s is
Ft − measurable).

We can write the dynamics of the basket Fω
s in terms of ω̂i,s and the residual volatilities ξi

s. Remember
that for s ∈ [t, T ] we have ω̂j,s ≥ 0 with

∑n
j=1 ω̂j,s = 1, hence σω

s is a convex combination of the σj
s and∑n

j=1 ω̂j,sξ
j
s is a convex combination of the residual volatilities ξj

s with
∑n

j=1 ω̂j,tξ
j
t = 0. As this term tends

to be very small, we will now compute the small noise expansion of the basket Call price around such small
values of

∑n
j=1 ω̂j,sξ

j
s . We first write

dFω,ε
s = Fω,ε

s

(
σω

s + ε
∑n

j=1 ω̂j,sξ
j
s

)
dWs

dω̂ε
i,s = ω̂ε

i,s

(
ξi
s − ε

∑n
j=1 ω̂j,sξ

j
s

)(
dWs + σω

s ds + ε
∑n

j=1 ω̂j,sξ
j
sds

) (18)

and develop around small values of ε > 0. As in Fournié et al. (1997), we want to evaluate the price and
develop its series expansion in ε around 0.

Cε = E
[
(Fω,ε

T − k)+ | (Fω
t , ω̂t)

]
with Cε = C0 + C(1)ε + C(2) ε2

2
+ o(ε2)

We can now get the order zero term as the classical basket approximation, which corresponds to that in Huynh
(1994), Musiela & Rutkowski (1997) or Brace & Womersley (2000).

Proposition 10 The first term C0 is given by the Black & Scholes (1973) formula. In this simple approxima-
tion, the basket call price is given by:

C0 = BS(T, Fω
t , VT ) = Fω

t N(h(VT )) − κN
(
h(VT ) −

√
VT

)
(19)
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where

h (VT ) =

(
ln
(

F ω
t

κ

)
+ 1

2VT

)
√

VT

and VT =
∫ T

t

‖σω
s ‖2

ds

where the variance can be computed as VT =
∫ T

t
Tr (ΩtΓs) ds with Ωt = ω̂tω̂

T
t .

Proof. Because for s ∈ [t, T ] we have ω̂j,s ≥ 0 with
∑n

j=1 ω̂j,s = 1, as in Fournié et al. (1997) or Fouque
et al. (2000) we can compute C0 by solving the limit P.D.E.:

∂C0

∂s + ‖σω
s ‖2 x2

2
∂2C0

∂x2 = 0

C0 = (x − K)+ for s = T

hence the above result. Finally Tr (ΩtΓs) =
∑n

i=1

∑n
j=1 ω̂i,tω̂j,t < σj

s, σ
i
s >= ‖σω

s ‖2 allows us to rewrite
the variance as the inner product of Ωt and Γs.

We have recovered the classical order zero approximation, we can now look for an extra term by solving
for C(1).

Lemma 11 Suppose that the underlying dynamics are described by (18). The first order term C(1)(s, x, y)
can be computed by solving:

0 =
∂C(1)

∂s
+ ‖σω

s ‖2 x2

2
∂2C(1)

∂x2
+

n∑
j=1

〈
ξj
s , σ

ω
s

〉
xyj

∂2C(1)

∂x∂yj
(20)

+
n∑

j=1

∥∥ξj
s

∥∥2 y2
j

2
∂2C(1)

∂y2
j

+
n∑

j=1

〈
ξj
s , σ

ω
s

〉
yj

∂C(1)

∂yj
+

n∑
j=1

〈
ξj
s , σ

ω
s

〉
yjx

2 ∂2C0

∂x2

0 = C(1) for s = T

with C0 = BS(s, x, Vs) given by the Black & Scholes (1973) formula as in (19).

