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THE CONTROLLED SWEEPING PROCESS

is described by the dissipative differential inclusion−ẋ(t) ∈ N
(
x(t);C(t)

)
a.e. t ∈ [0, T ]

x(0) = x0 ∈ C(0),

where N(·; Ω) stands for the usual normal cone of convex anal-

ysis, and where t 7→ C(t) is a Lipschitzian set-valued mapping

(moving set). Classical theory of the sweeping process estab-

lishes the existence and uniqueness of Lipschitzian solutions for

a given moving set C(t), and so doesn’t allow any room for

optimization. We suggest to control the sweeping set C(t)

by some forces and thus formulate and study new classes of

optimal control problems for controlled sweeping process with

various applications; in particular, to quasistatic elastoplasticity,

magnetic hysteresis, social-economic modeling, etc.
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OPTIMAL CONTROL PROBLEM

Given a terminal cost function ϕ and a running cost `, consider

the optimal control problem (P ): minimize

J[x, u, b] = ϕ
(
x(T )

)
+
∫ T

0
`
(
t, x(t), u(t), b(t), ẋ(t), u̇(t), ḃ(t)

)
dt

over the controlled sweeping dynamics governed by the so-

called play-and-stop operator appearing, e.g., in hysteresis

.
x(t) ∈ −N

(
x(t);C(t)

)
+ f

(
x(t), b(t)

)
for a.e. t ∈ [0, T ], x(0) = x0 ∈ C(0) ⊂ IRn

with C(t) = C + u(t), C =
{
x ∈ IRn

∣∣∣ 〈ai, x〉 ≤ 0, i = 1, . . . ,m
}

‖u(t)‖ = 1 for all t ∈ [0, T ]
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where the trajectory x(t) and control u(t) = (u1(t), . . . , un(t),

b(t) = (b1(t), . . . , bn(t)) functions are absolutely continuous on

the fixed interval [0, T ]

Observe that we have the intrinsic/hidden state constraints〈
ai, x(t)− u(t)

〉
≤ 0 for all t ∈ [0, T ], i = 1, . . . ,m

due to the construction of the normal cone to C(t) = C+u(t)

THEOREM Problem (P ) admits a feasible (absolutely continuous)

solution under natural and mild assumptions



DISCUSSION ON OPTIMAL CONTROL

The formulated optimal control problem for the sweeping pro-

cess is not an optimization problem over a differential inclu-

sion of the type ẋ ∈ F (t, x). In our case the velocity set

F (t, x) = −N
(
x;C(t)

)
+f(x, b(t)) is not fixed since the sweeping

set C(t) = Cu(t)(t) and the perturbation f(x, b(t)) are differ-

ent for each control (u, b). Thus we optimize in the shape of

F (t, x) which somehow relates this problem to dynamic shape

optimization. In fact there is no sense to formulate any opti-

mization problem for the differential inclusion

ẋ ∈ F (t, x) := −N
(
x;C(t)

)
+ f

(
x, b(t)

)
, t ∈ [0, T ]

when C(t) is fixed since, in major cases, the sweeping inclusion

admits a unique solution for every initial point x(0) = x0 ∈ C(0)

3



REFORMULATION

Denote z := (x, u, b) ∈ IR3n, z(0) := (x0, u(0), b(0))

F (z) := −N
(
x;C(u)

)
+f(x, b) with C(u) :=

{
x| 〈ai, x〉 ≤ 0, i = 1, . . . ,m

}
Problem (P ) can be reformulated as: minimize

J[z] = ϕ
(
z(T )

)
+
∫ T

0
`
(
t, z(t), ż(t)

)
dt s.t.

.
z(t) ∈ G

(
z(t)

)
:= F

(
z(t)

)
× IRn × IRn a.e. t ∈ [0, T ]

〈
ai, x(t)− u(t)

〉
≤ 0 for all t ∈ [0, T ], i = 1, . . . ,m

‖u(t)‖ = 1 for all t ∈ [0, T ]

G(z) is unbounded and highly non-Lipschitzian
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DISCRETE APPROXIMATIONS OF SWEEPING TRAJECTORIES

THEOREM Fix an arbitrary feasible solution z̄(·) to (P ) and
consider discrete partitions

