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1.1 Introduction

e Option prices are a function of the underlying asset prices today and

the market volatility (variance).

e Derivative pricing and hedging requires daily model calibration of that

variance to option prices quoted by the market.

e Multivariate option models (on interest-rate derivatives) have a co-
variance matrix as their fundamental parameter.
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e Current methods heavily parametrize this covariance and use Monte-
Carlo estimates of option prices to calibrate the model.

e In practice however, the calibration problem can be approximated by
an SDP with excellent precision.

e Both primal and dual problems have direct, intuitive interpretations.

e Robustness, smoothness, Bid-Ask spread constraints, can be included
and the calibration problem is solved as a Symmetric Cone Program.
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2.1 Option pricing in dimension one

e In the Black & Scholes (1973) model, the stock price dynamics S; are
given by dSy = 0 SidW+ where Wy is a B.M., i.e. log St is Gaussian.

e The most heavily traded derivative products are European Call options
which pay
QQ:MJ = A.m.ﬂ — Nﬂv+

at a certain fixed maturity T
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The central "no arbitrage” argument in Black & Scholes (1973) and Mer-
ton (1973) shows that Calls are redundant.

e There is a self-financing dynamic portfolio strategy in stock and cash
that perfectly replicates the payoff (S — K), at time T'.

e The option price is given by:
Call(So, K, 0°T) = E}|(Sp — K) |

where Q) is an equivalent martingale measure

e The option is perfectly hedged by holding 9Call(St, K,0)/0St in
stock Sy and the rest in cash.
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e The expectation EQ T%ﬂ — NQL can be computed explicitly:

BS(So, K,0°T) = SoN n (%) + 7 Cwn] " (7) - -
(°T) a (027) t/2

where N is the CDF of the Gaussian density.

e Because Sj is quoted by the market today and Call(Sy, K, Qmﬂv IS
strictly increasing in 02T, there is a one-to-one relationship between
Call prices and BS volatility.

e In fact, the market quotes option prices using their BS variance o2T.
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2.2 Multivariate option pricing

e Interest rate option pricing requires modelling the dynamics of a curve
(the rate for each maturity). This is usually dicretized on a finite set
of maturities.

e \We now have have multiple underlying prices mm. fori =1,...,n fol-
lowing dS} = S}o'dW; where ' € R" and W} is a n dimensional
B.M.

e The model is entirely parametrized by mm.v for: =1, ..., n, the value of
the stocks today and by the covariance matrix

— (5T .
X = AO.S. O.,QVN.Q.HHV..;\;
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e The simplest derivative products are European Basket Call options
(Swaptions) which pay:

: .
Callp = | ) wST— K
i=1 N

e No closed form solution is available to compute the price

n
EQ [ Y w;Sh - K
i=1 n

e The most common pricing technique is Monte-Carlo.
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e The one-to-one relationship between variance and price is lost.

e The calibration is performed with a heavily parametrized (often non-
convex) set of covariances.

e Monte-Carlo pricing introduces additional instability.

e Derivative desks stay perfectly hedged (8Call(S;, K, 0%T)/0S; = 0).

Because a calibration is performed every day, the "numerical noise

hedging” can become very costly.
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3.1 Semidefinite Programming formulation

In practice, we can approximate the price of a basket option by:

n
BS | Y w;iS§, K, 00T

1=1
where:
2 .
n 7
. R w; S
ch = MU W;0; with w; = 70 7
. n .
i=1 j=1 w35y
which can be rewritten:
o2 = Tr (QX)
where X = AQHQ.V. . and Q = vw?.
v 7 )5.5=1,...n
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Figure 1: Order zero (dashed) and order one (plain) absolute approximation
error versus the multidimensional Black-Scholes basket prices obtained by

simulation for various strikes.
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e The approximation of the basket price as a Black-Scholes price with
variance given by o2, = Tr(QX) defines the calibration set as the
feasible set of an SDP.

e Given market prices QM for k = 1,...,m on a set of options (2, T}.),
the calibration problem becomes:

find X
s.t. Tr(Q.X) = QM fork=1,....m
X >0
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Figure 2: The semidefinite cone in dimension 3.
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3.2 Smoothness

We can minimize the surface of the solution matrix with:

s= 3 Jayx|
i,7€[2,n]

where
A X = [ Vi TRl
v Xij = Xij—1
The calibration program becomes:
min t
i 2
subject to Muﬁwmﬁmx;_ :Dﬁuk: <t
2 2
o Bid ek < Tr(QpX) < 0% 1 Tk
X >0
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Figure 3: Solution to the calibration problem with smoothness constraints
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We can look at the eigenvectors of this purely market implied matrix to
compare them with classical PCA results.
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Figure 4: First eigenvector "level”, second eigenvector "spread”.
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3.3 Robustness

We can make the solution (uniformly) robust to a change in market con-

ditions qw&,w and Qwrw\ﬁw by solving:

maximize ¢
s.t. 0hiar Tk +1 < Tr(QX) <ofg  Th—t fork=1,..,m
X =0
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3.4 The dual problem

Let Qg be the matrix assocaited with ap particular target option. The
program
maximize Tr (2pX)
s.t. Tr (2, X) = Qm fork=1,....m
X =0

will compute an upper arbitrage bound on the price of €2g. The dual, in
this case:

minimize > ;" 4 Sﬂq\wﬂw

s.t. Do < MN@HH w\wb\a
will give the coefficients of the associated hedging portfolio:
0BSy (Tr(2pX)) /Ov
Ak = —Yk
OBSy (Tr(2,X)) /Ov
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3.5 The rank issue

e American option pricing is usually done by dynamic programming and
a low rank solution is desirable.

e Very good heuristical methods exist.

e Monte-Carlo pricing of American options is making progress...
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3.6 Conclusion

e Multivariate derivative models calibration is a very intuitive, direct
application of semidefinite programming.

e Increased flexibility and stability should significantly improve the pric-

ing and hedging performance.
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