Proof. Let us first detail explicitly the P.D.E. followed by the price process. With the dynamics given by:
dFω,ε

s = Fω,ε
s

(
σω

s + ε
∑n

j=1 ω̂j,sξ
j
s

)
dWs

dω̂ε
i,s = ω̂ε

i,s

(
ξi
s − ε

∑n
j=1 ω̂ε

j,sξ
j
s

)(
dWs + σω

s ds + ε
∑n

j=1 ω̂j,sξ
j
sds

)
as in Karatzas & Shreve (1991) we get for

Cε = E
[
(Fω,ε

T − k)+ | (Fω
t , ω̂t)

]
the corresponding P.D.E. : {

Lε
0C

ε = 0
Cε = (x − k)+ for s = T
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where Lε
0 is given by (with x and yi associated to Fω,ε

s and ω̂i,s respectively):

Lε
0 =

∂Cε

∂s
+

∥∥∥∥∥∥σω
s + ε

n∑
j=1

yjξ
j
s

∥∥∥∥∥∥
2

x2

2
∂2Cε

∂x2

+
n∑

j=1

〈ξj
s , σ

ω
s

〉
+ ε

n∑
k=1

yk

〈
ξj
s − σω

s , ξk
s

〉− ε2

∥∥∥∥∥
n∑

k=1

ykξk
s

∥∥∥∥∥
2
xyj

∂2Cε

∂x∂yj

+
n∑

j=1

∥∥∥∥∥ξj
s − ε

n∑
k=1

ykξk
s

∥∥∥∥∥
2

y2
j

2
∂2Cε

∂y2
j

+
n∑

j=1

〈ξj
s , σ

ω
s

〉
+ ε

n∑
k=1

yk

〈
ξj
s − σω

s , ξk
s

〉− ε2

∥∥∥∥∥
n∑

k=1

ykξk
s

∥∥∥∥∥
2
 yj

∂Cε

∂yj

as in Fournié et al. (1997) we can differentiate this P.D.E. with respect to ε to get:

0 = Lε
0C

(1),ε +

2
n∑

j=1

yj

〈
ξj
s , σ

ω
s

〉
+ 2ε

∥∥∥∥∥
n∑

k=1

ykξk
s

∥∥∥∥∥
2
 x2

2
∂2Cε

∂x2

+
n∑

j=1

 n∑
k=1

〈
ξj
s − σω

s , ξj
s

〉− 2ε

∥∥∥∥∥
n∑

k=1

ykξk
s

∥∥∥∥∥
2
xyj

∂2Cε

∂x∂yj

+
n∑

j=1

−2
n∑

k=1

yk

〈
ξj
s , ξ

k
s

〉
+ 2ε

∥∥∥∥∥
n∑

k=1

ykξk
s

∥∥∥∥∥
2
 y2

j

2
∂2Cε

∂y2
j

+
n∑

j=1

 n∑
k=1

yk

〈
ξj
s − σω

s , ξk
s

〉− 2ε

∥∥∥∥∥
n∑

k=1

ykξk
s

∥∥∥∥∥
2
 yj

∂Cε

∂yj

0 = C(1),ε for s = T

and again as in Fournié et al. (1997) or Fouque et al. (2000) we take the limit as ε → ∞ and compute C(1)

as the solution to: {
L0

0C
(1) +

(∑n
j=1 yj

〈
ξj
s , σ

ω
s

〉)
x2 ∂2C0

∂x2 = 0
Cε = 0 for s = T

which is again, with C0 = BS(T, Fω
t , VT ) given by (19):

0 =
∂C(1)

∂s
+ ‖σω

s ‖2 x2

2
∂2C(1)

∂x2
+

n∑
j=1

〈
ξj
s , σ

ω
s

〉
xyj

∂2C(1)

∂x∂yj

+
n∑

j=1

∥∥ξj
s

∥∥2 y2
j

2
∂2C(1)

∂y2
j

+
n∑

j=1

〈
ξj
s , σ

ω
s

〉
yj

∂C(1)

∂yj
+

n∑
j=1

〈
ξj
s , σ

ω
s

〉
yjx

2 ∂2C0

∂x2

0 = C(1) for s = T

which is the desired result.

We can now compute a closed-form solution to the equation verified by C(1) using its Feynman-Kac
representation.