∆k :=
{

0 = tk0 < tk1 < . . . < tkk = T
}
with hk := max

0≤j≤k−1
{tkj+1−t

k
j} ↓ 0

Then there is a sequence of piecewise linear functions zk(t) :=
(xk(t), uk(t), bk(t)) on [0, T ] with ‖uki (tkj )‖ = 1 for i = 1, . . . ,m
satisfying the discretized inclusions

xk(t) = xk(tj)+(t−tj)vkj , x(0) = x0, t
k
j ≤ t ≤ t

k
j+1, j = 0, . . . , k−1

with vkj ∈ F (zk(tkj )) on ∆k and such that

zk(t)→ z̄(t) uniformly on [0, T ],

T∫
0

‖ ˙̄zk(t)− ˙̄z(t)‖2 dt→ 0

The latter implies the a.e. pointwise on [0, T ] convergence of
some subsequence of the derivatives ˙̄zk(t)→ ˙̄z(t)
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DISCRETE CONTROL PROBLEMS

Let z̄(·) =
(
x̄(·), ū(·), b̄(·)

)
be a local optimal solution to (P ).

Consider discrete approximation problems (Pk) : minimize

Jk[zk] := ϕ(xkk) + hk

k−1∑
j=0

`

(
zkj ,

zkj+1 − z
k
j

hk

)

+
k−1∑
j=0

tkj+1∫
tkj

∥∥∥∥zkj+1 − z
k
j

hk
− ˙̄z(t)

∥∥∥∥2
dt

over zk := (xk0, . . . , x
k
k, u

k
0, . . . , u

k
k, b

k
0, . . . , b

k
k) satisfying

xkj+1 ∈ x
k
j + hkF (xkj , u

k
j , b

k
j ), j = 0, . . . , k − 1, xk0 = x0〈

ai, x
k
j − u

k
j

〉
≤ 0,

∥∥∥ukj ∥∥∥ = 1, j = 0, . . . , k − 1, i = 1, . . . ,m
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EXISTENCE OF DISCRETE OPTIMAL SOLUTIONS

THEOREM Let ϕ and ` be lower semicontinuous around z̄(·).

Then each problem (Pk) admits an optimal solution

PROOF employs the Attouch theorem on subdifferential con-

vergence for convex extended-real valued functions
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RELAXATION AND HIDDEN CONVEXITY

Relaxed Sweeping Control Problem (R): minimize

Ĵ[z] := ϕ
(
x(T )

)
+
∫ T

0
̂̀(t, x(t), u(t), b(t), ẋ(t), u̇(t), ḃ(t)

)
dt

subject to convexified inclusion

ẋ(t) ∈ coF
(
x(t), u(t), b(t)

)
under the same constraints, where ̂̀ stands for the convexifi-
cation of ` with respect to velocity variables

Relaxation Stability: Optimal solution z̄(·) to (R) exists,
min(R)=inf(P), and z̄(·) can be strongly approximated by fea-
sible solutions to (P)

THEOREM The sweeping control problem (P) enjoys relax-
ation stability under the standing assumptions
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STRONG CONVERGENCE OF DISCRETE APPROXIMATIONS

THEOREM Let z̄(·) = (x̄(·), ū(·), b̄(·)) be a given optimal so-

lution to (P ). Then any sequence of piecewise linearly extended

to [0, T ] optimal solutions z̄k(t) of the discrete problems (Pk)

strongly converges to z̄(t) in the Sobolev space W1,2[0, T ]

PROOF Using the above result on the strong approximation

of trajectories for the sweeping inclusion and relaxation stability
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GENERALIZED DIFFERENTIATION

Normal Cone to a closed set Ω ⊂ IRn at x̄ ∈ Ω

N(x̄; Ω) :=
{
v
∣∣∣ ∃xk → x̄, wk ∈ Π(xk; Ω), αk ≥ 0, αk(xk − wk)→ v

}
Subdifferential of an l.s.c. function ϕ : IRn → (−∞,∞] at x̄

∂ϕ(x̄) :=
{
v
∣∣∣ (v,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)

}
, x̄ ∈ domϕ

Coderivative of a set-valued mapping G

D∗G(x̄, ȳ)(u) :=
{
v
∣∣∣ (v,−u) ∈ N((x̄, ȳ) : gphG)

}
, ȳ ∈ G(x̄)

Generalized Hessian of ϕ at x̄

∂2ϕ(x̄) := D∗(∂ϕ)(x̄, v̄), v̄ ∈ ∂ϕ(x̄)
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FURTHER STRATEGY

