Risk management methods for the market model of interest rates using semidefinite programming

Ecole Polytechnique: alexandre.daspremont@polytechnique.org

Thanks to F.I.R.S.T. Swaps, BNP Paribas (London).

Research done under the direction of Nicole El Karoui.

Tuesday, August 27, 2002.

A. d’Aspremont

Semidefinite programming

Risk management methods for the market model of interest rates using
Risk management methods for the market model of interest rates using semidefinite programming.

1. Introduction

• Option prices are a function of the underlying asset prices today and the market volatility (variance).

• Derivative pricing and hedging requires daily model calibration of that variance to option prices quoted by the market.

• Multivariate option models (on interest-rate derivatives) have a co-variance matrix as their fundamental parameter.
Risk management methods for the market model of interest rates using semidefinite programming.

- Current methods heavily parameterize this covariance and use Monte-Carlo estimates of option prices to calibrate the model.
- In practice, however, the calibration problem can be approximated by an SDP with excellent precision.
- Both primal and dual problems have direct, intuitive interpretations.
- Robustness, smoothness, Bid-Ask spread constraints, can be included.

A. d'Aspremont Summer School on Modern Convex Optimization CORE, Tuesday, August 27, 2002.
at a certain fixed maturity T.

$$\text{Call}_T^+ = \max(K - S_T, 0)$$

which pay

The most heavily traded derivative products are European Call options.

Given by $dS_t = \sigma S_t \, dW_t$ where W_t is a B.M., i.e. log S_T is Gaussian.

In the Black & Scholes (1973) model, the stock price dynamics S_t are

2.1 Option pricing in dimension one

Risk management methods for the market model of interest rates using semidefinite programming.
The central "no arbitrage" argument in Black & Scholes (1973) and Merton (1973) shows that Calls are redundant.

There is a self-financing dynamic portfolio strategy in stock and cash.

The option is perfectly hedged by holding \(\text{Call}(S^T, K, \sigma^2 T) \) in stock \(S_t \) and the rest in cash.

\[\left[+ (K - S_T) \right] \mathbb{Q} = \text{Call}(S_0, K, \sigma^2 T) \]

The option price is given by:

\[\text{Call}(S_0, K, \sigma^2 T) = \mathbb{Q} \left[+ (K - S_T) \right] \]

A. d'Aspremont Summer School on Modern Convex Optimization CORE, Tuesday, August 27, 2002.
Risk management methods for the market model of interest rates using semidefinite programming.

- In fact, the market quotes option prices using their BS variance σ^2.

- Call prices and BS volatility.

- Because S_0 is quoted by the market today and $\text{Call}(S_0, K, \sigma^2 T)$ is strictly increasing in σ^2, there is a one-to-one relationship between S_0 and $\text{Call}(S_0, K, \sigma^2 T)$.

- In fact, the market quotes option prices using their BS variance σ^2.

- The expectation $E^Q\left[(S_T - K)^+ \right]$ can be computed explicitly:

\[
BS(S_0, K, \sigma^2 T) = S_0 N\left(\frac{\ln(S_0/K) + \sigma^2 T}{\sigma \sqrt{T}} \right) - KN\left(\frac{\ln(S_0/K) - \sigma^2 T}{\sigma \sqrt{T}} \right)
\]

where N is the CDF of the Gaussian density.

\[
\left(\frac{\ln(S_0/K) + \sigma^2 T}{\sigma \sqrt{T}} \right) N X - \left(\frac{\ln(S_0/K) - \sigma^2 T}{\sigma \sqrt{T}} \right) N 0 S = (\ln(S_T/K), \sigma^2 T) S 0 S
\]

- The expectation can be computed explicitly:

$E^Q\left[(S_T - K)^+ \right] = \left[0 \right]^{+} (X - \mathcal{L} S)$
Risk management methods for the market model of interest rates using semidefinite programming.

