On the Versatility of the Nesterov Acceleration Scheme

Zaid Harchaoui
Courant Institute, NYU

Optimization without Borders, Les Houches
Tribute to Y. Nesterov’s teaching and research

Book
Collaborators

Hongzhou Lin

Julien Mairal

Publication

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$\min_{x \in \mathbb{R}^p} \left\{ F(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\},$$

where each f_i is smooth and convex and ψ is a convex but not necessarily differentiable penalty.

Goal of this work

- Design accelerated methods for minimizing large finite sums.
- Give a generic acceleration scheme which can apply to previously un-accelerated algorithms.
Why do large finite sums matter?

Empirical risk minimization

\[
\min_{x \in \mathbb{R}^p} \left\{ F(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\},
\]

- Typically, \(x \) represents **model parameters**.
- Each function \(f_i \) measures the **fidelity** of \(x \) to a data point.
- \(\psi \) is a **regularization function** to prevent overfitting.

For instance, given training data \((y_i, z_i)_{i=1, \ldots, n}\) with features \(z_i \) in \(\mathbb{R}^p \) and labels \(y_i \) in \(\{-1, +1\} \), we may want to predict \(y_i \) by \(\text{sign}(\langle z_i, x \rangle) \).

Functions \(f_i \) measures how far the prediction is from the true label.

This would be a **classification problem with a linear model**.
Why large finite sums matter?

A few examples

Ridge regression:

\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (y_i - \langle x, z_i \rangle)^2 + \frac{\lambda}{2} \| x \|_2^2.
\]

Linear SVM:

\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i \langle x, z_i \rangle) + \frac{\lambda}{2} \| x \|_2^2.
\]

Logistic regression:

\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i \langle x, z_i \rangle} \right) + \frac{\lambda}{2} \| x \|_2^2.
\]
Why does the composite problem matter?

A few examples

Ridge regression:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (y_i - \langle x, z_i \rangle)^2 + \frac{\lambda}{2} \|x\|_2^2.
\]

Linear SVM:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i \langle x, z_i \rangle))^2 + \frac{\lambda}{2} \|x\|_2^2.
\]

Logistic regression:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i \langle x, z_i \rangle} \right) + \frac{\lambda}{2} \|x\|_2^2.
\]

The **squared \(\ell_2 \)-norm** penalizes large entries in \(x \).
Why does the composite problem matter?

A few examples

Ridge regression: \[\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (y_i - \langle x, z_i \rangle)^2 + \lambda \| x \|_1. \]

Linear SVM: \[\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i \langle x, z_i \rangle)^2 + \lambda \| x \|_1. \]

Logistic regression: \[\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i \langle x, z_i \rangle}\right) + \lambda \| x \|_1. \]

When one knows in advance that \(x \) should be sparse, one should use a **sparsity-inducing** regularization such as the \(\ell_1 \)-norm.

[Chen et al., 1999, Tibshirani, 1996].
How to minimize a large sum composite problem?

Two major challenges

- **Non-differentiable regularization penalty.**
 Exclude existing solver such as MOSEK, CPLEX, etc.

- **Large-scale and high-dimensionality**
 Exclude higher-order (Newton) methods.

This leads us to first-order gradient-based methods.
Gradient descent methods

Let us consider the composite problem

$$\min_{x \in \mathbb{R}^p} f(x) + \psi(x),$$

where f is convex, differentiable with L-Lipschitz continuous gradient and ψ is convex, but not necessarily differentiable.

The classical forward-backward/ISTA algorithm

$$x_k \leftarrow \arg \min_{x \in \mathbb{R}^p} \frac{1}{2} \left\| x - \left(x_{k-1} - \frac{1}{L} \nabla f(x_{k-1}) \right) \right\|_2^2 + \frac{1}{L} \psi(x).$$

- $f(x_k) - f^* = O(1/k)$ for convex problems;
- $f(x_k) - f^* = O((1 - \mu/L)^k)$ for μ-strongly convex problems;

Accelerated gradient descent methods

Nesterov introduced in 1983 an acceleration scheme for the gradient descent algorithm. It was generalized later to the composite setting [Nesterov, 1983, 2004, 2013].

FISTA [Beck and Teboulle, 2009]

\[x_k \leftarrow \arg \min_{x \in \mathbb{R}^p} \frac{1}{2} \left\| x - \left(y_{k-1} - \frac{1}{L} \nabla f(y_{k-1}) \right) \right\|^2_2 + \frac{1}{L} \psi(x); \]

Find \(\alpha_k > 0 \) s.t. \(\alpha_k^2 = (1 - \alpha_k)\alpha_{k-1}^2 + \frac{\mu}{L} \alpha_k; \)

\[y_k \leftarrow x_k + \beta_k (x_k - x_{k-1}) \quad \text{with} \quad \beta_k = \frac{\alpha_{k-1}(1 - \alpha_{k-1})}{\alpha_{k-1}^2 + \alpha_k}. \]

- \(f(x_k) - f^* = O(1/k^2) \) for convex problems;
- \(f(x_k) - f^* = O((1 - \sqrt{\mu/L})^k) \) for \(\mu \)-strongly convex problems;
- Acceleration works in many practical cases.

see also [Nesterov, 1983, 2004, 2013]
What do we mean by “acceleration”?

