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Introduction

Semidefinite Programming:

• Essentially: linear programming over positive semidefinite matrices.

• Sounds very specialized but has applications everywhere (often
non-obvious). . .

• One example here: convex relaxations of combinatorial problems.

Sparse Multivariate Statistics:

• Sparse variants of PCA, SVD, etc are combinatorial problems.

• Efficient relaxations using semidefinite programming.

• Solve realistically large problems.
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Linear Programming

A linear program (LP) is written:

minimize cTx
subject to Ax = b

x � 0

its dual is another LP:
maximize bTx
subject to ATy � c

• Here, x � 0 means that the vector x ∈ Rn has nonnegative coefficients.

• First solved using the simplex algorithm (exponential complexity).

• Using interior point methods, complexity is O(n3.5).
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Semidefinite Programming

A semidefinite program (SDP) is written:

minimize Tr(CX)
subject to Tr(AiX) = bi, i = 1, . . . ,m

X � 0

its dual is:
maximize bTy
subject to

∑

i yiAi � C

• Here, X � 0 means that the matrix X ∈ Sn is positive semidefinite.

• Nesterov & Nemirovskii (1994) extended the complexity analysis of interior
point methods used for solving LPs to semidefinite programs (and others).

• Complexity in O(n4.5) when m ∼ n (see Ben-Tal & Nemirovski (2001)), harder
to exploit problem structure such as sparsity, low-rank matrices, etc.

A. d’Aspremont BIRS, Banff, January 2007. 4



Outline

• Two classic relaxation tricks

◦ Semidefinite relaxations and the lifting technique

◦ The l1 heuristic

• Applications

◦ Covariance selection

◦ Sparse PCA, SVD

◦ Sparse nonnegative matrix factorization

• Solving large-scale semidefinite programs

◦ First-order methods

◦ Numerical performance
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Semidefinite relaxations

Easy & Hard Problems. . .

Classical view on complexity:

• linear is easy

• nonlinear is hard(er)

Correct view:

• convex is easy

• nonconvex is hard(er)
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Convex Optimization

Problem format:

minimize f0(x)
subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

where x ∈ Rn is the optimization variable and fi : Rn → R are convex.

• includes LS, LP, QP, and many others

• like LS, LP, and QP, convex problems are fundamentally tractable

(cf. ellipsoid method)

Nonconvexity makes problems essentially untractable...

• Sometimes the result of bad problem formulation

• However, often arises because of some natural limitation: fixed transaction
costs, binary communications, ...

We can use convex optimization results to find bounds on the optimal value an
approximate solutions by relaxation.
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Basic Problem

• We focus here on a specific class of problems: Quadratically Constrained
Quadratic Programs (QCQP).

• Vast range of applications...

A QCQP can be written:

minimize xTP0x + qT
0 x + r0

subject to xTPix + qT
i x + ri ≤ 0, i = 1, . . . ,m

• If all Pi are positive semidefinite, this is a convex problem: easy.

• Here, we suppose at least one Pi not p.s.d.
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Example: Partitioning Problem

Two-way partitioning problem:

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n

where W ∈ Sn, with Wii = 0. A QCQP in the variable x ∈ Rn.

• A feasible x corresponds to the partition

{1, . . . , n} = {i | xi = −1} ∪ {i | xi = 1}.

• The matrix coefficient Wij can be interpreted as the cost of having the
elements i and j in the same partition.

• The objective is to find the partition with least total cost.

• Classic particular instance: MAXCUT (Wij ≥ 0).
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Semidefinite Relaxation

The original QCQP:

minimize xTP0x + qT
0 x + r0

subject to xTPix + qT
i x + ri ≤ 0, i = 1, . . . ,m

can be rewritten:

minimize Tr(XP0) + qT
0 x + r0

subject to Tr(XPi) + qT
i x + ri ≤ 0, i = 1, . . . ,m

X = xxT .

