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Submodular functions
From discrete to continuous domains
Summary

e Which functions can be minimized in polynomial time?

— Beyond convex functions

e Submodular functions

— Not convex, ... but “equivalent” to convex functions
— Usually defined on {0, 1}"
— Extension to continuous domains

e Preprint available on arXiv



Submodularity (almost) everywhere
Clustering

e Semi-supervised clustering

e Submodular function minimization



Submodularity (almost) everywhere
Graph cuts and image segmentation

e Submodular function minimization



Submodularity (almost) everywhere
Sensor placement

e Each sensor covers a certain area (Krause and Guestrin, 2005)

— Goal: maximize coverage

e Submodular function maximization

e Extension to experimental design (Seeger, 2009)



Submodularity (almost) everywhere
Image denoising

e Total variation denoising (Chambolle, 2005

e Submodular convex optimization problem



Submodularity (almost) everywhere
Combinatorial optimization problems

e Set V ={1,...,n}
e Power set 2¥ = set of all subsets, of cardinality 2"
e Minimization/maximization of a set-function F': 2V — R.

min F'(A) = min F(A)
ACV Ae2V



Submodularity (almost) everywhere
Combinatorial optimization problems

e Set V={1,...,n}
e Power set 2¥ = set of all subsets, of cardinality 2"
e Minimization/maximization of a set-function F': 2V — R.

min F'(A) = min F(A)
ACV Ae2V

e Reformulation as (pseudo) Boolean function

(1,0, 1)~? (1,1, 1)~{1, 2, 3}
min H(x) (0, 0, 1)~{3}, <

e (1,0,0~{1}| O LDz
with H : {0,1}" — R e ML L0~ 2)
and VA C V, H(1,) = F(A) : /

(0,0,0~{}" (0, 1, 0)~{2}



Outline

1. Submodular set-functions

— Definitions, examples
— Links with convexity through Lovasz extension
— Minimization by convex optimization

2. From discrete to continuous domains

— Nonpositive second-order derivatives
— Invariances and examples
— Extensions on product measures through optimal transport

3. Minimization of continuous submodular functions

— Subgradient descent
— Frank-Wolfe optimization



Submodular functions - References

e Reference book based on combinatorial optimization

— Submodular Functions and Optimization (Fujishige, 2005)

e Tutorial monograph based on convex
optimization (Bach, 2013)

— Learning with submodular functions: a
convex optimization perspective

now
=TT o doe



Submodular functions
Definitions

e Definition: H : {0,1}" — R is submodular if and only if
va,y € {0,1}",  H(x)+ H(y) > H(max{z,y}) + H(min{z, y})

— NB: equality for modular functions (linear functions of x)
— Always assume H(0) =0



Submodular functions
Definitions

e Definition: H : {0,1}" — R is submodular if and only if
va,y € {0,1}",  H(x)+ H(y) > H(max{z,y}) + H(min{z, y})

— NB: equality for modular functions (linear functions of x)
— Always assume H(0) =0

e Equivalent definition: (with e; € R™ i-th canonical basis vector)
Vied{l,....,n}, x> H(x+e;) — H(x) is non-increasing

— “Concave property”: Diminishing returns



Submodular functions - Examples
(see, e.g., Fujishige, 2005; Bach, 2013)

e Concave functions of the cardinality
e Cuts

e Entropies

— Joint entropy of (X})z, =1, from n random variables X;,..., X,
e Functions of eigenvalues of sub-matrices
e Network flows

e Rank functions of matroids



Examples of submodular functions
Cardinality-based functions

e Modular function: H(z) = w 'z for w € R™

— Cardinality example: If w =1, then H(z) =1!x

e If g is a concave function, then H : x + g(1!x) is submodular

— Diminishing return property

A g(x'1,)

x'l,
>




Examples of submodular functions
Covers

e Let W be any “base” set, and foreach K €V, aset S, C W

o Set cover defined as H(x) = | Uz, =1 Skl



Examples of submodular functions
Cuts

e Given a (un)directed graph, with vertex set V"= {1,...,n} and edge
set ECV xV

— H(x) is the total number of edges going from {x = 1} to {z = 0}.