Complexity analysis for large finite sums

Since f is a sum of n functions, computing ∇f requires computing n gradients ∇f_i. The complexity to reach an ε-solution is given below

<table>
<thead>
<tr>
<th></th>
<th>$\mu > 0$</th>
<th>$\mu = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISTA</td>
<td>$O \left(\frac{nL}{\mu} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td>$O \left(\frac{nL}{\varepsilon} \right)$</td>
</tr>
<tr>
<td>FISTA</td>
<td>$O \left(n \sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td>$O \left(\frac{nL}{\sqrt{\varepsilon}} \right)$</td>
</tr>
</tbody>
</table>

Remarks

- ε-solution means here $f(x_k) - f^* \leq \varepsilon$.
- For $n = 1$, the rates of FISTA are optimal for a “first-order local black box” [Nesterov, 2004].
- For $n > 1$, the sum structure of f is not exploited.
Can we do better for large finite sums?

Several *randomized* algorithms are designed with one ∇f_i computed per iteration, which yields a better *expected computational complexity*.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISTA</td>
<td>$O \left(n \sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
</tr>
<tr>
<td>SVRG, SAG, SAGA, SDCA, MISO, Finito</td>
<td>$O \left(\max \left(n, \frac{L}{\mu} \right) \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
</tr>
</tbody>
</table>

SVRG, SAG, SAGA, SDCA, MISO, Finito improve upon FISTA when

$$\max \left(n, \frac{L}{\mu} \right) \leq n \sqrt{\frac{L}{\mu}} \iff \sqrt{\frac{L}{\mu}} \leq n,$$

but they are not “accelerated” in the sense of Nesterov.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b, Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]
Can we do even better for large finite sums?

Without vs with acceleration

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISTA</td>
<td>$O\left(n \sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon}\right)\right)$</td>
</tr>
<tr>
<td>SVRG, SAG, SAGA, SDCA, MISO, Finito</td>
<td>$O\left(\max\left(n, \frac{L}{\mu}\right) \log \left(\frac{1}{\varepsilon}\right)\right)$</td>
</tr>
<tr>
<td>Acc-SDCA</td>
<td>$\tilde{O}\left(\max\left(n, \sqrt{n} \frac{L}{\mu}\right) \log \left(\frac{1}{\varepsilon}\right)\right)$</td>
</tr>
</tbody>
</table>

Acc-SDCA is due to Shalev-Shwartz and Zhang [2014].

- Acceleration occurs when $n \leq \frac{L}{\mu}$.
- see [Agarwal and Bottou, 2015] for discussions about optimality.

Challenge: can we accelerate these algorithms by a universal scheme for both convex and strongly convex objectives?
Catalyst is coming
Main idea

Catalyst, a meta-algorithm

Given an algorithm \mathcal{M} that can solve a convex problem "appropriately".

- At iteration k, rather than minimizing F, we use \mathcal{M} to minimize a function G_k, defined as follows,

$$G_k(x) \triangleq F(x) + \frac{\kappa}{2} \|x - y_{k-1}\|_2^2,$$

up to accuracy ε_k, i.e., such that $G_k(x_k) - G^*_k \leq \varepsilon_k$.

- Then compute the next prox-center y_k using an extrapolation step

$$y_k = x_k + \beta_k (x_k - x_{k-1}).$$

The choices of $\beta_k, \varepsilon_k, \kappa$ are driven by the theoretical analysis.
Main idea

Catalyst, a meta-algorithm

Given an algorithm \mathcal{M} that can solve a convex problem "appropriately".

- At iteration k, rather than minimizing F, we use \mathcal{M} to minimize a function G_k, defined as follows,

$$G_k(x) \triangleq F(x) + \frac{\kappa}{2} \| x - y_{k-1} \|^2_2,$$

up to accuracy ε_k, i.e., such that $G_k(x_k) - G_k^* \leq \varepsilon_k$.

- Then compute the next prox-center y_k using an extrapolation step

$$y_k = x_k + \beta_k (x_k - x_{k-1}).$$

The choices of $\beta_k, \varepsilon_k, \kappa$ are driven by the theoretical analysis.

Catalyst is a wrapper of \mathcal{M} that yields an **accelerated** algorithm \mathcal{A}.

Sources of inspiration

In addition to accelerated proximal algorithms [Beck and Teboulle, 2009, Nesterov, 2013], several works have inspired Catalyst.

The inexact accelerated proximal point algorithm of Güler [1992].
- Catalyst is a variant of inexact accelerated PPA.
- Complexity analysis for outer-loop only with non practical inexactness criterium.

Accelerated SDCA of Shalev-Shwartz and Zhang [2014].
- Accelerated SDCA is an instance of inexact accelerated PPA.
- Complexity analysis limited to μ-strongly convex objectives.
Sources of inspiration

In addition to accelerated proximal algorithms [Beck and Teboulle, 2009, Nesterov, 2013], several works have inspired Catalyst.

The inexact accelerated proximal point algorithm of Güler [1992].
- Catalyst is a variant of inexact accelerated PPA.
- Complexity analysis for outer-loop only with non practical inexactness criterium.