This is the same problem (lifted in Sn).
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Semidefinite Relaxation

We can replace X = xxT by X � xxT , Rank(X) = 1, so this is again:

minimize Tr(XP0) + qT
0 x + r0

subject to Tr(XPi) + qT
i x + ri ≤ 0, i = 1, . . . ,m

X � xxT , Rank(X) = 1

The constraint X � xxT is a Schur complement constraint and is convex. The
only remaining nonconvex constraint is now Rank(X) = 1. We simply drop it
and solve:

minimize Tr(XP0) + qT
0 x + r0

subject to Tr(XPi) + qT
i x + ri ≤ 0, i = 1, . . . ,m

[

X xT

x 1

]

� 0

This is a semidefinite program in X ∈ Sn.
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Semidefinite Relaxation

The original QCQP:

minimize xTP0x + qT
0 x + r0

subject to xTPix + qT
i x + ri ≤ 0, i = 1, . . . ,m

was relaxed as:

minimize Tr(XP0) + qT
0 x + r0

subject to Tr(XPi) + qT
i x + ri ≤ 0, i = 1, . . . ,m

[

X xT

x 1

]

� 0

• The relaxed problem is convex and can be solved efficiently.

• The optimal value of the SDP is a lower bound on the solution of the original
problem.
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Semidefinite Relaxation: Partitioning

The partitioning problem defined was a QCQP:

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n

There are only quadratic terms, so the variable x disappears from the relaxation,
which becomes:

minimize Tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n

• These relaxations only provide a lower bound on the optimal value.

• If Rank(X) = 1 at the optimum, X = xxT and the relaxation is tight.

• How can we compute good feasible points otherwise?

• One solution: take the dominant eigenvector of X and project it on {−1, 1}.
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Randomization

The original QCQP:

minimize xTP0x + qT
0 x + r0

subject to xTPix + qT
i x + ri ≤ 0, i = 1, . . . ,m

was relaxed into:

minimize Tr(XP0) + qT
0 x + r0

subject to Tr(XPi) + qT
i x + ri ≤ 0, i = 1, . . . ,m

X � xxT

• The last constraint means X − xxT is a covariance matrix...

• Pick y as a Gaussian variable with y ∼ N (x, X − xxT ), y will solve the QCQP
“on average” over this distribution, in other words:

minimize E[yTP0y + qT
0 y + r0]

subject to E[yTPiy + qT
i y + ri] ≤ 0, i = 1, . . . , m

• A good feasible point can then be obtained by sampling enough x. . .
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The l1 heuristic

Start from a linear system:
Ax = b

with A ∈ Rm×n where m < n. We look for a sparse solution:

minimize Card(x)
subject to Ax = b.

If the solution set is bounded, this can be formulated as a Mixed Integer Linear
Program:

minimize 1
Tu

subject to Ax = b
|x| � Bu
u ∈ {0, 1}n.

This is a hard problem. . .
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l1 relaxation

Assuming |x| ≤ 1, we can replace:

Card(x) =

n
∑

i=1

1{xi 6=0}

with

‖x‖1 =

n
∑

i=1

|xi|

Graphically, assuming x ∈ [−1, 1] this is:

0

1

−1 1

Card(x)

|x|

x

The l1 norm is the largest convex lower bound on Card(x) in [−1, 1].
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l1 relaxation

minimize Card(x)
subject to Ax = b

becomes minimize ‖x‖1

subject to Ax = b

• The relaxed problem is a linear program.

• This trick can be used for other problems (cf. minimum rank result from
Fazel, Hindi & Boyd (2001)).

• Candès & Tao (2005) or Donoho & Tanner (2005) show that if there is a
sufficiently sparse solution, it is optimal and the relaxation is tight. (This
result only works in the linear case).
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l1 relaxation

The original problem in MILP format:

minimize 1
Tu

subject to Ax = b
|x| � Bu
u ∈ {0, 1}n,

can be reformulated as a (nonconvex) QCQP:

minimize 1
Tu

subject to Ax = b
−x � Bu, x � Bu
u2

i = ui, i = 1, . . . , n.

• We could also formulate a semidefinite relaxation.

• Lemaréchal & Oustry (1999) show that this is equivalent to relaxing
u ∈ {0, 1}n as u ∈ [0, 1]n, which is exactly the l1 heuristic.
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Covariance Selection

We estimate a sample covariance matrix Σ from empirical data. . .