§$ O
O

Tl

e Generalization with d : {1,...,n} x{1,...,n} - Ry

H(x) = d(k,j)(z; — ;)4

7,k

/J\\/\\/

A={x=1}




Choquet integral (Choquet, 1954) - Lovasz extension

e Subsets may be identified with elements of {0,1}"

e Given any function H and p € R™ such that p;, = -+ > p;,

H?,A

Ha>Ua>1

g g )
<t Ho>U3 >

Mi>H3>, —

2> >3
iy Hi>Ha> 3



Choquet integral (Choquet, 1954) - Lovasz extension

e Subsets may be identified with elements of {0,1}"

e Given any function H and p € R™ such that p;, > -+ > p;,,, define:

h(p) = Z :ujk[H(eh Tt ejk) — H(€j1 Tt ejk—l)]
k=1

Ha>Ua>1

U3A

g g )
Q/H2>H3>H1
>U3>Uy —
MizHst == S | e
2> >3
iy Hi>Ha> 3



Choquet integral (Choquet, 1954) - Lovasz extension

e Subsets may be identified with elements of {0,1}"

e Given any function H and p € R™ such that p;, > -+ > p;,,, define:

h(p) = Z ,Lij[H(ejl T ejk) - H(eh Tt ejk—l)]
k=1

o For H(z) =w'x, then h(p) =w' i

o For cuts, h(u) = >, iy d(k, J)|uk — pjl is the total variation



Choquet integral (Choquet, 1954) - Lovasz extension

e Subsets may be identified with elements of {0,1}"

e Given any function H and p € R™ such that p;, > -+ > p;,,, define:

h(p) = Z :ujk[H(eh Tt ejk) — H(€j1 Tt ejk—l)]
k=1

o For H(z) =w'x, then h(p) =w' i
o For cuts, h(u) = >, iy d(k, J)|uk — pjl is the total variation

e For any set-function H (even not submodular)

— h is piecewise-linear and positively homogeneous
— If x € {0,1}", h(x) = H(z) = extension from {0,1}" to [0, 1]"



Submodular set-functions
Links with convexity (Lovasz, 1982)

1. H is submodular if and only if / is convex

2. If H is submodular, then

n H — ' h — in h
wér{%l,rll}” (@) ME%IE}” (k) ué?()lﬁ]” (k)

3. If H is submodular, then a subgradient of h at any 1 may be
computed by the “greedy algorithm”

— Order the components of € R™ as p;, = -+ = p,,
— Define w;, = H(ej, +---+e€;,)— H(e;, +---+ej ) forall k
— Moreover h(p) = w'



Submodular set-functions
Links with convexity (Lovasz, 1982)

1. H is submodular if and only if / is convex

2. If H is submodular, then

n H — ' h — in h
wér{%l,rll}” (@) ME%IE}” (k) ué?()lﬁ]” (k)

3. If H is submodular, then a subgradient of h at any 1 may be
computed by the “greedy algorithm”

e Consequences

— Submodular function minimization may be done in polynomial time
— Ellipsoid algorithm in O(n®) (Grotschel et al., 1981)



Exact submodular function minimization
Combinatorial algorithms

e Algorithms based on n?in] h(u) and its dual problem
nelo,1)m

e Output the subset A and a dual certificate of optimality

e Best algorithms have polynomial complexity (Schrijver, 2000; lwata
et al., 2001; Orlin, 2009)

— Typically O(n®) or more

e Not practical for large problems...



Submodular function minimization
Through convex optimization

e Convex non-smooth optimization problem

in H — ' h — in h
xG%l,Ill}” (@) MGIR)I,Ill}” (k) ué?ol,lll]” (k)

e Important properties of h for convex optimization
— Polyhedral function
— Known subgradients obtained from greedy algorithm
e Generic algorithms (blind to submodular structure)

— Some with complexity bounds, some without
— Subgradient, Frank-Wolfe, simplex, cutting-plane (ACCPM)
— See Bach (2013)



Submodular function minimization
Through convex optimization

e Convex non-smooth optimization problem

in H(x) = in h(p) = min h
B T = LR M) = i M)

e Important properties of h for convex optimization

— Polyhedral function
— Known subgradients obtained from greedy algorithm

e Generic algorithms (blind to submodular structure)

e Algorithms for sums of simple submodular functions

— Using alternating reflections (Jegelka, Bach, and Sra, 2013)



Outline

1. Submodular set-functions

— Definitions, examples
— Links with convexity through Lovasz extension
— Minimization by convex optimization

2. From discrete to continuous domains

— Nonpositive second-order derivatives
— Invariances and examples
— Extensions on product measures through optimal transport

3. Minimization of continuous submodular functions

— Subgradient descent
— Frank-Wolfe optimization



From discrete to continuous domains

e Main insight: {0, 1} is totally ordered!