Accelerated SDCA of Shalev-Shwartz and Zhang [2014].
- Accelerated SDCA is an instance of inexact accelerated PPA.
- Complexity analysis limited to \(\mu \)-strongly convex objectives.

Other related work
This work

Contributions

- **Generic acceleration scheme**, which applies to previously unaccelerated algorithms such as SVRG, SAG, SAGA, SDCA, MISO, or Finito, and which is not tailored to finite sums.
- Provides explicit **support to non-strongly convex objectives**.
- Complexity analysis for μ-strongly convex objectives.
- Complexity analysis for non-strongly convex objectives.

Example of application

Garber and Hazan [2015] have used Catalyst to accelerate new principal component analysis algorithms based on convex optimization.
Appropriate $\mathcal{M} = \text{Linear convergence rate when } \mu > 0$

Linear convergence rate
Consider a strongly convex minimization problem

$$\min_{z \in \mathbb{R}^p} H(z).$$

We say that an algorithm \mathcal{M} has a linear convergence rate if \mathcal{M} generates a sequence of iterates $(z_t)_{t \in \mathbb{N}}$ such that there exists $\tau_{\mathcal{M},H}$ in $(0, 1)$ and a constant $C_{\mathcal{M},H}$ in \mathbb{R} satisfying

$$H(z_t) - H^* \leq C_{\mathcal{M},H}(1 - \tau_{\mathcal{M},H})^t. \quad (1)$$

- $\tau_{\mathcal{M},H}$ depends usually on the condition number L/μ, e.g., $\tau_{\mathcal{M},H} = \mu/L$ for ISTA and $\tau_{\mathcal{M},H} = \sqrt{\mu/L}$ for FISTA.
- $C_{\mathcal{M},H}$ depends usually on $H(z_0) - H^*$.
Appropriate $\mathcal{M} = \text{Linear convergence rate when } \mu > 0$

Linear convergence rate

Consider a **strongly convex** minimization problem

$$\min_{z \in \mathbb{R}^p} H(z).$$

We say that an algorithm \mathcal{M} has a **linear convergence rate** if \mathcal{M} generates a sequence of iterates $(z_t)_{t \in \mathbb{N}}$ such that there exists $\tau_{\mathcal{M},H}$ in $(0, 1)$ and a constant $C_{\mathcal{M},H}$ in \mathbb{R} satisfying

$$H(z_t) - H^* \leq C_{\mathcal{M},H}(1 - \tau_{\mathcal{M},H})^t. \quad (1)$$

Important message: we do not make any assumption for non strongly convex objectives. It is possible that \mathcal{M} is not even defined for $\mu = 0.$
Catalyst action

\[G_k(x) \triangleq F(x) + \frac{\kappa}{2} \|x - y_{k-1}\|_2^2, \]

- \(G_k \) is always strongly convex as long as \(F \) is convex.
- When \(F \) is strongly convex, the condition number of \(G_k \) is better than that of \(F \) since \(\frac{L+\kappa}{\mu+\kappa} < \frac{L}{\mu} \).
Catalyst action

Catalyst action

\[G_k(x) \triangleq F(x) + \frac{\kappa}{2} \|x - y_{k-1}\|^2, \]

- \(G_k \) is always strongly convex as long as \(F \) is convex.
- When \(F \) is strongly convex, the condition number of \(G_k \) is better than that of \(F \) since \(\frac{L + \kappa}{\mu + \kappa} < \frac{L}{\mu} \).

Minimizing \(G_k \) is easier than minimizing \(F \) !
Catalyst action

\[G_k(x) \triangleq F(x) + \frac{\kappa}{2} \| x - y_{k-1} \|_2^2, \]

- \(G_k \) is always strongly convex as long as \(F \) is convex.
- When \(F \) is strongly convex, the condition number of \(G_k \) is better than that of \(F \) since \(\frac{L + \kappa}{\mu + \kappa} < \frac{L}{\mu} \).

Minimizing \(G_k \) is easier than minimizing \(F \) !

- If \(\kappa \gg 1 \), then minimizing \(G_k \) is easy;
- If \(\kappa \approx 0 \), then \(G_k \) is a good approximation of \(F \).

We will choose \(\kappa \) to optimize the computational complexity.
Convergence analysis

An analysis in two stages

\[G_k(x) \triangleq F(x) + \frac{\kappa}{2} \| x - y_{k-1} \|^2, \]

\(x_k \) is an approximate minimizer of \(G_k \) such that \(G_k(x_k) - G_k^* \leq \epsilon_k. \)

- Outer loop: once we obtain the sequence \((x_k)_{k \in \mathbb{N}} \), what can we say about the convergence rate of \(F(x_k) - F^*? \)
 \(\Rightarrow \) Wisely choose \((y_k) \) and control the accumulation of errors.

- Inner loop: how much effort do we need to obtain a \(x_k \) with accuracy \(\epsilon_k? \)
 \(\Rightarrow \) Wisely choose the starting point.
Choice of \((y_k)_{k \in \mathbb{N}}\)

Extrapolation

\[y_k = x_k + \beta_k (x_k - x_{k-1}) \quad \text{with} \quad \beta_k = \frac{\alpha_{k-1}(1 - \alpha_{k-1})}{\alpha_{k-1}^2 + \alpha_k}. \]

- This update is identical to Nesterov’s accelerated gradient descent or FISTA.
- Unfortunately, the literature does not provide any simple geometric explanation why it yields an acceleration...
- The construction is purely theoretical by using a mechanism introduced by Nesterov, called "estimate sequence".
How does “acceleration” work?