• Objective: infer dependence relationships between variables.

• We want this information to be as sparse as possible.

• Basic solution: look at the magnitude of the covariance coefficients:

|Σij| > β ⇔ variables i and j are related,

and simply threshold smaller coefficients to zero. (not always psd.)

We can do better. . .
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Covariance Selection

Following Dempster (1972), look for zeros in the inverse covariance matrix:

• Parsimony. Suppose that we are estimating a Gaussian density:

f(x,Σ) =

(

1

2π

)

p
2
(

1

detΣ

)
1
2

exp

(

−1

2
xTΣ−1x

)

,

a sparse inverse matrix Σ−1 corresponds to a sparse representation of the
density f as a member of an exponential family of distributions:

f(x,Σ) = exp(α0 + t(x) + α11t11(x) + . . . + αrstrs(x))

with here tij(x) = xixj and αij = Σ−1
ij .

• Dempster (1972) calls Σ−1
ij a concentration coefficient.

There is more. . .
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Covariance Selection

Conditional independence:

• Suppose X,Y,Z have are jointly normal with covariance matrix Σ, with

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

where Σ11 ∈ R2×2 and Σ22 ∈ R.

• Conditioned on Z, X, Y are still normally distributed with covariance matrix C
given by:

C = Σ11 − Σ12Σ
−1
22 Σ21 =

((

Σ−1
)

11

)−1

• So X and Y are conditionally independent iff
(

Σ−1
)

11
is diagonal, which is

also:
Σ−1

xy = 0
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Covariance Selection

• Suppose we have iid noise ǫi ∼ N (0, 1) and the following linear model:

x = z + ǫ1
y = z + ǫ2
z = ǫ3

• Graphically, this is:

X Y

Z
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Covariance Selection

• The covariance matrix and inverse covariance are given by:

Σ =





2 1 1
1 2 1
1 1 1



 Σ−1 =





1 0 −1
0 1 −1

−1 −1 3





• The inverse covariance matrix has Σ−1
12 clearly showing that the variables x and

y are independent conditioned on z.

• Graphically, this is again:

X Y

Z

versus
X Y

Z
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Covariance Selection

On a slightly larger scale. . .
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Applications & Related Work

• Gene expression data. The sample data is composed of gene expression
vectors and we want to isolate links in the expression of various genes. See
Dobra, Hans, Jones, Nevins, Yao & West (2004), Dobra & West (2004) for
example.

• Speech Recognition. See Bilmes (1999), Bilmes (2000) or Chen & Gopinath
(1999).

• Finance. Covariance estimation.

• Related work by Dahl, Roychowdhury & Vandenberghe (2005): interior point
methods for large, sparse MLE.
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Maximum Likelihood Estimation

• We can estimate Σ by solving the following maximum likelihood problem:

max
X∈Sn

log detX − Tr(SX)

• This problem is convex, has an explicit answer Σ = S−1 if S ≻ 0.

• Problem here: how do we make Σ−1 sparse?

• In other words, how do we efficiently choose I and J?

• Solution: penalize the MLE.
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AIC and BIC

Original solution in Akaike (1973), penalize the likelihood function:

max
X∈Sn

log detX − Tr(SX) − ρCard(X)

where Card(X) is the number of nonzero elements in X .

• Set ρ = 2/(m + 1) for AIC and ρ = log(m + 1)/(m + 1) for BIC.

• We can form a convex relaxation of AIC or BIC penalized MLE by replacing
Card(X) by ‖X‖1 =

∑

ij |Xij| to solve:

max
X∈Sn

log detX − Tr(SX) − ρ‖X‖1

Again, the classic l1 heuristic: ‖X‖1 is a convex lower bound on Card(X).
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Robustness

• This penalized MLE problem can be rewritten:

max
X∈Sn

min
|Uij|≤ρ

log detX − Tr((S + U)X)

• This can be interpreted as a robust MLE problem with componentwise noise
of magnitude ρ on the elements of S.