From discrete to continuous domains

e Main insight: {0, 1} is totally ordered!
e Extension to {0,... .,k —1}: H:{0,....k—1}" >R
vo,y, H(z)+ H(y) > H(min{z,y}) + H(max{z, y})

.....

— Equivalent definition: with (e;);cf1,... ») canonical basis of R"
Va,i,7, Hx+e)+H(x+e;) > H(z)+ H(x+e; +¢e;)

— See Lorentz (1953); Topkis (1978)



From discrete to continuous domains

e Main insight: {0, 1} is totally ordered!
e Extension to {0,... .,k —1}: H:{0,....k—1}" >R
Va,y, H(z)+ H(y) > H(min{z,y}) + H(max{z,y})
— Equivalent definition: with (e;);cf1,... ») canonical basis of R"
Va,i,7, Hx+e)+H(x+e;) > H(z)+ H(x+e; +¢e;)
— See Lorentz (1953); Topkis (1978)

e Generalization to all totally ordered sets: X; C R
0*H
8:1:7;833]-

intervals + H twice differentiable: Vax & H Xi, () <0

1=1



A “new’ class of continuous functions

e Assume each X; C R is a compact interval, and (for simplicity) H
twice differentiable:

= 0’H
Submodularity : Vz € X;, <0
ubmodularity : Vx 71;[1 &Eiaxj(x)
¢ Invariance by
— individual increasing smooth change of variables H (p1(x1), ..., ©n(xy))

— adding arbitrary (smooth) separable functions > ", v;(x;)



A “new’ class of continuous functions

e Assume each X; C R is a compact interval, and (for simplicity) H
twice differentiable:

= 0’H
Submodularity : Vz € X;, <0
ubmodularity : Vx 71;[1 &Eiaxj(x)
¢ Invariance by
— individual increasing smooth change of variables H (p1(x1), ..., ©n(xy))

— adding arbitrary (smooth) separable functions > ", v;(x;)

e Examples

— Quadratic functions with Hessians with non-negative off-diagonal
entries (Kim and Kojima, 2003)

— p(z; — x;), p convex; p(x1+ -+ =,), @ concave; log det, etc...

— Monotone of order two (Carlier, 2003), Spence-Mirrlees
condition (Milgrom and Shannon, 1994)



Extensions to the space of product measures
e Set-function: X; = {0,1}

— 10, 1] = set of probability distributions on {0,1}: p; =P(X; =1)
— Lovasz extension: for v € [0,1]™ such that p;, > -+ > u;,

h(/‘) — Z /‘jk[H(eh Tt ejk) o H(ejl Tt 6jk—1})]
k=1
n—1
= (1= i) H(0) + > (njp — mjpp ) H(ejy + -+ ej) + p, H(Ln)
k=1

= E|H (1,>¢)] for ¢ uniform in [0, 1]



Extensions to the space of product measures
e Set-function: X; = {0,1}

— 10, 1] = set of probability distributions on {0,1}: p; =P(X; =1)
— Lovasz extension: for v € [0,1]™ such that p;, > -+ > u;,

n

h(:“) — Z /‘jk[H(eh Tt 6jk) o H(ejl Tt 6jk—1})]
k=1
n—1
= (1- /‘j1)H(O) + Z(Mjk o Mjk+1)H(6j1 Tt ejk) + :ujnH(ln)
k=1

= E|H (1,>¢)] for ¢ uniform in [0, 1]

e Relaxation on product measures

— Continuous variable p = (u1, ..., un) € [ 1[0, 1]
— Based on inverse cumulative distribution functions: [0,1] — X;



Extensions to the space of product measures
View 1: thresholding cumulative distrib. functions

e Given a probability distribution u; € P(X;)