If \(f \) is \(\mu \)-strongly convex and \(\nabla f \) is \(L \)-Lipschitz continuous

\[
\begin{align*}
 f(x) &\leq f(x_{k-1}) + \nabla f(x_{k-1})^T (x - x_{k-1}) + \frac{L}{2} \| x - x_{k-1} \|^2_2; \\
 f(x) &\geq f(x_{k-1}) + \nabla f(x_{k-1})^T (x - x_{k-1}) + \frac{\mu}{2} \| x - x_{k-1} \|^2_2;
\end{align*}
\]
How does “acceleration” work?

If \(\nabla f \) is \(L \)-Lipschitz continuous

\[
\begin{align*}
 f(x) & \leq f(x_{k-1}) + \nabla f(x_{k-1})^\top (x - x_{k-1}) + \frac{L}{2} \|x - x_{k-1}\|^2_2; \\
 x_k & = x_{k-1} - \frac{1}{L} \nabla f(x_{k-1}) \text{ (gradient descent step).}
\end{align*}
\]
How does “acceleration” work?

Definition of estimate sequence [Nesterov].

A pair of sequences \((\varphi_k)_{k \geq 0}\) and \((\lambda_k)_{k \geq 0}\), with \(\varphi_k : \mathbb{R}^p \to \mathbb{R}\) and \(\lambda_k \geq 0\), is called an \textbf{estimate sequence} of function \(F\) if

- \(\lambda_k \to 0\);
- \(\varphi_k(x) \leq (1 - \lambda_k)F(x) + \lambda_k \varphi_0(x)\), for any \(k, x\);
- There exists a sequence \((x_k)_{k \geq 0}\) such that

\[
F(x_k) \leq \varphi_k^* \triangleq \min_{x \in \mathbb{R}^p} \varphi_k(x).
\]

Remarks

- \(\varphi_k\) is neither an upper-bound, nor a lower-bound;
- Finding the right estimate sequence is often nontrivial.
Convergence of outer-loop algorithm

Analysis for \(\mu \)-strongly convex objective functions

Choose \(\alpha_0 = \sqrt{q} \) with \(q = \frac{\mu}{(\mu + \kappa)} \) and

\[
\epsilon_k = \frac{2}{9}(F(x_0) - F^*)(1 - \rho)^k \quad \text{with} \quad \rho < \sqrt{q}.
\]

Then, the algorithm generates iterates \((x_k)_{k \geq 0}\) such that

\[
F(x_k) - F^* \leq C(1 - \rho)^{k+1}(F(x_0) - F^*) \quad \text{with} \quad C = \frac{8}{(\sqrt{q} - \rho)^2}.
\]

In practice

- Choice of \(\rho \) can safely be set to \(\rho = 0.9\sqrt{q} \).
- Choice of \((\epsilon_k)_{k \geq 0}\) typically follows from a duality gap at \(x_0 \). When \(F \) is non-negative, we can set \(\epsilon_k = (2/9)F(x_0)(1 - \rho)^k \).
Convergence of outer-loop algorithm

Analysis for non-strongly convex objective functions, $\mu = 0$

Choose $\alpha_0 = (\sqrt{5} - 1)/2$ and

$$\epsilon_k = \frac{2(F(x_0) - F^*)}{9(k + 2)^{4+\eta}} \quad \text{with } \eta > 0.$$

Then, the meta-algorithm generates iterates $(x_k)_{k \geq 0}$ such that

$$F(x_k) - F^* \leq \frac{8}{(k + 2)^2} \left(\left(1 + \frac{2}{\eta}\right)^2 (F(x_0) - F^*) + \frac{\kappa}{2} \|x_0 - x^*\|^2 \right).$$

(2)

In practice

- Choice of η can be set to $\eta = 0.1$.
How many iterates of \mathcal{M} do we need to obtain x_k?

Control of inner-loop complexity

For minimizing G_k, consider a method \mathcal{M} generating iterates $(z_t)_{t \geq 0}$ with linear convergence rate

$$G_k(z_t) - G_k^* \leq A(1 - \tau_\mathcal{M})^t(G_k(z_0) - G_k^*).$$

Then by choosing $z_0 = x_{k-1}$, the precision ε_k is reached with at most

- A constant number of iterations $T_\mathcal{M}$ when $\mu > 0$;
- A logarithmic increasing number of iterations $T_\mathcal{M} \log(k + 2)$ when $\mu = 0$.

where $T_\mathcal{M} = \tilde{O}(1/\tau_\mathcal{M})$ is independent of k.

Zaid Harchaoui
Catalyst
Global computational complexity

Analysis for μ-strongly convex objective functions

The global convergence rate of the accelerated algorithm \mathcal{A} is

$$F_s - F^* \leq C \left(1 - \frac{\rho}{T_M}\right)^s (F(x_0) - F^*). \quad (3)$$

where F_s is the objective function value obtained after performing $s = kT_M$ iterations of the method \mathcal{M}. As a result,

$$\tau_{\mathcal{A},F} = \frac{\rho}{T_M} = \tilde{O}(\tau_M \sqrt{\mu} / \sqrt{\mu + \kappa}),$$

where τ_M typically depends on κ (the greater, the faster).