• The relaxed sparsity requirement is equivalent to a robustification.
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Sparse Principal Component Analysis

Principal Component Analysis (PCA): classic tool in multivariate data analysis

• Input: a covariance matrix A

• Output: a sequence of factors ranked by variance

• Each factor is a linear combination of the problem variables

Typical use: dimensionality reduction.

Numerically, just an eigenvalue decomposition of the covariance matrix:

A =
n

∑

i=1

λixix
T
i
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Sparse Principal Component Analysis

Computing factors amounts to solving:

maximize xTAx
subject to ‖x‖2 = 1.

This problem is easy, its solution is again λmax(A) at x1. Here however, we want
a little bit more. . .

We look for a sparse solution and solve instead:

maximize xTAx
subject to ‖x‖2 = 1

Card(x) ≤ k,

where Card(x) denotes the cardinality (number of non-zero elements) of x. This
is non-convex and numerically hard.
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Related literature

Previous work:

• Cadima & Jolliffe (1995): the loadings with small absolute value are
thresholded to zero.

• A non-convex method called SCoTLASS by Jolliffe, Trendafilov & Uddin
(2003). (Same problem formulation)

• Zou, Hastie & Tibshirani (2004): a regression based technique called SPCA.
Based on a representation of PCA as a regression problem. Sparsity is obtained
using the LASSO Tibshirani (1996) a l1 norm penalty.

Performance:

• These methods are either very suboptimal (thresholding) or lead to nonconvex

optimization problems (SPCA).

• Regression: works for very large scale examples.
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Semidefinite relaxation

Start from max xTAx
subject to ‖x‖2 = 1

Card(x) ≤ k,

Let X = xxT , and write everything in terms of the matrix X:

max Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X = xxT ,

Replace X = xxT by the equivalent X � 0, Rank(X) = 1:

max Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X � 0, Rank(X) = 1,

again, this is the same problem.
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Semidefinite relaxation

Numerically, this is still hard:

• The Card(X) ≤ k2 is still non-convex

• So is the constraint Rank(X) = 1

However, we have made some progress:

• The objective Tr(AX) is now linear in X

• The (non-convex) constraint ‖x‖2 = 1 became a linear constraint Tr(X) = 1.

We still need to relax the two non-convex constraints above:

• If u ∈ Rp, Card(u) = q implies ‖u‖1 ≤ √
q‖u‖2. So we can replace

Card(X) ≤ k2 by the weaker (but convex): 1
T |X |1 ≤ k

• Simply drop the rank constraint
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Semidefinite relaxation

Semidefinite relaxation combined with l1 heuristic:

max xTAx
subject to ‖x‖2 = 1

Card(x) ≤ k,

becomes
max Tr(AX)
subject to Tr(X) = 1

1
T |X |1 ≤ k

X � 0,

• This is a semidefinite program in the variable X ∈ Sn, polynomial
complexity. . .

• Small problem instances can be solved using SEDUMI by Sturm (1999) or
SDPT3 by Toh, Todd & Tutuncu (1999).

• This semidefinite program has O(n2) dense constraints on the matrix, we want
to solve large problems n ∼ 103.

Can’t use interior point methods. . .
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Robustness & Tightness

Robustness. The penalized problem can be written:

min{|Uij|≤ρ} λmax(A + U)

Natural interpretation: robust maximum eigenvalue problem with componentwise
noise of magnitude ρ on the coefficients of the matrix A.

Tightness. The KKT optimality conditions are here:















(A + U)X = λmax(A + U)X
U ◦ X = ρ|X |
Tr(X) = 1, X � 0
|Uij| ≤ ρ, i, j = 1, . . . , n.