2.2 Multivariate option pricing

The stocks today and by the covariance matrix

\[u^i, \ldots, u^n \in \mathbb{R} \]

The model is entirely parametrized by \(u^i, \ldots, u^n \) for \(i = 1, \ldots, n \)

The model is entirely parametrized by \(S_t \) for \(i = 1, \ldots, n \)

\[S_t = u^i \sigma_i \cdot \sqrt{t} \]

\[X = \sigma_1 \sigma_2 \ldots \sigma_n \]

\[\sigma_i \in \mathbb{R}_+ \]

\[W_t \] is a \(n \)-dimensional Brownian motion.

\[S_t = u^i \sigma_i \cdot \sqrt{t} \]

\[\mathbb{M} \]

\[\mathbb{P} \]

\[\mathbb{S} \]

\[\mathbb{P}_i \sigma_i S_t = u^i S_t \]

\[W_t \]

\[u^i \]

\[u^i, \ldots, u^n \]

\[X \]

\[\sigma_i \]

\[\mathbb{M}_i \]

\[\mathbb{P}_i \sigma_i S_t = u^i S_t \]

\[\mathbb{S}_i \]

\[\mathbb{P}_i \sigma_i S_t = u^i S_t \]

\[\mathbb{S}_i \]

\[\mathbb{P}_i \sigma_i S_t = u^i S_t \]
Risk management methods for the market model of interest rates using semidefinite programming.

• The simplest derivative products are European Basket Call options (Swaptions) which pay:

\[\forall \sum_{i=1}^{n} w_i S_i(T) - K \]

\[\mathbb{E}^Q \left[+ \left(K - \sum_{i=1}^{n} w_i S_i(T) \right) \right] \]

• No closed form solution is available to compute the price.

\[+ \left(K - \sum_{i=1}^{n} w_i S_i(T) \right) \]

\[= \text{Call} \]

(\text{Swaptions}) which pay:

The simplest derivative products are European Basket Call options.
Risk management methods for the market model of interest rates using semidefinite programming.

- The one-to-one relationship between variance and price is lost.
- The calibration is performed with a heavily parametrized (often non-convex) set of covariances.
- Monte-Carlo pricing introduces additional instability.
- Because a calibration is performed every day, the "numerical noise" hedging can become very costly.
- Derivative desks stay perfectly hedged ($\partial \text{Call}(S_t, K, \sigma^2 T) / \partial S = 0$).
In practice, we can approximate the price of a basket option by:

\[L \mathbf{m} = \mathcal{U} \quad \text{and} \quad \left(\mathbf{w} \cdots \mathbf{w} \right)^T \mathbf{1} = \mathbf{1}^{\mathbf{m}} \]

where

\[(\mathcal{U} \mathbf{w})^T \mathbf{1} = \frac{m \cdot \rho}{n} \]

which can be rewritten:

\[\frac{0 \cdots 0 \cdots 0 \cdot \mathbf{w}^{\mathbf{m}}}{0 \cdots 0 \cdot \mathbf{w}^{\mathbf{m}}} = \mathbf{m} \quad \text{with} \quad \left\| \mathbf{w}^{\mathbf{m}} \right\| = \frac{m \cdot \rho}{2} \]

where:

\[\left(L \mathbf{m}, \mathcal{U}^{\mathbf{m}} \right) \mathbf{S} \]

3.1 Semidefinite Programming formulation

Risk management methods for the market model of interest rates using Semidefinite Programming.
Risk management methods for the market model of interest rates using semidefinite programming.

Figure 1: Order zero (dashed) and order one (plain) absolute approximation error versus the multidimensional Black-Scholes basket prices obtained by simulation for various strikes.

Moneyness in Delta

Error

Risk management methods for the market model of interest rates using semidefinite programming.
Risk management methods for the market model of interest rates using semidefinite programming.

The approximation of the basket price as a Black-Scholes price with variance given by $\sigma^2_w = \text{Tr}(\Omega X)$ defines the calibration set as the feasible set of an SDP.