κ will be chosen to maximize the ratio $\tau_M / \sqrt{\mu + \kappa}$.
Global computational complexity

Analysis for μ-strongly convex objective functions

The global convergence rate of the accelerated algorithm \mathcal{A} is

$$F_s - F^* \leq C \left(1 - \frac{\rho}{T_M}\right)^s (F(x_0) - F^*).$$

(3)

where F_s is the objective function value obtained after performing $s = kT_M$ iterations of the method \mathcal{M}. As a result,

$$\tau_{\mathcal{A},F} = \frac{\rho}{T_M} = \tilde{O}(\tau_{\mathcal{M}} \sqrt{\mu} / \sqrt{\mu + \kappa}),$$

where $\tau_{\mathcal{M}}$ typically depends on κ (the greater, the faster).

e.g., $\kappa = L - 2\mu$ when $\tau_{\mathcal{M}} = \frac{\mu + \kappa}{L + \kappa} \Rightarrow \tau_{\mathcal{A}} = \tilde{O} \left(\sqrt{\frac{\mu}{L}} \right)$.
Global computational complexity

Analysis for non-strongly convex objective functions

The global convergence rate of the accelerated algorithm \mathcal{A} is

$$F_s - F^* \leq \frac{8 T_{\mathcal{M}}^2 \log^2(s)}{s^2} \left(\left(1 + \frac{2}{\eta}\right)^2 (F(x_0) - F^*) + \frac{\kappa}{2} \|x_0 - x^*\|^2 \right).$$

If \mathcal{M} is a first-order method, this rate is near-optimal, up to a logarithmic factor, when compared to the optimal rate $O(1/s^2)$, which may be the price to pay for using a generic acceleration scheme.

κ will be chosen to maximize the ratio $\tau_{\mathcal{M}}/\sqrt{L + \kappa}$.
Applications

Expected computational complexity in the regime $n \leq L/\mu$ when $\mu > 0$,

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$\mu > 0$</th>
<th>$\mu = 0$</th>
<th>Catalyst $\mu > 0$</th>
<th>Cat. $\mu = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG</td>
<td>$O \left(n \left(\frac{L}{\mu} \right) \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td>$O \left(n \frac{L}{\varepsilon} \right)$</td>
<td>$\tilde{O} \left(n \sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td>$\tilde{O} \left(n \frac{L}{\sqrt{\varepsilon}} \right)$</td>
</tr>
<tr>
<td>SAG</td>
<td>$O \left(\frac{L}{\mu} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td>$O \left(n \frac{L}{\varepsilon} \right)$</td>
<td>$\tilde{O} \left(\sqrt{\frac{nL}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td>$\tilde{O} \left(n \frac{L}{\sqrt{\varepsilon}} \right)$</td>
</tr>
<tr>
<td>SAGA</td>
<td>$O \left(\frac{L}{\mu} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td>NA</td>
<td>$\tilde{O} \left(\sqrt{\frac{nL}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td></td>
</tr>
<tr>
<td>Finito/MISO</td>
<td>$O \left(\frac{L'}{\mu} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td>NA</td>
<td>$\tilde{O} \left(\sqrt{\frac{nL'}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td></td>
</tr>
<tr>
<td>SDCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVRG</td>
<td>$O \left(\frac{L'}{\mu} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td>NA</td>
<td>$\tilde{O} \left(\sqrt{\frac{nL'}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td></td>
</tr>
<tr>
<td>Acc-FG</td>
<td>$O \left(n \sqrt{\frac{L}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td>$O \left(n \frac{L}{\sqrt{\varepsilon}} \right)$</td>
<td>no acceleration</td>
<td></td>
</tr>
<tr>
<td>Acc-SDCA</td>
<td>$\tilde{O} \left(\sqrt{\frac{nL}{\mu}} \log \left(\frac{1}{\varepsilon} \right) \right)$</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experiments with MISO/SAG/SAGA

\(\ell_2 \)-logistic regression formulation

Given some data \((y_i, z_i)\), with \(y_i\) in \((-1, +1)\) and \(z_i\) in \(\mathbb{R}^p\), minimize

\[
\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i x^\top z_i}) + \frac{\mu}{2} \|x\|_2^2,
\]

\(\mu\) is the regularization parameter and the strong convexity modulus.

Datasets

<table>
<thead>
<tr>
<th>name</th>
<th>rcv1</th>
<th>real-sim</th>
<th>covtype</th>
<th>ocr</th>
<th>alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>781 265</td>
<td>72 309</td>
<td>581 012</td>
<td>2 500 000</td>
<td>250 000</td>
</tr>
<tr>
<td>(p)</td>
<td>47 152</td>
<td>20 958</td>
<td>54</td>
<td>1 155</td>
<td>500</td>
</tr>
</tbody>
</table>
Experiments with MISO/SAG/SAGA

The complexity analysis is not just a theoretical exercise since it provides the values of $\kappa, \varepsilon_k, \beta_k$, which are required in concrete implementations.

Here, theoretical values match practical ones.