The first order condition means that if λmax(A + U) is simple, Rank(X) = 1 so
the relaxation is tight: the solution to the relaxed problem is also a global
optimum for the original combinatorial problem.
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Sparse Singular Value Decomposition

A similar reasoning involves a non-square m × n matrix A, and the problem

max uTAv
subject to ‖u‖2 = ‖v‖2 = 1

Card(u) ≤ k1, Card(v) ≤ k2,

in the variables (u, v) ∈ Rm ×Rn where k1 ≤ m, k2 ≤ n are fixed. This is relaxed
as:

max Tr(ATX12)
subject to 1

T |Xii|1 ≤ ki, i = 1, 2
1

T |X12|1 ≤
√

k1k2

X � 0, Tr(Xii) = 1

in the variable X ∈ Sm+n with blocks Xij for i, j = 1, 2, using the fact that the
eigenvalues of the matrix:

[

0 A
AT 0

]

are {σi, . . . ,−σi, . . .} where σ are the singular values of the matrix A ∈ Rm×n.
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Nonnegative Matrix Factorization

Direct extension of sparse PCA result. . . Solving

max uTAv
subject to ‖u‖2 = ‖v‖2 = 1

Card(u) ≤ k1, Card(v) ≤ k2,

also solves:
min ‖A − uvT‖F

subject to Card(u) ≤ k1

Card(v) ≤ k2,

So, by adding constraints on u and v we can use the previous result to form a
relaxation for the Nonnegative Matrix Factorization problem:

max Tr(ATX12)
subject to 1

T |Xii|1 ≤ ki, i = 1, 2
1

T |X12|1 ≤
√

k1k2

X � 0, Tr(Xii) = 1
Xij ≥ 0,

Caveat: only works with rank one factorization. . .
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Outline

Most of our problems are dense, with n ∼ 103.

Solver options:

• Interior point methods fail beyond n ∼ 400.

• Projected subgradient: extremely slow.

• Bundle method (see Helmberg & Rendl (2000)): a bit faster, but can’t take
advantage of box-like structure of feasible set. Convergence in O(1/ǫ2).
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First order algorithm

Complexity options. . .

O(n) O(n) O(n2)

Memory

Complexity

O(1/ǫ2) O(1/ǫ) O(log(1/ǫ))

First-order Smooth Newton IP
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First order algorithm

Here, we can exploit problem structure

• Our problems here have min-max structure. For sparse PCA:

min
|Uij|≤ρ

λmax(A + U) = min
|Uij|≤ρ

max
X∈Sn

Tr((A + U)X)

• This min-max structure means that we can use prox function algorithms by
Nesterov (2005) (see also Nemirovski (2004)) to solve large, dense problem
instances.
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First order algorithm

Solve
min
x∈Q1

f(x)

• Starts from a particular min-max model on the problem:

f(x) = f̂(x) + max
u

{〈Tx, u〉 − φ̂(u) : u ∈ Q2}

• assuming that:

◦ f is defined over a compact convex set Q1 ⊂ Rn

◦ f̂(x) is convex, differentiable and has a Lipschitz continuous gradient with
constant M ≥ 0

◦ T is a linear operator: T ∈ Rn×n

◦ φ̂(u) is a continuous convex function over some compact set Q2 ⊂ Rn.
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First order algorithm

If problem has min-max model, two steps:

• Regularization. Add strongly convex penalty inside the min-max
representation to produce an ǫ-approximation of f with Lipschitz continuous
gradient (generalized Moreau-Yosida regularization step, see Lemaréchal &
Sagastizábal (1997) for example).

• Optimal first order minimization. Use optimal first order scheme for
Lipschitz continuous functions detailed in Nesterov (1983) to the solve the
regularized problem.

Benefits:

• For fixed problem size, the number of iterations required to get an ǫ solution is
given by O (1/ǫ) compared to O

(

1/ǫ2
)

for generic first-order methods.

• Low memory requirements: change in granularity of the solver: larger number
of cheaper iterations.

Caveat: Only efficient if the subproblems involved in these steps can be solved
explicitly or extremely efficiently. . .
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First order algorithm

Regularization. We can find a uniform ǫ-approximation to λmax(X) with
Lipschitz continuous gradient. Let µ > 0 and X ∈ Sn, we define:

fµ(X) = µ log Tr

(

exp

(

X

µ

))

which requires computing a matrix exponential at a numerical cost of O(n3). We
then have:

λmax(X) ≤ fµ(X) ≤ λmax(X) + µ log n,

so if we set µ = ǫ/ log n, fµ(X) becomes a uniform ǫ-approximation of
λmax(X) and fµ(X) has a Lipschitz continuous gradient with constant:

L =
1

µ
=

log n

ǫ
.

