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1.1 Interest rate model calibration

e All Heath, Jarrow & Morton (1992) based models are fully parametrized
by the curve today and a covariance matrix.

e The natural variable in the calibration problem is a covariance matrix,
l.e. a positive semidefinite matrix.

e Classic calibration methods are heavily parametrized and only describe
a small, often non-convex subset of the set of semidefinite matrices.

e When using these techniques, sensitivity analysis has to be done by
bumping the data and recalibrating.
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1.2 Results on the LMM model calibration

e We can express the swap rate as a basket of Forwards with very stable
coefficients.

e European Caplets and Swaptions can be priced using the Black (1976)
market formula with a variance that is linear in the coefficients of the
Forward rates covariance matrix..

e The calibration problem is a semidefinite program and the dual solution
naturally provides the local sensitivity to all market movements.

e The dual solution also provides the coefficients of an upper (lower)
hedging portfolio in the sense of El Karoui & Quenez (1991) and
Avellaneda & Paras (1996).
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1.3 Related literature

e Works by Nesterov & Nemirovskii (1994) and Vandenberghe & Boyd
(1996) on semidefinite programming

e Brace, Gatarek & Musiela (1997) and Musiela & Rutkowski (1997) on
the Libor market model.

e Rebonato (1998), Brace, Dun & Barton (1999) and Singleton &
Umantsev (2001) on Swaps as baskets of Forwards. Rebonato (1999)
on a calibration method parametrized by factors.

e Parallel work by Brace & Womersley (2000) on the calibration of the
BGM by semidefinite programming and the evaluation of the Bermu-
dan Swaption.
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2 Swaption pricing

2.1 The Swap rate

We write the swap rate as a basket of Forwards:

n

swap(t, To, Tn) = Y _ w;i(t)K(t,T;)
1=0
where K(t,T;) are the Forward Rates with maturities T; ,7 = 1, ..., n and
the weights w;(t) are given by
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2.2 BGM Swaption price

In practice, the weights w;(t) are very stable (see Rebonato (1998)) and
following Jamshidian (1997), we can write the price of the Swaption with
strike k as a that of a Call on a Swap rate:

I_I
n
Ps(t) = Level(t, T, ﬁi@%i@ > wi(TK(T,T;) — k
1=0

where Q11 7, is the swap forward martingale probability measure.

A. d'Aspremont AFFI Strasbourg, Monday June 24 2002.



7 Risk Management Methods for the LMM Using Semidefinite Programming.

In fact, as detailed in Huynh (1994) or Brace et al. (1999) the Swaption
price can be very efficiently approximated by the Black (1976) formula:

Swaption = Level(t, T, Ty) Amé@ﬁ@u T, Tn)N(h) — kN(h — a\n\m\va

with

A_s Amsﬁwﬂﬂiv + %@v

V2

where the cumulative variance is computed by:

h =

2
T|& K(t,T;)
\V4 ”y\ M ot vMNJ.l d d 0:(t) = (¢ » T

Q.
with dK (s, T;) = v(s, T; — s)K (s, T;)dWs 1.
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2.3 BGM approximation precision

e We plot the difference between two distinct sets of Swaption prices in
the Libor Market Model. One is obtained by Monte-Carlo simulation
using enough steps to make the 95% confidence margin of error always

less than 1bp. The second set of prices is computed using the order
zero approximation.

e The plots are based on the prices obtained by calibrating the model to
EURO Swaption prices on November 6 2000. We have used all Cap
volatilities and the following Swaptions: 2Y into 5Y, 5Y into 5Y, bY

into 2Y, 10Y into 5Y, 7Y into 5Y, 10Y into 2Y, 10Y into 7Y, 2Y into
2Y, 1Y into 9Y.
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Figure 1: Absolute error (in bp) for various ATM Swaptions.
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Error in the 10Y into 2Y Swaption price vs moneyness
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Figure 2: Absolute error (in bp) on the 10Y into 2Y.
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Error in the 10Y into 7Y Swaption price vs moneyness
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Figure 3: Absolute error (in bp) on the 10Y into 7Y.
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3 Calibration

We have approximated the Swaption (T, Tyy+m) price by:

P = Level(t, Tm, Ty+m)BS(T, swap(t, Tm, Ty+m), V(Tm, Tyut+m))

where BS is the Black (1976) formula with
Tm || Y 2
VT, Tuem) = || X &ilt)(s, T = 5))| ds
1=m
Suppose that we need to impose a sequence of M market pricing con-
straints. We express these constraints in terms of the market variance

inputs an

V(T Tup+my,) = 03Tm, fork=1,...M
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We can rewrite the cumulative variance:

Tm U °
L2 @i T - )| ds
MJS@ s§|§ "
= [ 3 ai0y(0) (1(s. T = 9), (s, Ty — 5)) ds
NJS@ m Jj=m
— \w Tr ADX%V ds

where T'r is the trace, X is the Forward rate covariance matrix, with

(X5s)i A\im —5),7(s,Tj — ,wvv and

and AEASEHSV is a rank one matrix with AEASEHA&v i = = w;(t)w;(t).
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This means that the calibration constraints are linear in Xs and can be

written:
\ MJ\N»AM.N\AN%V&%”Q.\&MJS\A .—..O_\ k = Hv...vi
t
If we discretize in time we can write the above constraints as:
Tr (QuX) = 03T, fork=1,..,M

where €2;. is a block diagonal matrix.
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3.1 Semidefinite programming