Proposition 12 Suppose that the underlying dynamics are described by (18).
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The derivative C(1)
(
t, Fω

t , (ω̂j,t)j=1,...,n

)
can be computed as:

C(1) = Fω
t

∫ T

t

n∑
j=1

ω̂j,t

〈
ξj
s , σ

ω
s

〉√
Vt,T

exp
(

2
∫ s

t

〈
ξj
u, σω

u

〉
du

)
(21)

n

(
ln F ω

t

K +
∫ s

t

〈
ξj
u, σω

u

〉
du + 1

2Vt,T√
Vt,T

)
ds

Proof. The limiting diffusions are given by:

Fω,0
s = Fω

t exp
(∫ s

t

σω
u dWu − 1

2

∫ s

t

‖σω
u‖2

du

)
ω̂0

j,s = ω̂j,t exp
(∫ s

t

σ̃j
udWu +

∫ s

t

(〈
ξj
u, σω

u

〉− 1
2

∥∥σ̃j
u

∥∥2
)

du

)
and because C(1) solves the P.D.E. (20) in the above lemma, with

∂2C0
s

∂x2
=

n(h(x, Vs,T ))
x
√

Vs,T

where n(x) =
1√
2π

exp
(
−1

2
x2

)
We can write the Feynman-Kac representation of the solution to (20) with terminal condition zero as:

C(1) =
∫ T

t

E

 n∑
j=1

〈
ξj
s , σ

ω
s

〉
ω̂0

j,sF
ω,0
s

n(h(Vs,T , Fω,0
s ))√

Vs,T

 ds

where

h (u, v) =

(
ln
(

v
κ

)
+ 1

2u
)

√
u

with Vs,T =
∫ T

s

‖σω
u‖2

du

Hence we can directly compute C(1) as:

C(1) = Fω
t

∫ T

t

n∑
j=1

ω̂j,t

〈
ξj
s , σ

ω
s

〉
exp

(∫ s

t

−1
2

∥∥ξj
u − σω

u

∥∥2
du

)

E

[
exp

(∫ s

t

(
σω

u + ξj
u

)
dWu

)√
Vs,T

n

(
ln F ω

t

K +
∫ s

t
σω

u dWu − 1
2Vt,s + 1

2Vs,T√
Vs,T

)]
ds

which is, using the Cameron-Martin formula:

C(1) = Fω
t

∫ T

t

n∑
j=1

ω̂j,t

〈
ξj
s , σ

ω
s

〉
exp

(
2
∫ s

t

〈
ξj
u, σω

u

〉
du
)√

Vs,T

E

[
n

(
ln F ω

t

K +
∫ s

t
σω

u dWu +
∫ s

t

〈
ξj
u, σω

u

〉
du + 1

2Vt,T√
Vs,T

)]
ds

and because for g = N(a, b2) :

E[n(g)] =
1√

b2 + 1
n

(
a√

b2 + 1

)
we get:

C(1) = Fω
t

∫ T

t

n∑
j=1

ω̂j,t

〈
ξj
s , σ

ω
s

〉√
(Vt,s + Vs,T )

exp
(

2
∫ s

t

〈
ξj
u, σω

u

〉
du

)

n

(
ln F ω

t

K +
∫ s

t

〈
ξj
u, σω

u

〉
du + 1

2Vt,T√
(Vt,s + Vs,T )

)
ds
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which is the desired result.

It is possible to compute the order two term explicitly but the computations are a bit longer. We will show
below that this result can be interpreted as a correction accounting for the misspecification of the volatility
induced.