— (reversed) cumulative distribution function F),. : X; — |0, 1] as

Fu (i) = pi({yi € Xiyyi = wi}) = pa([2i, +00)) € [0, 1]

— and its “inverse”: F, *(t) = inf{z; € X;j, F,,(x;) <t} € X;

F () ki—1 ¢—o

o—=e




Extensions to the space of product measures
View 1: thresholding cumulative distrib. functions

e Given a probability distribution u; € P(X;)

— (reversed) cumulative distribution function F),. : X; — |0, 1] as

Fu(zi) = pi({yi € Xiyyi > x3}) = pa([2i, +00)) € [0,1]

— and its “inverse”: F'(t) = inf{x; € X;, Fy,(z;) <t} € X,

e “Continuous’ extension
n 1
e [IP). hlpreoom) = [ HIFAO. F 0] d
i=1 0

— For finite sets, can be computed by sorting all values of F), (x;)
— Equal to the Lovasz extension for set-functions



Extensions to the space of product measures
View 2: convex closure

e Given any function H on X = [[._, X;

— Known value H(xz) for any “extreme points” of product measures
(i.e., all Diracs 9, at any x € X)

— Convex closure h = largest convex lower bound

— Minimizing H and its convex closure h is equivalent




Extensions to the space of product measures
View 2: convex closure
e Given any function H on X = [[._, X;

— Known value H(xz) for any “extreme points” of product measures
(i.e., all Diracs 9, at any x € X)

— Convex closure h = largest convex lower bound

— Minimizing H and its convex closure h is equivalent

e Need to compute the bi-conjugate of

a:pu+— H(x)if u =246, for some x € X, and + oo otherwise



Computation of the convex envelope

e Need to compute the bi-conjugate of

a:pu+— H(x)if u =246, for some x € X, and + oo otherwise

e Step 1: compute a*(w) for w € [, R

a*(w) = Supz:wZ r;) — H(x) = sup ny {zn:wz(xz)—H:L‘
i=1

reX ~YEP(X) reX
~ s {> S wie)n(e) — 3 () }
YEP(X) 1=1 x,€X; xeX
— with v;(x;) = Z v(xq,... ) the i-th marginal of ~



Computation of the convex envelope

e Step 1: a*(w) = sup {S‘ ST wila)vilz) = Y (@) }

YEP(X) 1=1 x;€X; xeX

e Step 2: compute a**(u) = sup,,(w, u) — a*(w) for u € [T, P(X;)

a**(u) = sup{w,p) — sup {S‘ wixg) i) Z’Y

w vEPX) Uiy x; EX; z€eX

— inf sup S‘ S‘ wz acz % ZC@ Mz ﬂﬁ‘z ZV

P(X
VEPX) w 1=1 x,€X; reX

e Thus a™" () = inf /H(ac)dv(ac) such that Vi, ~v;(xz;) = pi(x;)
vEP(X) Jx



Extensions to the space of product measures
View 2: convex closure

e Given any function H on X = [[._, X;

— Known value H(xz) for any “extreme points” of product measures
(i.e., all Diracs 9, at any x € X)

— Convex closure h = largest convex lower bound

— Minimizing H and its convex closure h is equivalent

e "Closed-form” formulation: iL(,ul,...,,un = inf /H Ydy(x
YEP(X)

— with respect to all prob. measures v on X such that v;(x;) = p;(x;)
— Multi-marginal optimal transport



Extensions to the space of product measures
Combining the two views

e View 1: thresholding cumulative distribution functions
+ closed form computation for any H, always an extension
— not convex

e View 2: convex closure

+ convex for any H, allows minimization of H
— not computable, may not be an extension



Extensions to the space of product measures
Combining the two views

e View 1: thresholding cumulative distribution functions
+ closed form computation for any H, always an extension
— not convex

e View 2: convex closure
+ convex for any H, allows minimization of H
— not computable, may not be an extension

e Submodularity

— The two views are equivalent
— Direct proof through optimal transport
— All results from submodular set-functions go through