The calibration problem can finally be stated as:

find X
st. Tr(X)=0Tm, fork=1,., M
X >0
where X > 0 stands for " X semidefinite positive”. If we choose an objec-
tive matrix €2g, this becomes a semidefinite program:

min  Tr (pX)
s.t. Tr(X)=0Tm, fork=1,...,M
X >0
which can be solved very efficiently (see Nesterov & Nemirovskii (1994),

Vandenberghe & Boyd (1996) for the theory and Sturm (1999) for a MAT-
LAB code).
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Figure 4: The semidefinite cone in dim 3: {min(eig[x,y;y,z])=0}
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Figure 5: A typical SDP feasible set in dimension 3.
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3.2 Definite advantages

e The calibration program has a unique solution computed in polynomial
time, with a certificate of optimality or infeasibility.

e Bid-Ask spread data, smoothness or other prices can be included in
the inputs and objective.

e The algorithms provide both primal and dual solutions. The primal
gives the calibrated Forward rate covariance matrix, while the dual
provides local sensitivity results.
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3.3 Smooth calibration

e We calibrate the model to EURO Swaption prices on November 6
2000.

e We use all Caplet volatilities and the following Swaptions: 2Y into
5Y, 5Y into 5Y, 5Y into 2Y, 10Y into 5Y, 7Y into 5Y, 10Y into 2Y,

10Y into 7Y, 2Y into 2Y, 1Y into 9Y (data courtesy of BNP Paribas,
London).

e We add a smoothness constraint (minimum surface), this acts as a
Tikhonov (1963) stabilization of the solution and reduces purely the
number of numerical hedging transactions.
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Figure 6: Forward rates covariance matrix
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3.4 The dual program

When the original program is given by:

max T (QqX)
s.t. Tr(QpX) =0T, fork=1,..,M
X >0

the dual becomes:

min =300, ko Tm,,

Ss.t. Do < MUN\A&HH @\Abw

most S.D.P. solvers (such as SEDUMI by Sturm (1999) for example) com-
pute both solutions at the same time.
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3.4.1 Local sensitivity

We can study the impact on the solution of a (small) change in market
conditions given by u; for kK = 1,..., M, the calibration program becomes:

maximize Tr(CX)
s.t. Tr(QpX) = 02Ty +uy for k=1,..., M
X >0

Using Todd & Yildirim (1999) we can compute the new calibrated matrix
X + AX with:

AX = E-lpa*

(AE~1FA%) - c_

where E,F and A are linear operators computed from (X*, y*) the primal
and dual solutions to the original calibration program (with u; = 0).
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3.4.2 Super hedging price

As expected, we can interpret the dual solution to the calibration program
in terms of hedging portfolio.

e As in Avellaneda & Paras (1996) we suppose that the volatility is
uncertain and we hedge by mixing a static portfolio of derivatives with
a dynamic super-replication strategy.

e The price is obtained by solving the following (formal) program:

Price = Min {Value of static hedge + Max (PV of residual liability)}
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3.4.3 Super hedging portfolio

Suppose we study an upper hedging price on a particular Swaption (g, 7).
We can find an approximate solution to the previous problem by solving
the following problem:

M M
inf MU A.Cr + sup | BS(Tr(QpX)) — MU M. BS (Tr(2X))
A k=1 X0 k=1

or its dual:

maximize BSy(Tr(20X))
s.t. BS, (Tr(.X))=Cp fork=1,.... M
X >0
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We can write the KKT optimality conditions on this problem:

( OBSp(20X OB S (2 X
7 = 223800, 1 v, 0 BN,
) X2 =0
mw@\a Aﬂﬁﬁbwvmvv — Qs for k = ”_J ceny M
0= X,Z

hence if y" solves the dual S.D.P:
minimize MMWH ,S&QMS&
S.t. 0= MM&HH @wbw —C
then
. LOBSy (Tr(2pX)) /Ov
Ak = Y
OBSy (Tr(2;,X)) /Ov
will be the coefficients of a super replicating portfolio in the Swaptions

Ab\ﬁ ﬂwv.
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3.5 Low rank solution

There is no way to efficiently guarantee that the solution will be of given
rank. But there are some excellent heuristical methods. For example, as
in Boyd, Fazel & Hindi (2000), we can use another semidefinite positive

matrix in the objective to get a low rank solution.
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Figure 9: Eigenvalues of the low rank solution (semilog).
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Figure 10: Eigenvalues of the smooth solution (semilog).
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4 Conclusion

e Semidefinite programming provides a fast, reliable calibration method
for the LMM model.

e The improvement in the solution’s stability should reduce unnecessary
hedging costs.

e The dual solution provides all the essential local sensitivity results.

e The final trade-off in the calibration problem is "low rank” vs. "sta-
bility” .
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