Restarting

The theory tells us to restart \mathcal{M} with x_{k-1}. For SDCA/Finito/MISO, the theory tells us to use instead $x_{k-1} + \frac{\kappa}{\mu + \kappa} (y_{k-1} - y_{k-2})$. We also tried this as a heuristic for SAG and SAGA.

One-pass heuristic

constrain \mathcal{M} to always perform at most n iterations in inner loop; we call this variant AMISO2 for MISO, whereas AMISO1 refers to the regular “vanilla” accelerated variant; idem to accelerate SAG and SAGA.
Experiments without strong convexity, $\mu = 0$

![Graphs showing objective function values for different number of passes on various datasets.](image)

Figure: Objective function value for different number of passes on data.

Conclusions

- SAG, SAGA are accelerated when they do not perform well already;
- $\text{AMISO2} \geq \text{AMISO1} \ (\text{vanilla}), \ MISO \ does \ not \ apply$.
Experiments without strong convexity, $\mu = 10^{-1}/n$

Figure: Relative duality gap (log-scale) for different number of passes on data.

Conclusions
- SAG, SAGA are not always accelerated, but often.
- AMISO2, AMISO1 \gg MISO.
Experiments without strong convexity, $\mu = 10^{-3}/n$

![Graphs showing relative duality gap for different datasets](image)

Figure: Relative duality gap (log-scale) for different number of passes on data.

Conclusions

- same conclusions as $\mu = 10^{-1}/n$;
- μ is so small that (unaccelerated) MISO becomes numerically unstable.
General conclusions about Catalyst

Summary: lots of nice features

- Simple acceleration scheme with broad application range.
- Recover near-optimal rates for known algorithms.
- Effortless implementation.

... but also lots of unsolved problems

- Acceleration occurs when \(n \leq L/\mu \); otherwise, the “unaccelerated” complexity \(O(n \log(1/\varepsilon)) \) seems unbeatable.
- \(\mu \) is an estimate of the true strong convexity parameter \(\mu' \geq \mu \).
- \(\mu \) is the global strong convexity parameter, not a local one \(\mu^* \geq \mu \).
- When \(n \leq L/\mu \), but \(n \geq L/(\mu' \text{ or } \mu^*) \), a method \(\mathcal{M} \) that adapts to the unknown strong convexity may be impossible to accelerate.
- The optimal restart for \(\mathcal{M} \) is not yet fully understood.
Happy birthday!
Catalyst, the algorithm

Algorithm 1 Catalyst

input initial estimate $x_0 \in \mathbb{R}^p$, parameters κ and α_0, sequence $(\varepsilon_k)_{k \geq 0}$, optimization method \mathcal{M}; initialize $q = \mu / (\mu + \kappa)$ and $y_0 = x_0$;

1: **while** the desired stopping criterion is not satisfied **do**

2: Find an approx. solution x_k using \mathcal{M} s.t. $G_k(x_k) - G_k^* \leq \varepsilon_k$

3: \[x_k \approx \arg \min_{x \in \mathbb{R}^p} \left\{ G_t(x) \overset{\Delta}{=} F(x) + \frac{\kappa}{2} \| x - y_{k-1} \|^2 \right\} \]

3: Compute $\alpha_k \in (0, 1)$ from equation $\alpha_k^2 = (1 - \alpha_k) \alpha_{k-1}^2 + q \alpha_k$;

4: Compute \[y_k = x_k + \beta_k (x_k - x_{k-1}) \] with \[\beta_k = \frac{\alpha_{k-1} (1 - \alpha_{k-1})}{\alpha_{k-1}^2 + \alpha_k} \]

5: **end while**

output x_k (final estimate).
Ideas of the proofs

Main theorem

Let us denote

$$\lambda_k = \prod_{i=0}^{k-1} (1 - \alpha_i),$$

where the α_i's are defined in Catalyst. Then, the sequence $(x_k)_{k \geq 0}$ satisfies

$$F(x_k) - F^* \leq \lambda_k \left(\sqrt{S_k} + 2 \sum_{i=1}^{k} \sqrt{\frac{\epsilon_i}{\lambda_i}} \right)^2,$$

where F^* is the minimum value of F and

$$S_k = F(x_0) - F^* + \frac{\gamma_0}{2} \|x_0 - x^*\|^2 + \sum_{i=1}^{k} \frac{\epsilon_i}{\lambda_i} \quad \text{where} \quad \gamma_0 = \frac{\alpha_0 ((\kappa + \mu)\alpha_0 - \mu)}{1 - \alpha_0},$$

where x^* is a minimizer of F.
Ideas of the proofs

Then, the theorem will be used with the following lemma to control the convergence rate of the sequence \((\lambda_k)_{k \geq 0}\), whose definition follows the classical use of estimate sequences. This will provide us convergence rates both for the strongly convex and non-strongly convex cases.

