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1.1 Interest rate model calibration

e All Heath, Jarrow & Morton (1992) based models are fully parametrized
by the curve today and a covariance function.

e If we discretize this covariance function, the natural variable in the
calibration problem is a covariance matrix, i.e. a positive semidefinite
matrix.

e Classic calibration methods are heavily parametrized and only describe
a small, often non-convex subset of the set of semidefinite matrices.

e When using these techniques, sensitivity analysis has to be done by
recalibrating.
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1.2 Results on the BGM model calibration

e We can express the swap rate as a basket of Forwards with very stable
coefficients.

e European Caplets and Swaptions can be priced using the Black (1976)
market formula with an appropriately chosen variance.

e [ his market variance is linear in the coefficients of the Forward rates
covariance matrix.

e This allows us to solve the calibration problem as a semidefinite pro-
gram.
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1.3 Related literature

e Works by Nesterov & Nemirovskii (1994) and Vandenberghe & Boyd
(1996) on semidefinite programming

e Brace, Gatarek & Musiela (1997) and Musiela & Rutkowski (1997) on
the Libor market model.

e Rebonato (1998), Brace, Dun & Barton (1999) and Singleton &
Umantsev (2001) on Swaps as baskets of Forwards. Rebonato (1999)
on a calibration method parametrized by factors.

e Parallel work by Brace & Womersley (2000) on the calibration of the
BGM by semidefinite programming and the evaluation of the Bermu-
dan Swaption.
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2 Swaption pricing

2.1 The Swap rate

The Swap is defined here as the rate that equals the PV of a fixed and a
floating leg:
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This rate can again be written:

n
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where K(t,T;) are the Forward Rates with maturities T; ,7 = 1, ..., n and
the weights w;(t) are given by
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In practice, these weights are very stable (see Rebonato (1998)).

wi(t) =
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This stability has been studied in Hamy (1999) of which we report, with
the author’s permission, some summary statistics:

Currency USD USD GBP GBP EUR FEUR
Swap 2Y 5Y 2Y 5Y 2Y 5Y
Min ratio 712 842 3835 981 148 333
Max ratio 7629 7927 6575 3473 5006 4322
Variance .023 .020 .017 .007 .005 .004

Sample ratio of volatility between weights and corresponding Forwards.

Here, Min ratio and Max ratio are the minimum (resp. maximum) volatil-
ity ratio among the weights of a particular Swap. Computed using the
standard quadratic variation estimator with exponentially decaying weights
(1998-1999 period, market data courtesy of BNP-Paribas London).
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2.2 BGM Swaption price

Following Jamshidian (1997), we can write the price of the Swaption with
strike k as a that of a Call on a Swap rate:

I_I
n
Ps(t) = Level(t, T, Ty)ECLVE | | Y wi(T)K(T, T;) — k
1=0

where Q71 1, is the swap forward martingale probability measure. In what
follows, we will make two approximations:

e We replace the weights w;(7T") by their value today w;(t).

o We suppose that > " o w;(t)K(T,T;) is a sum of Qry 1 lognormal
martingale.
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2.3 (A remark on the) Gaussian HJM Swaption price

We can also express the price of the Swaption as that of a Bond Put:

N +
Ps(t) = B(t, T)EST |(1— B(t, Ty 11) — k6 S B(t,T))

I 1=17 ]
In the Gaussian H.J.M. model (see El Karoui & Lacoste (1992), Musiela
& Rutkowski (1997) or Duffie & Kan (1996)), this expression defines the

price of a Swaption as that of a Put on a basket of lognormal zero-coupon

prices.
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2.4 Basket option pricing

We have seen that we can reduce the problem of pricing a Swaption to
that of pricing a classic Black & Scholes (1973) basket option. In generic
terms, the problem becomes that of computing:

C=E|(St— k)]
with
: . . . .
S% =Y w;K. and dK. = Kio,dWs
i=1

where W; is a n-dimensional @ﬂ-w_/\_ and o5 = AQWV&IH - e R"X " de-

geeey

scribes the volatility matrix.
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We can write the dynamics of the basket as:

’

\

o = (T @uol) dWa

& . - . . . .
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We notice that 0 < w; ¢ < 1 with M,%HH w; s = 1. We also set:

a J

note that o¢ = ,%HH W; 05 is Fy—measurable.
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We can develop these dynamics around small values of 6% and MWHH &,ﬁmmm

in particular. For some € > 0, we write:

[ dSYE = gWE Aqm +exl @sm&v AW

~NE  __ E ~ 1 n ~g =] W n ~ ]
\ &Eﬁm T Eﬁm Ac.m — ¢ MQ.HH E,ﬁmg.mv AQS\W + o ds + € M,Q.HH E&mo.mmﬁwv

As in Fournie, Lebuchoux & Touzi (1997) and Lebuchoux & Musiela (1999)
we compute:

Cf=E 7@%% — k)" (S, a&
and approximate it around € = 0 by:
Cct =% + 0We + o(¢)
Both C0 and C(1) (as well as QANVV can be computed explicitly.
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In fact, CO is given by the BS formula:
O mmGJ@:«@Y|m%2Q;§3v|32Aw:@v| Hbv
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2.5 The BGM Swaption pricing formula

We can write the order zero price approximation for Swaptions:

Swaption = Level(t,T,Ty) Am@&c? T, Tn)N(h) — kN(h — <%\MVV

with
A_: Amegﬁmﬂﬂzvv n W<ﬂv
h = 7
where
N 2
Vp = \ﬁ ! W@Siyﬁ_ _s)l| ds and @y(t) = e@.:vmsgwmuwvﬂzv
QT4

and dK (s, T;) = (s, T; — s)K(s,T;)dWj

A. d'Aspremont Frontiéres en Finance Paris, Friday May 31 2002.



15

Calibration of BGM models by semidefinite programming.

2.6 BGM approximation precision

e We plot the difference between two distinct sets of Swaption prices in
the Libor Market Model. One is obtained by Monte-Carlo simulation
using enough steps to make the 95% confidence margin of error always

less than 1bp. The second set of prices is computed using the order
zero approximation.

e The plots are based on the prices obtained by calibrating the model to
EURO Swaption prices on November 6 2000. We have used all Cap
volatilities and the following Swaptions: 2Y into 5Y, 5Y into 5Y, bY

into 2Y, 10Y into 5Y, 7Y into 5Y, 10Y into 2Y, 10Y into 7Y, 2Y into
2Y, 1Y into 9Y.

A. d'Aspremont Frontiéres en Finance Paris, Friday May 31 2002.



16

Error (basis points)
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Absolute pricing error (in basis points)

IN T T T T T T T T T T T T T T T

Swaption (Maturity, Underlying)

Figure 1: Absolute error (in bp) for various ATM Swaptions.
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Error in the 10Y into 2Y Swaption price vs moneyness
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Figure 2: Absolute error (in bp) on the 10Y into 2Y.
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Error in the 10Y into 7Y Swaption price vs moneyness
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Figure 3: Absolute error (in bp) on the 10Y into 7Y.
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3 Calibration

We have approximated the Swaption (T, Tyy+m) price by:

P = Level(t, Tm, Ty+m)BS(T, swap(t, Tm, Ty+m), V(Tm, Tyut+m))

where BS is the Black (1976) formula with
Tm || Y 2
VT, Tuem) = || X &ilt)(s, T = 5))| ds
1=m
Suppose that we need to impose a sequence of M market pricing con-
straints. We express these constraints in terms of the market variance

inputs an

V(T Tup+my,) = 03Tm, fork=1,...M
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We can rewrite the cumulative variance:

Tm U °
L2 @i T - )| ds
MJS@ s§|§ "
= [ 3 ai0y(0) (1(s. T = 9), (s, Ty — 5)) ds
NJS@ m Jj=m
— \w Tr ADX%V ds

where T'r is the trace, X is the Forward rate covariance matrix, with

(X5s)i A\im —5),7(s,Tj — ,wvv and

and AEASEHSV is a rank one matrix with AEASEHA&v i = = w;(t)w;(t).
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This means that the calibration constraints are linear in GGs and can be

written:
HS\A 5
\ Tr (2, Xs) ds = 02Ty, fork=1,..,M
4

Suppose, for example, that the volatility of the sliding maturity Libors is
stationary and discretized yearly, with v(s,T; —s) = ~v(|T; — s]), we can
rewrite the pricing constraints:
Tr (QuX) = 02T, fork=1,..,M
T
where €2, = MUNHH\,d 2}, i» with £, ; a matrix equal to zero everywhere except
for the submatrix €, starting at position (i, ).
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3.1 Semidefinite programming

The calibration problem can finally be stated as:

find X
st. Tr(X)=0Tm, fork=1,., M
X >0
where X > 0 stands for " X semidefinite positive”. If we choose an objec-
tive matrix €2g, this becomes a semidefinite program:

min  Tr (pX)
s.t. Tr(X)=0Tm, fork=1,...,M
X >0
which can be solved very efficiently (see Nesterov & Nemirovskii (1994),

Vandenberghe & Boyd (1996) for the theory and Sturm (1999) for a MAT-
LAB code).
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Figure 4: The semidefinite cone in dim 3: {min(eig[x,y;y,z])=0}
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Figure 5: A typical SDP feasible set in dimension 3.
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3.2 Definite advantages

e The calibration program has a unique solution computed in polynomial
time, with a certificate of optimality or infeasibility.

e The dual solution provides the local sensitivity (see Todd & Yildirim
(1999)) to all market price movements (no more "bump and recali-
brate”).

e Bid-Ask spread data, smoothness or other prices can be included in
the inputs and objective.

e As in Cont (2001), we can use Tikhonov regularization to stabilize the
solution (hence reduce hedging transaction costs).
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3.3 Example: Swaption price bounds

We can use a Swaption matrix as the objective and compute its maximum
or minimum price given a set of other Caplet and Swaption prices:

min/max Tr (QX)

s.t. Tr(QX) = QM\HS\A fork=1,... M

X >0

In the next figure, we look at the evolution of these price bounds on
the 5Y into 3Y Swaption as more and more Swaptions are added into
the calibration set (which includes all Caplet prices). We use the same
stationary sliding dynamics, with

Q.
dK (s, T;) = v(s,T; — s)K (s, T;)dW, *+!

where v(s,T; — s) = v(|T; — s]).
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Bounds convergence on the 5Y into 3Y
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Figure 6: Upper and lower price bounds convergence as more Swaptions
are included in the calibration set.
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3.4 Smooth calibration example

e We calibrate the model to EURO Swaption prices on November 6
2000.

e We use all Caplet volatilities and the following Swaptions: 2Y into
5Y, 5Y into 5Y, 5Y into 2Y, 10Y into 5Y, 7Y into 5Y, 10Y into 2Y,

10Y into 7Y, 2Y into 2Y, 1Y into 9Y (data courtesy of BNP Paribas,
London).

e We add a smoothness constraint (minimum surface).
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Figure 8: Forward rates covariance matrix
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Figure 9: Eigenvalues of the smooth solution (semilog).
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3.5 Low rank solution

There is no way to efficiently guarantee that the solution will be of given
rank. But there are some excellent heuristical methods. For example, as
in Boyd, Fazel & Hindi (2000), we can use another semidefinite positive

matrix in the objective to get a low rank solution.
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Figure 11: Eigenvalues of the low rank solution (semilog).
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4 Conclusion

e \We obtain a fast, reliable calibration method for the BGM model.

e The improvement in the solution’s stability should reduce unnecessary
hedging costs.

e The final trade-off in the calibration program becomes "low rank” vs.
"stability” .
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