3.3 Robustness interpretation

The basket dynamics are essentially that of an almost lognormal process with a mildly stochastic volatility.
By approximating these dynamics with a true lognormal process, we will make a small ”tracking error” in
the computation of the replicating portfolio by computing the delta using an incorrect specification of the
volatility. As in El Karoui et al. (1998), we can compute this tracking error almost explicitly. Suppose
that Πσω

s ,s is the value at time s of a self-financing delta hedging portfolio computed using the approximate
volatility σω

s . As the volatility in this delta computation is only approximately equal to the volatility driving
the underlying assets, there will be a small hedging tracking error es computed as es = Pσω

s ,s − Πσω
s ,s for

s ∈ [t, T ], where Pσω
s ,s is the price of the option at time s, computed using the approximate volatility σω

s . Of
course, we know that Pσω

s ,T = (Fω
t − K)+ and we can understand E[es] as a price correction accounting

for the volatility misspecification. From El Karoui et al. (1998) we know that we can compute this (exact)
tracking error explicitly as:

eT =
1
2

∫ T

t

∥∥∥∥∥
n∑

i=1

ω̂i,sσ
i
s

∥∥∥∥∥
2

− ‖σω
s ‖2

 (Fω
s )2

∂2C0(Fω
s , Vt,T )

∂x2
ds (22)

From the computation of C(1) in the previous part we know:

C(1) =
∫ T

t

E

 n∑
j=1

〈
ξj
s , σ

ω
s

〉
ω̂j,sF

ω
s

n(h(Vs,T , Fω
s ))√

Vs,T

 ds

With σi
s = σω

s + ξi
s, and because

∑n
i=1 ω̂i,s = 1, we rewrite (22) as:

eT =
∫ T

t

(〈
n∑

i=1

ω̂i,sσ
i
s − σω

s , σω
s

〉)
(Fω

s )2
∂2C0(Fω

s , Vt,T )
∂x2

ds

+
1
2

∫ T

t

∥∥∥∥∥
n∑

i=1

ω̂i,sσ
i
s − σω

s

∥∥∥∥∥
2
 (Fω

s )2
∂2C0(Fω

s , Vt,T )
∂x2

ds

The first order expansion of eT for small values of ξi
s gives:

e
(1)
T =

∫ T

t

〈
n∑

i=1

ω̂i,sξ
i
s, σ

ω
s

〉
(Fω

s )2
∂2C0(Fω

s , Vt,T )
∂x2

ds

writing the value of the Gamma explicitly, we get:

e
(1)
T =

∫ T

t

n∑
i=1

〈
ξi
s, σ

ω
s

〉
ω̂i,sF

ω
s

n(h(Vs,T , Fω
s ))√

Vs,T

ds

and finally C(1) = E
[
e
(1)
T

]
. This means that the first order correction in the basket price approximation

can also be interpreted as the expected value of the first order tracking error approximation for small values
of the residual volatility ξi

s. This validates the price approximation in terms of both pricing and hedging
performance. To make the link with section two explicit, we now write the order zero approximation in the
particular case of Swaption pricing.
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3.4 Swaption price approximation

If we go back to the particular Swaption pricing problem developed in section two, the result above allows us
to approximate the price of a Swaption.

Proposition 13 Using the above approximations, the price of a payer Swaption with maturity T and strike
κ, written on a Forward Swap starting at T with maturity TN is given at time t ≤ T by the Black formula
plus a correction term:

Swaptiont = Level(t, T, TN )
(
swap(t, T, TN )N(h) − κN(h −

√
VT )

)
+ Level(t, T, TN )C(1) (23)

with

h =

(
ln
(

swap(t,T,TN )
κ

)
+ 1

2VT

)
√

VT

with VT =
∫ T

t

‖γω(s)‖2
ds

where swap(t, T, TN ) is the market value of the Forward swap today with

ω̂i(t) = ωi(t)
K(t, Ti)

swap(t, T, TN )
and γω(s) =

N∑
i=1

ω̂i(t)γ(s, Ti − s)

and

C(1) =
∫ T

t

n∑
j=1

ω̂j(t)
〈ξ(s, Tj − s), γω(s)〉√

Vt,T

exp
(

2
∫ s

t

〈ξ(s, Tj − s), γω(s)〉 du

)

n

(
ln Level(t,T,TN )

K +
∫ s

t
〈ξ(s, Tj − s), γω(s)〉 du + 1

2Vt,T√
Vt,T

)
ds

where ξ(s, Ti − s) = γ(s, Ti − s) − γω(s).

In the last section, we will study the practical precision of this approximation by comparing the price
obtained using the formulas above with the price obtained by Monte-Carlo simulations in both the Libor
Market model and in the generic multidimensional Black & Scholes (1973) model.