Lemma 2.2.4 from Nesterov [2004]

If in the quantity \(\gamma_0\) defined in (6) satisfies \(\gamma_0 \geq \mu\), then the sequence \((\lambda_k)_{k \geq 0}\) from (4) satisfies

\[
\lambda_k \leq \min \left\{ \left(1 - \sqrt{q}\right)^k, \frac{4}{\left(2 + k \sqrt{\frac{\gamma_0}{\kappa + \mu}}\right)^2} \right\},
\]

(7)

where \(q \triangleq \mu / (\mu + \kappa)\).
Ideas of proofs

Step 1: build an approximate estimate sequence

- Remember that in general, we build φ_k from φ_{k-1} as follows

$$
\varphi_k(x) \triangleq (1 - \alpha_k)\varphi_{k-1}(x) + \alpha_k d_k(x),
$$

where d_k is a lower bound.

- Here, a natural lower bound would be

$$
F(x) \geq d_k(x) \triangleq F(x_k^*) + \langle \kappa (y_{k-1} - x_k^*), x - x_k^* \rangle + \frac{\mu}{2} \| x - x_k^* \|^2,
$$

where $x_k^* \triangleq \arg\min_{x \in \mathbb{R}^p} \left\{ G_k(x) \triangleq F(x) + \frac{\kappa}{2} \| x - y_{k-1} \|^2 \right\}$.

- But x_k^* is unknown! Then, use instead $d'_k(x)$ defined as

$$
d'_k(x) \triangleq F(x_k) + \langle \kappa (y_{k-1} - x_k), x - x_k \rangle + \frac{\mu}{2} \| x - x_k \|^2.
$$
Ideas of proofs

Step 2: Relax the condition $F(x_k) \leq \varphi_k^*$.

- We can show that Catalyst generates iterates $(x_k)_{k \geq 0}$ such that

$$F(x_k) \leq \phi_k^* + \xi_k,$$

where the sequence $(\xi_k)_{k \geq 0}$ is defined by $\xi_0 = 0$ and

$$\xi_k = (1 - \alpha_{k-1})(\xi_{k-1} + \varepsilon_k - (\kappa + \mu)\langle x_k - x_k^*, x_k - x_{k-1} \rangle).$$

- The sequences $(\alpha_k)_{k \geq 0}$ and $(y_k)_{k \geq 0}$ are chosen in such a way that all the terms involving $y_{k-1} - x_k$ are cancelled.

- We will control later the quantity $x_k - x_k^*$ by strong convexity of G_k:

$$\frac{\kappa + \mu}{2} \|x_k - x_k^*\|_2^2 \leq G_k(x_k) - G_k^* \leq \varepsilon_k.$$
Ideas of proofs

Step 3: Control how this errors sum up together.

- Do cumbersome calculus.
Catalyst in practice

General strategy and application to randomized algorithms

Calculating the iteration-complexity decomposes into three steps:

1. When F is μ-strongly convex, find κ that maximizes the ratio $\frac{\tau_{\mathcal{M}, G_k}}{\sqrt{\mu + \kappa}}$ for algorithm \mathcal{M}. When F is non-strongly convex, maximize instead the ratio $\frac{\tau_{\mathcal{M}, G_k}}{\sqrt{L + \kappa}}$.

2. Compute the upper-bound of the number of outer iterations k_{out} using the theorems.

3. Compute the upper-bound of the expected number of inner iterations

$$\max_{k=1, \ldots, k_{\text{out}}} \mathbb{E}[T_{\mathcal{M}, G_k}(\varepsilon_k)] \leq k_{\text{in}},$$

Then, the expected iteration-complexity denoted Comp is given by

$$\text{Comp} \leq k_{\text{in}} \times k_{\text{out}}.$$
Applications

Deterministic and Randomized Incremental Gradient methods

- Stochastic Average Gradient (SAG and SAGA) [Schmidt et al., 2013, Defazio et al., 2014a];
- Finito and MISO [Mairal, 2015, Defazio et al., 2014b];
- Semi-Stochastic/Mixed Gradient [Konečný et al., 2014, Zhang et al., 2013];
- Stochastic Dual coordinate Ascent [Shalev-Shwartz and Zhang, 2012];
- Stochastic Variance Reduced Gradient [Xiao and Zhang, 2014].

But also, randomized coordinate descent methods, and more generally first-order methods with linear convergence rates.
Appendix on proximal MISO
Original motivation

Given some data, learn some model parameters x in \mathbb{R}^p by minimizing

$$\min_{x \in \mathbb{R}^p} \left\{ F(x) \equiv \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\},$$

where each f_i may be nonsmooth and nonconvex.

The original MISO algorithm is an incremental extension of the majorization-minimization principle [Lange et al., 2000].

Paper

Majorization-minimization principle

Iteratively minimize locally tight upper bounds of the objective.

The objective monotonically decreases.

Under some assumptions, we get similar convergence rates as gradient-based approaches for convex problems.
Algorithm 2 Incremental scheme MISO

Input $x_0 \in \mathbb{R}^p$; T (number of iterations).

1. Choose surrogates g_i^0 of f_i near x_0 for all i;
2. for $k = 1, \ldots, K$ do
3. Randomly pick up one index \hat{i}_k and choose a surrogate $g_{\hat{i}_k}^k$ of $f_{\hat{i}_k}$ near x_{k-1}. Set $g_i^k \triangleq g_i^{k-1}$ for $i \neq \hat{i}_k$;
4. Update the solution:

$$x_k \in \arg \min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} g_i^k(x).$$

5. end for

Output x_K (final estimate);
Incremental Optimization: MISO

Update rule with basic upper bounds

We want to minimize $\frac{1}{n} \sum_{i=1}^{n} f_i(x)$, where the f_i’s are smooth.

$$x_k \leftarrow \arg\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} f_i(y_i^k) + \nabla f_i(y_i^k)^\top (x - y_i^k) + \frac{L}{2} \|x - y_i^k\|_2^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_i^k - \frac{1}{Ln} \sum_{i=1}^{n} \nabla f_i(y_i^k).$$

At iteration k, randomly draw one index \hat{i}_k, and update $y_{\hat{i}_k}^k \leftarrow x_k$.