Given market prices σ^2_k for $k = 1, \ldots, m$ on a set of options (Ω_k, T_k), the calibration problem becomes:

\[
\begin{align*}
\text{Find } X & \text{ s.t. } \text{Tr}(\Omega_k X) = \sigma^2_k \text{ for } k = 1, \ldots, m \text{ on a set of options } (\Omega_k, T_k) \\
& \text{with feasible set of an SDP.}
\end{align*}
\]

The approximation of the basket price as a Black-Scholes price with variance given by $\sigma^2_w = \text{Tr}(\Omega X)$ defines the calibration set as the feasible set of an SDP.
Risk management methods for the market model of interest rates using semidefinite programming.

Figure 2: The semidefinite cone in dimension 3.
We can minimize the surface of the solution matrix with:

\[\sum_{i,j} \in [2,n] \| \Delta_{i,j}X \|_2 \]

where

\[\Delta_{i,j}X = (X_{i,j} - X_{i,j-1}, X_{i,j} - X_{i-1,j}) \]

The calibration program becomes:

\[
\min t \\
\text{subject to} \\
\sum_{i,j} \in [2,n] \| \Delta_{i,j}X \|_2 \leq t \sigma^2 \]

\[\text{Bid},kT(k) \leq \text{Tr}(\Omega_kX) \leq \text{Ask},kT(k) \]

\[X \succeq 0 \]

\[A \]

3.2 Smoothness

Risk management methods for the market model of interest rates using semidefinite programming
Figure 3: Solution to the calibration problem with smoothness constraints.
Risk management methods for the market model of interest rates using semidefinite programming.

We can look at the eigenvectors of this purely market implied matrix to compare them with classical PCA results.

Figure 4: First eigenvector "level", second eigenvector "spread".
Risk management methods for the market model of interest rates using semidefinite programming.

3.3 Robustness

We can make the solution (uniformly) robust to a change in market conditions by solving:

\[
\begin{align*}
\text{maximize} & \quad t \\
\text{s.t.} & \quad \sigma^2_{\text{Bid},k}T_k + t \leq (X^{\gamma L})_{\gamma \gamma} \preceq t + \sigma^2_{\text{Ask},k}T_k - t \\
& \quad \forall k = 1, \ldots, m
\end{align*}
\]
Risk management methods for the market model of interest rates using semidefinite programming.

3.4 The dual problem

Let \(\Sigma_0 \) be the matrix associated with a particular target option. The dual problem:

\[
\begin{align*}
\text{maximize} & \quad \text{Tr}(\Sigma_0 XX) \\
\text{subject to} & \quad \text{Tr}(\Sigma_k XX) = \sigma^2_k \quad \text{for} \quad k = 1, \ldots, m \\
& \quad X \succeq 0
\end{align*}
\]

will compute an upper arbitrage bound on the price of \(\Sigma_0 \). The dual, in this case:

\[
\begin{align*}
\text{minimize} & \quad \sum_{k=1}^{m} y_k \sigma^2_k T_k \\
\text{subject to} & \quad \Sigma_0 \preceq \sum_{k=1}^{m} y_k \Sigma_k \\
& \quad y_k \geq 0 \quad \text{for} \quad k = 1, \ldots, m
\end{align*}
\]

will give the coefficients of the associated hedging portfolio:

\[
\lambda_k = -y_k \frac{\partial B_S(\Sigma_0 \text{Tr}(\Sigma_0 XX))}{\partial \sigma^2} + \frac{\partial B_S(\Sigma_k \text{Tr}(\Sigma_k XX))}{\partial \sigma^2}
\]
Risk management methods for the market model of interest rates using semidefinite programming.

Figure 5: Calibration result and price bounds.
Monte-Carlo pricing of American options is making progress.

3.5 The rank issue

- A low rank solution is desirable.
- Very good heuristics methods exist.
- A low rank solution is desirable.

American option pricing is usually done by dynamic programming and
3.6 Conclusion

• Increased flexibility and stability should significantly improve the pricing and hedging performance.

• Multivariate derivative models calibration is a very intuitive, direct application of semidefinite programming.
Risk management methods for the market model of interest rates using semidefinite programming.

References