4 Libor market model calibration

In this section, we detail the calibration problem and its resolution by semidefinite programming techniques.
For a general overview of semidefinite programming algorithms see Nesterov & Nemirovskii (1994) or Van-
denberghe & Boyd (1996). Because it provides sufficient precision in most market conditions, we will use
the order zero approximation here (if the rates become less correlated and the relative variance of the second
factor increases, we can always replace Ωt below by a new matrix, factoring in the first order price correc-
tion). Let us write the market variance in the approximation obtained in the last section as a function of the
scalar product of the forward rates covariance matrix and a matrix computed from market data on the Swap
weights:

VT =
∫ T

t

∥∥∥∥∥
N∑

i=1

ω̂i(t)γ(s, Ti − s)

∥∥∥∥∥
2

ds =
∫ T

t

 N∑
i=1

N∑
j=1

ω̂i(t)ω̂j(t) 〈γ(s, Ti − s), γ(s, Tj − s)〉
 ds

=
∫ T

t

Tr (ΩtXs) ds (24)

where Ωt,Xt ∈ RN×N , t ∈ [0, T ] are positive semidefinite symmetric matrixes defined by:

Ωt = ω̂(t)ω̂(t)T = (ω̂i(t)ω̂j(t))i,j∈[1,N ] � 0 and Xs = (〈γ(s, Ti − s), γ(s, Tj − s)〉)i,j∈[1,N ] � 0
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i.e. Xs is the covariance matrix of the forward rates (Gram matrix of the γ(s, Ti−s) vectors). This shows that
the cumulative market variance of a particular Swaption can be written as a linear functional of the Forward
rates covariance matrix. With σ2

market,kTk for k = 1, ...,M , the market cumulative variance for the Swaption
of maturity Tk as inputs, the calibration problem can then be written as an infinite-dimensional linear matrix
inequality (L.M.I.) :

Find Xs

s.t. Tr
(
Ωt

(∫ T

t
Xsds

))
= σ2

market,kTk for k = (1, ...,M)
Xs � 0

(25)

in the variable Xs : R+ → Sn, where the matrix Ωt is quoted by the market today.
Because the market variance constraints are linear with respect to the underlying variable Xs and the set

of positive semidefinite matrixes is a convex cone, we find that the general calibration problem is convex
and given a convex objective function, it has a unique global solution. For simplicity now and to keep the
focus on the problem geometry, we discretize Xs with a δ frequency and make the common (but not necessary
here) simplifying assumption that although the forward rates volatilities are not stationary, their instantaneous
correlation is, hence the volatility function take a quasi-stationary form γ(s, x) = σ(s)η(x) with σ and η such
that σ(s) = σ(1

δ �δs�), η(u) = η(1
δ �δu�) and σ(s) = η(s) = 0 when s ≤ 0. The expression of the market

cumulative variance then becomes VT =
∑T

i=t δTr (ΩtXi) . We can account for Bid-Ask spreads in the
market data by relaxing the constraints as:

Find Xi

s.t. σ2
Bid,kTk ≤∑T

i=t δTr (Ωt,kXi) ≤ σ2
Ask,kTk for k = 1, ...,M

Xi � 0 for i = 0, ..., T

(26)

where we have set Xi =
(
σ2(s) 〈η(Ti − s), η(Tj − s)〉)

i,j∈[1,N ]
� 0 (keeping in mind that the vectors

η(Ti−s) creating this matrix ”shift” from period to period). Numerical packages such as SEDUMI by Sturm
(1999) (for symmetric cone programming) solve these problems with excellent complexity bounds similar to
those obtained for linear programs (see Nesterov & Todd (1998)).

4.1 Applications

In general, the calibration problem gives an entire set of solutions. Different choices of convex objectives are
detailed below.