Remarks

- replace $(1/n) \sum_{i=1}^{n} y_i^k$ by x_{k-1} yields SAG [Schmidt et al., 2013].
- replace $(1/L)$ by $(1/\mu)$ for strongly convex problems is close to a variant of SDCA [Shalev-Shwartz and Zhang, 2012].
Incremental Optimization: MISOμ.

Update rule with lower bounds?

We want to minimize $\frac{1}{n} \sum_{i=1}^{n} f_i(x)$, where the f_i's are smooth.

$$x_k = \arg \min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} f_i(y_i^k) + \nabla f_i(y_i^k) \top (x - y_i^k) + \frac{\mu}{2} \|x - y_i^k\|_2^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_i^k - \frac{1}{\mu n} \sum_{i=1}^{n} \nabla f_i(y_i^k).$$

Remarks

- Requires strong convexity.
- Use a counter-intuitive minorization-minimization principle.
- Close to a variant of SDCA [Shalev-Shwartz and Zhang, 2012].
- Much faster than the basic MISO (faster rate).
Incremental Optimization: MISOμ.

In the first part of this presentation, what we have called MISO is the algorithm that uses $1/(\mu n)$ step-sizes (sorry for the confusion). To minimize $F(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x)$, MISOμ has the following guarantees

Proposition [Mairal, 2015]

When the functions f_i are μ-strongly convex, differentiable with L-Lipschitz gradient, and non-negative, MISOμ satisfies

$$
\mathbb{E}[F(x_k) - F^*] \leq \left(1 - \frac{1}{3n}\right)^k \cdot nf^*,
$$

under the condition $n \geq 2L/\mu$.

Remarks

- When $n \leq 2L/\mu$, the algorithm may diverge;
- When μ is very small, numerical stability is an issue.
- The condition $f_i \geq 0$ does not really matter.
Proximal MISO [Lin, Mairal, and Harchaoui, 2015]

Main goals

- Remove the condition \(n \leq 2L/\mu \);
- Allow a composite term \(\psi \):

\[
\min_{x \in \mathbb{R}^p} \left\{ F(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \psi(x) \right\},
\]

Starting points

MISO\(\mu \) is iteratively updating/minimizing a lower-bound of \(F \)

\[
x_k \leftarrow \arg \min_{x \in \mathbb{R}^p} \left\{ D_k(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} d_i^k(x) \right\},
\]

[Lin, Mairal, and Harchaoui, 2015].
Proximal MISO

Adding the proximal term

\[x_t \leftarrow \arg \min_{x \in \mathbb{R}^p} \left\{ D_k(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} d_i^k(x) + \psi(x) \right\} , \]

Remove the condition \(n \geq 2L/\mu \)

For \(i = \hat{i}_k \),

\[d_i^k(x) = (1-\delta)d_i^{k-1}(x) + \delta \left(f_i(x_{k-1}) + \langle \nabla f_i(x_{k-1}), x - x_{k-1} \rangle + \frac{\mu}{2} \| x - x_{k-1} \|^2 \right) \]

Remarks

- the original MISO\(\mu \) uses \(\delta = 1 \). To get rid of the condition \(n \geq 2L/\mu \), proximal MISO uses instead \(\delta = \min \left(1, \frac{\mu n}{2(L-\mu)} \right) \).
- variant “5” of SDCA [Shalev-Shwartz and Zhang, 2012] is identical with another value \(\delta = \frac{\mu n}{L+\mu n} \) in \((0, 1) \).
Proximal MISO

Convergence of MISO-Prox

Let \((x_k)_{k \geq 0}\) be obtained by MISO-Prox, then

\[
\mathbb{E}[F(x_k)] - F^* \leq \frac{1}{\tau} (1 - \tau)^{k+1} (F(x_0) - D_0(x_0)) \quad \text{with} \quad \tau \geq \min \left\{ \frac{\mu}{4L}, \frac{1}{2n} \right\}.
\]

Furthermore, we also have fast convergence of the certificate

\[
\mathbb{E}[F(x_k) - D_k(x_k)] \leq \frac{1}{\tau} (1 - \tau)^k (F^* - D_0(x_0)).
\]

Differences with SDCA

- The construction is \textbf{primal}. The proof of convergence and the algorithm do not use duality, while SDCA is a dual ascent technique.
- \(D_k(x_k)\) is a lower-bound of \(F^*\); it plays the same role as the dual in SDCA, but is \textbf{easier to evaluate}.
Conclusions

- Relatively simple algorithm, with simple convergence proof, and simple optimality certificate.
- Catalyst not only accelerates it, but also stabilizes it numerically, with the parameter $\delta = 1$.
- Close to SDCA, but without duality.
References I

References II

References III