The gradient ∇fµ(X) can also be computed explicitly as:

exp

(

X − λmax(X)I

µ

)

/Tr

(

exp

(

X − λmax(X)I

µ

))

using the same matrix exponential.
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First order algorithm

Optimal first-order minimization. The minimization algorithm in Nesterov
(1983) then involves the following steps:

Choose ǫ > 0 and set X0 = βIn, For k = 0, . . . , N(ǫ) do

1. Compute ∇fǫ(Xk)

2. Find Yk = arg minY {Tr(∇fǫ(Xk)(Y − Xk)) + 1
2Lǫ‖Y − Xk‖2

F : Y ∈ Q1}.
3. Find

Zk = arg minX

{

Lǫβ
2d1(X) +

∑k
i=0

i+1
2 Tr(∇fǫ(Xi)(X − Xi)) : X ∈ Q1

}

.

4. Update Xk = 2
k+3Zk + k+1

k+3Yk.

5. Test if gap less than target precision.

• Step 1 requires computing a matrix exponential.

• Steps 2 and 3 are both Euclidean projections on Q1 = {U : |Uij ≤ ρ}.
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First order algorithm

Complexity:

• The number of iterations to get accuracy ǫ is

O

(

n
√

log n

ǫ

)

.

• At each iteration, the cost of computing a matrix exponential up to machine
precision is O(n3).

Computing matrix exponentials:

• Many options, cf. “Nineteen Dubious Ways to Compute the Exponential of a
Matrix” by Moler & Van Loan (2003).

• Padé approximation, full eigenvalue decomposition: O(n3) up to machine
precision.

• In practice, machine precision is unnecessary. . .
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First order algorithm

In d’Aspremont (2005): When minimizing a function with Lipschitz-continuous
gradient using the method in Nesterov (1983), an approximate gradient is
sufficient to get the O(1/ǫ) convergence rate. If the function and gradient
approximations satisfy:

|f(x) − f̃(x)| ≤ δ and |〈∇̃f(x) −∇f(x), y〉| ≤ δ x, y ∈ Q1,

we have:

f(xk) − f(x⋆) ≤ Ld(x⋆)

(k + 1)(k + 2)σ
+ 10δ

where L, d(x⋆) and σ are problem constants.

• Only a few dominant eigs. are required to get the matrix exponential.

• Dominant eigenvalues with ARPACK: cubic convergence.

• Optimal complexity of O(1/ǫ), same cost per iteration as regular methods with
complexity O(1/ǫ2).

• ARPACK exploits sparsity.
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Outline

• Two classic relaxation tricks

◦ Semidefinite relaxations and the lifting technique

◦ The l1 heuristic

• Applications

◦ Covariance selection

◦ Sparse PCA, SVD

◦ Sparse nonnegative matrix factorization

• Solving large-scale semidefinite programs

◦ First-order methods

◦ Numerical performance
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Covariance Selection

Forward rates covariance matrix for maturities ranging from 0.5 to 10 years.
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Zoom. . .
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Covariance Selection
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Classification Error. Sensitivity/Specificity curves for the solution to the
covariance selection problem compared with a simple thresholding of B−1, for
various levels of noise: σ = 0.3 (left) and σ = 0.5 (right). Here n = 50.
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Sparse PCA
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Sparse PCA
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Smooth first-order vs IP
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Sparse PCA
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Sparse PCA
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Sparse Nonnegative Matrix Factorization

Test relaxation on a matrix of the form:

M = xyT + U

where U is uniform noise.
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Conclusion

• Semidefinite relaxations of combinatorial problems in multivariate statistics.

• Infer sparse structural information on large datasets.

• Efficient codes can solve problems of with 103 variables in a few minutes.

Source code and binaries for sparse PCA (DSPCA) and covariance selection
(COVSEL) available at:

www.princeton.edu/∼aspremon

These slides are available at:

www.princeton.edu/∼aspremon/Banff07.pdf
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