4.1.1 Bounds on other Swaptions

One of the most simple choices of objective matrix C is to set it to another Swaptions associated matrix
ΩTi

. The calibration problem finds the parameters for the Libor market model that gives either a minimum
or a maximum arbitrage-free price (within the BGM framework) to the considered Swaption while matching
a certain set of market prices on other Caps and Swaptions (see d’Aspremont (2002b) and d’Aspremont
(2002a)).

4.1.2 Distance to a target covariance matrix

Let A be a target covariance matrix (for example, a previous calibration result or an historical estimate),
we can minimize ‖A − X‖ under the constraints in (26). If ‖.‖ is the spectral or Euclidean norm, this is a
symmetric cone program and can be solved as in Nesterov & Todd (1998) or Sturm (1999).

4.1.3 Maximum entropy

In the spirit of Avellaneda, Friedman, Holmes & Samperi (1987), let P be a covariance matrix representing
prior information on the distribution of Forwards, as in Vandenberghe, Boyd & Wu (1998) we can minimize
− ln det (X) + Tr(P−1X) to find the maximum relative entropy solution to the calibration problem.
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4.1.4 Smoothness constraints

It is sometimes desirable to impose smoothness objectives on the calibration problem to reflect the fact that
market operators will tend to price similarly the variance of two products with close characteristics. A com-
mon way of smoothing the solution is to minimize the surface of the covariance matrix that we approximate
here by:

S =
∑

i,j∈[2,n]

‖∆i,jX‖2 where ∆i,jX =
(

Xi,j − Xi−1,j

Xi,j − Xi,j−1

)
Again, this is a symmetric cone program.

4.1.5 Calibration stabilization: a Tikhonov regularization

Along the lines of Cont (2001), we can explore the impact of the smoothness constraints introduced above.
We can think of the calibration as an ill-posed inverse problem and write the smooth calibration program

as a Tikhonov (1963) regularization of the original problem. If we set, σ2
Mid,k =

(
σ2

Bid,k + σ2
Aks,k

)
/2,

minimizing
∑M

k=1

∥∥∥Tr(ΩkX) −
(
σ2

Mid,kTk

)∥∥∥2

+ α ‖X‖2 will then directly improve the stability of the

calibration problem.

4.2 Rank Minimization

Because the calibrated model will be used to compute prices of other derivatives using mostly Monte-Carlo
techniques or trees, it is highly desirable to get a low rank solution. In general, the matrix solution to the
calibration problem will lie on the border of the semidefinite cone and hence will be singular but there is
no guarantee that the rank will remain below a certain level. In general (cf.Vandenberghe & Boyd (1996)),
this problem is NP-Hard. However, some very efficient heuristical methods (see Fazel, Hindi & Boyd (2000)
on trace minimization) can produce results with very rapidly decreasing eigenvalues. In practice and in
accordance with prior empirical studies (see Brace et al. (1997)), all solutions (even those with a high rank)
tend to have only one or two dominant eigenvalues with the rest of the spectrum several orders of magnitude
smaller.

5 Numerical examples

5.1 Approximation precision

To assess the practical performance of the lognormal swap rate approximation in the pricing of Swaptions,
we will compare the prices obtained for a large set of key liquid Swaptions using Monte-Carlo simulation and
the lognormal forward swap approximation. We have used the classic Euler discretization scheme as detailed
for example in Sidenius (1998). In figure (1), we present a plot of the difference between two distinct sets
of Swaption prices in the Libor Market Model. One is obtained by Monte-Carlo simulation using enough
steps to make the 95% confidence margin of error always less than 1bp. The second set of prices is computed
using the order zero approximation formula above. We can notice that the absolute error is increasing in the
underlying maturity of the Swaption and that its sign is not constant. This plot is based on the prices obtained
by calibrating the model to EURO Swaption prices on November 6 2000 (data courtesy of Paribas Capital
Markets, London). We have used all Cap volatilities and the following Swaptions: 2Y into 5Y, 5Y into 5Y,
5Y into 2Y, 10Y into 5Y, 7Y into 5Y, 10Y into 2Y, 10Y into 7Y, 2Y into 2Y, 1Y into 9Y (the motivation
behind this choice of Swaptions is liquidity, all Swaptions in the 10Y diagonal or in 2Y, 5Y, 7Y, 10Y are
supposed to be more liquid). The absolute error is always less than 4 bp which is significantly lower than the
Bid-Ask spreads.