• For each k reduce problem (Pk) to a problem of mathemat-
ical programming (MP ) with functional and increasingly many
geometric constraints. The latter are given by graphs of the
mapping F (z) := −N(x;C(u)) + f(x, b), and so (MP ) is intrin-
sically nonsmooth and nonconvex even for smooth initial data

• Use variational analysis analysis and generalized differenti-
ation (first- and second-order) to derive necessary optimality
conditions for (MP ) and then discrete control problems (Pk)

• Explicitly calculate the coderivative of F (z) entirely in terms
of the initial data of (P )

• By passing to the limit as k → ∞, to derive necessary opti-
mality conditions for the sweeping control problem (P )
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NECESSARY OPTIMALITY CONDITIONS FOR (P )

For simplicity consider the case of smooth ϕ, `

THEOREM Let z̄(·) be an optimal solution to (P ) such that

the vectors {ai} for active constraint i ∈ I(x̄(t) − ū(t)) indices

are linearly independent. Then there exist a multiplier λ ≥ 0, an

adjoint arc p(t) = (px, pu, pb)(t) absolutely continuous on [0, T ],

and regular Borel measures measures γ ∈ C∗+([0, T ]; IRm) and

ξ ∈ C∗([0, T ]; IR) satisfying the following conditions:

the primal-dual relationships for a.e. t ∈ [0, T ]〈
ai, x̄(t)− ū(t)

〉
< 0 =⇒ ηi(t) = 0

ηi(t) > 0 =⇒
〈
ai, λ∇ẋ`(z̄(t), ż(t))− qx(t)

〉
= 0, i = 1, . . . ,m
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where the function η = (η1, . . . , ηm) ∈ L∞([0, T ]; IRm+) is uniquely
defined by

˙̄x(t) = −
m∑
i=1

ηi(t)ai + f
(
x̄(t), b̄(t)

)
and where q(t) = (qx, qu, qb) is of bounded variation given by

q(t) = p(t)−
∫ T
t

(
dγ(s),2ū(s)dξ(s)− dγ(s),0

)
, t ∈ [0, T )

qu(t) = λ∇u̇`
(
t, z̄(t), ˙̄z(t)

)
, qb(t) = λ∇ḃ`

(
t, z̄(t), ˙̄z(t)

)
, t ∈ [0, T ]

along the adjoint inclusion

ṗ(t) ∈ co
{
λ∇z`(z̄(t), ˙̄z(t)+D∗F

(
x̄(t), ū(t), b̄(t),− ˙̄x(t)

)(
λ∇ẋ(t)−qx(t)

)}
where the coderivative D∗F is calculate via the problem data

Furthermore, we have the transversality conditions(
− px(T ), pu(T )

)
∈
(
λ∇ϕ

(
x̄(T ),0

)
+
(
0, λ∇u̇`(T, z̄(T ), ˙̄z(T ))

)
+N

(
x̄(T )− ū(T );C

)



pb(T ) = ∇b`
(
T, z̄(T ), ˙̄z(T )

)
= 0

and the nontriviality condition

λ+ ‖qu(0)‖+ ‖p(T )‖ 6= 0



CROWD MOTION MODEL

The model is designed to deal with local interactions between

individuals in order to describe the dynamics of the pedestrian

traffic. This microscopic model for crowd motion rests on the

two principles: A spontaneous velocity corresponding to the

velocity each individual would like to have in the absence of

others; the actual velocity is then computed as the projection

of the spontaneous velocity onto the set of admissible velocities

which do not violate a certain non-overlapping constraint. We

consider N(N ≥ 2) individuals identified to rigid disks with the

same radius r in a corridor (see Fig. 1)

x1 x2
... xixi+1

... xN

Fig 1 Crowd model motion in a corridor
Exit
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All the individuals have the same behavior: they want to reach

the exist by following the shortest part and minimal control

energy. This problem can be modeled as a sweeping process
−ẋ(t) ∈ N(x(t);C(t)) + f(x(t), b(t)), x(0) = x0 ∈ C(0)
C(t) = C + u(t), ui+1(t)− ui(t) = 2r, u1(t) = 0, ‖u(t)‖ = 1
f(x(t), b(t)) = (s1b1, . . . , sNbN)
xi+1(T )− xi(T ) > 2r, i = 1, . . . , N − 1

with controls in perturbations and the cost function

minimize J[x, b] =
‖x(T )‖2

2
+
∫ T

0

‖b(t)‖2

2
dt

The obtained necessary optimality conditions allow us to de-

termine the optimal strategy
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