Kantorovich optimal transport in one dimension

e Theorem (Carlier, 2003): If H is submodular, then

inf /H(x)dv(x) such that Vi,v; = u;
vEP(X) Jx

1
is equal to/ H[F,\(t),...,F,'(t)]dt
0



Kantorovich optimal transport in one dimension

e Theorem (Carlier, 2003): If H is submodular, then

inf /H(a?)d"}/(a?) such that Vz,~v; = u;
vEP(X) Jx

1
is equal to/ H[F'(t),...,F'(t)]dt
0

e Proof/intuition for n = 2 for the Monge problem

(a) Assume for simplicity atomless measures
(b) The following increasing map is natural F ' o F}, : X1 — X
(c) This is the only increasing map
(d) Transport maps always increasing when H submodular
— If 1 < 2/, mapped to x5 > x5, then exchanging x5 and x/, would
increase the cost by c(x1, z4)+c(x), x2)—c(x1, x2)—c(z], x5) <0



Duality - Subgradients of extension

e General duality

_supy S‘ wZ acz ,uz €T; —Sup{sz Z‘Z

1=1 x;,€X; zEX

e Subgradients from “greedy algorithm”

— Sort all values of F),.(x;) fori € {1,...,n} and z; € X;
— Get a subgradient w by taking differences of values of H

— See Bach (2015) for more details



Submodular functions
Links with convexity (Bach, 2015)

1. H is submodular if and only if / is convex

2. If H is submodular, then

min H(x) = min h(
r€l [ X (@) nelTizy P(X;) (4

3. If H is submodular, then a subgradient of h at any 1 may be
computed by a “greedy algorithm”
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— Subgradient descent
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Minimization of submodular functions
Projected subgradient descent

e For simplicity: discretizing all sets X;, + = 1,...,n to k elements

e Assume Lispschitz-continuity: Vz,e;, |H(xz +¢;) — H(x)| < B

— Fact: subgradients of h bounded by B in £,.-norm

e Projected subgradient descent

— Convergence rate of O(nkB/+/t) after t iterations
— Cost of each iteration O(nklog(nk))
— Reasonable scaling with respect to discretization



Minimization of submodular functions
Frank-Wolfe / conditional gradient

e Submodular set-functions: X; = {0, 1}

— (C) : min,,¢10,1» A(11) non-smooth convex
— Solve instead (S) : min,ern h(p) + 5| 1||* (strongly convex)
— Fact: level sets of (S) obtained from minimizers of H(z) + Az '1,,



Minimization of submodular functions
Frank-Wolfe / conditional gradient

e Submodular set-functions: X; = {0, 1}

— (C) : min,,¢10,1» A(11) non-smooth convex
— Solve instead (S) : min,ern h(p) + 5| 1||* (strongly convex)
— Fact: level sets of (S) obtained from minimizers of H(z) + Az '1,,

e Extension to all submodular functions

~ ()t mineppy sy h()

— Solve instead (S) : min,crpr o) f(1) + Doy @ilps)

— o(u;) defined through optimal transport with a submodular cost
ci(xi,t) between p; and the uniform distribution on [0, 1]

— ©(u;) can be strongly convex

— Level sets of (S) obtained from minimizers of H(x)+>_.", ¢;i(x;,t)



Empirical simulations

e Signal processing example: H : [—1,1]" — R

1 n n n—1
2 6" 2
H(z) =5 > (@i —2)? A |zl u ) (i — wisa)
1 : 1 .
—— noisy ——denoised
- = -noiseless - = -noiseless
0.5
T S
> 0 S
2 2
-0.5¢ -0.5
_l I _1 .
1 -0.5 —0.5

X O
O |
&
|
=

X O
O |
ol
=



Empirical simulations

e Signal processing example: H : [—1,1]" — R

1 n n n—1
H(z) =5 D (@i—z)? Ay |w| Yy (v — wiga)’
1=1 1=1 1=1
) I—subgrladient
21 —— Frank—Wolfe

o

(certified) gaps
N

I
SN

I
(o))

I
00]

100 200 300 400 500
number of iterations



Conclusion

e Submodular function and convex optimization

— From discrete to continuous domains
— Extensions to product measures
— Direct link with one-dimensional multi-marginal optimal transport



Conclusion

e Submodular function and convex optimization

— From discrete to continuous domains
— Extensions to product measures
— Direct link with one-dimensional multi-marginal optimal transport

¢ On-going work

— Optimal transport beyond submodular functions

— Beyond discretization

— Beyond minimization

— Sums of submodular functions and convex functions
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