In the second figure (2), we plot the error in the basket pricing formula for a basket of assets, having
supposed that the forwards are all martingale under the same probability measure (hence we test the precision
of the approximations without the error coming from the forward measures, this is also a test of the formula’s
precision in an equity framework). The reference is given by a Monte-Carlo estimate with 40000 steps. The
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Figure 1: Absolute error in the order zero price approximation versus the Libor market model prices estimated
using Monte-Carlo simulation, for various ATM Swaptions.

numerical values used here are F i
0 = {0.7, 0.5, 0.4, 0.4, 0.4}, ωi = {0.2, 0.2, 0.2, 0.2, 0.2}, T = 5 years, and

the covariance matrix is given by:

11
100


0.64 0.59 0.32 0.12 0.06
0.59 1 0.67 0.28 0.13
0.32 0.67 0.64 0.29 0.14
0.12 0.28 0.29 0.36 0.11
0.06 0.13 0.14 0.11 0.16


The covariance used here comes from an historical estimate and has the typical level, spread, convexity
eigenvector structure. These values are meant to replicate the pricing of a 5Y into 5Y Swaption without
the change in measure. We can see that the pricing error is less than 2bp with the order zero approx. and
the additional order one term does not provide a significant benefit. In fact, the order zero term reaches an
excellent precision near the money, a feature that is constantly observed when the covariance matrix has the
structure given above, where the first level eigenvector accounts for around 90% of the volatility and the
model is close to univariate (as noted in Brace et al. (1997)). However, we observe in figure (3) that the
order one approximation does provide a significant precision improvement when the rates are less correlated.
Finally, in a pure equity case, i.e. when the initial value of the underlying assets is not significantly smaller
than one (an equity basket option for example), the order one correction very significantly reduces the relative
error, as can be observed in figure (4).

5.2 Calibration

Using the same data set as above, we calibrate a covariance matrix under smoothness constraints. The result-
ing matrix is plotted in figure (5). In figure (6) we plot the eigenvectors of this matrix. The first vector has a
level shape while the second one is close to a spread of rates. We can notice that this purely market implied
covariance factor structure closely matches the results obtained by historical time series analysis.
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Figure 2: Order zero (dashed) and order
one (plain) absolute approximation error ver-
sus the multidimensional Black-Scholes bas-
ket prices obtained by simulation for various
strikes.
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Figure 3: Order zero (dashed) and order
one (plain) absolute approximation error ver-
sus the multidimensional Black-Scholes bas-
ket prices obtained by simulation for various
strikes. (Diagonal covariance matrix)
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6 Conclusion

The methods described in this work are organized around one central objective: the design of a true ”black-
box” calibration and risk-management tool for classic multifactor interest rate models. In particular, the
performance guarantee given by the numerical methods used here makes it possible to design a calibration
procedure that does not require numerical baby-sitting. Furthermore, the possibility of stabilizing the cali-
bration result should induce significant savings in hedging transaction costs by suppressing the possibility of
purely numerical calibration hedging and hence P&L hikes.

In practice however, two important obstacles remain in the design of a ”Swiss army knife” interest rate
model: smile modelling and rank reduction. It is at this point not possible to globally calibrate the model
to the smile and to the covariance structure, instead, one has to apply a two-step procedure to first calibrate
the correct smile structure and then recover the covariance information using the methods detailed here. This
makes it impossible to jointly optimize the calibration result on the smile and the covariance structure (for
smoothness, stability, etc...). The second problem is rank reduction: numerical methods for American-style
securities pricing are only efficient for models with a small number of factors. As the calibrated matrixes
we obtain seem to correspond to the prior empirical evidence, we can see that rank reduction is essentially
a backward compatibility problem. Recent advances in quantization methods (see Bally & Pages (2000)) or
American Monte-Carlo (see Longstaff & Schwartz (1998) for example) make it reasonable to believe that
this limitation will not hold very long.
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