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Abstract
We review different (generic) conditions on stochastic outcome functions to enforce either efficient
or nearly efficient partnerships. Their logical relationship is explored. Two kinds of conditions are
considered. However, the property for an action profile to be “compatible” plays a crucial role in
both kinds. Also, two kinds of enforcement mechanisms are considered: enforcement through utility
transfers and enforcement through repetition.
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1. Introduction

Looking at the theory of mechanism design, and the derivation of individual incentives for the
participants to a collective organization, the first methodological distinction concerns the different
types of informational limitations. This is the distinction between moral hazard, caused by the
imperfect observability of actions, and adverse selection, resulting from private holding of relevant
information by the individual actors. This first distinction is standard in game theory, where
uncertainty about the players’ decisions is treated differently from the uncertainty about states of
nature.

But there is another distinction, also methodologically important, between two different technical
approaches to deriving incentive compatible mechanisms. One is the “differential approach” (using
the terminology of Laffont and Maskin, 1980) which, assuming sufficient regularity, consists of
solving the differential system associated with the individual optimization first order conditions. The
other one, which may be called the “linear approach” and that we will take here, assumes sufficient
separability and treats the individual incentive problems as systems of linear inequalities. This
second approach was taken first to handle adverse selection in the design of collectively optimal
public-decision mechanisms (d’Aspremont and Gérard-Varet, 1979) and in the design of optimal
selling rules for a discriminating monopolist (Crémer and McLean, 1985). More recently, it has been
used to solve moral hazard problems both in static partnerships (Legros and Matsushima, 1991),1

with the team joint output assumed to be stochastic, and in repeated partnerships (Fudenberg et al.,
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1. See also Legros (1989) and Matsushima (1989b)

1



1994),2 to obtain various “folk theorems” and the possibility for efficiency to be approximated
with sufficiently low discounting. In this recent work, adopting the linear approach, two kinds of
enforcement mechanisms are considered: enforcement through utility transfers and enforcement
through repetition. In a repetitive situation, transferability is obtained through accumulation of
payoffs over time: The recursive structure of the dynamic game, and the extended application of the
optimality principle of dynamic programming, allow for the decomposition of equilibrium payoffs
into “present-period” payoffs and “continuation” payoffs. The continuation payoffs play in the
dynamic framework the role played by the transfers in the static framework.

Now, whether in the static or in the dynamic framework, the conditions that are imposed on the
probabilistic outcome function to enforce partnership under moral hazard (whether through transfers
or repetition) are analogous to other conditions, already used in previous models of adverse selection
to restrict the individual probabilistic beliefs. Our purpose here is to review these various conditions
and exploit this analogy systematically. This review will be done in a model of team moral hazard,
but capitalizing on results obtained in the adverse selection case. Logical relations between these
various conditions will be clarified.

The moral hazard problem is well illustrated in the simplest model of team production, where
a set of agents (the partners) have each to choose an action at some cost or disutility. Output, as
measured in monetary units, is a function of individual actions. It should be shared among the
partners, and, to ensure participation, no one should be losing. There is moral hazard (or imperfect
monitoring) when actions are not perfectly observable and the sharing rule cannot be directly based
on them. Then, as often observed, there are situations where noncooperative behavior prevents the
team from producing the collectively optimal level of output, whatever the proposed rule to fully
share the total output. This inefficiency of partnership due to moral hazard has been well argued by
Alchian and Demsetz (1972) for deterministic outcome functions and was formalized by Holmstrom
(1982) under simple regularity conditions. Moreover, even when partnership is repeated and outcome
is stochastic, a negative conclusion may be maintained. In the two-agent example developed by
Radner et al. (1986), there are two possible observable outcomes3 – high or low output – each having
positive probabilities whatever the agents do (work or shirk). Since any agent choosing to work
increases the probability of high output, it is collectively efficient in expected (and discounted) payoff
terms that both agents work. But, every equilibrium payoff, and the associated sharing of the surplus,
is uniformly bounded away from the efficiency frontier, whatever the discount rate.

As already suggested in Holmstrom (1982), there are two possible ways to avoid these negative
conclusions. One is the possibility of exploiting the informational properties of the outcome function
(particularly when it is stochastic), the other is the possibility of weakening efficiency into an
approximate-efficiency requirement. The possibility of obtaining the first best by exploiting the
stochastic character of the outcome function is first demonstrated by Williams and Radner (1994)4

and then pursued in the work of Legros and Matsushima quoted above. The possibility given by
the weakening of efficiency is clearly presented by Legros and Matthews (1993) for deterministic
outcome functions and is further exploited by Fudenberg et al. (1994), who combine the two
possibilities in looking at stochastic outcome functions. These two papers show that efficiency can
be approximated by using mixed strategy equilibria (as an alternative way to make the outcome

2. See also Matsushima (1989a) and Fudenberg and Tirole (1992).
3. Because there are only two possible outcomes, this example will appear to be degenerate. See also Williams and

Radner (1994).
4. This article was first circulated as a discussion paper in 1987.
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stochastic). Accordingly, in the following, we shall distinguish between two kinds of conditions,
some ensuring enforceability of the desired actions exactly, others ensuring only their approximation
by mixed strategy equilibria. These two kinds of conditions will appear complementary. The first kind
of conditions will be shown to hold generically, leaving however many meaningful cases uncovered,
and to be recaptured by the second kind of conditions. Examples are the classical subscription game
for the production of a public good or the stochastic Cournot oligopoly model of Green and Porter
(1984). Of course, other cases, such as the two-agent example developed by Radner et al. (1986),
will remain uncovered (due essentially to the lack of observable outcomes).

Our paper is organized as follows. In Section 2, the partnership model is presented. In Section 3,
the linear approach is introduced and, restricting to transferable utilities, transfer schemes are used as
enforcement mechanisms. Conditions of the two kinds are presented and analyzed. In Section 4, the
same approach and the same two kinds of conditions are used, but without transferability, and with
repetition playing the role of enforcement mechanism.

2. A model of partnership

Formally, the “team moral hazard problem” may be defined as an elementary game in normal form.
A “team” consists of a set N = {1, . . . , i, . . . , n} of “partners” (or players), each having to choose
simultaneously an action ai in a set Ai. For simplicity we take this set to be finite. A vector
a = (a1, . . . , ai, . . . , an) ∈ A =×n

i=1Ai is called an action profile. There is a set X of public
outcomes, also assumed finite, and a stochastic outcome function. This is a function associating with
each action profile a ∈ A a probability distribution p(· | a) on the set X . With each partner i is
associated a utility function ui(x, ai) defined5 on X ×Ai. The payoff of partner i can be computed
as the expectation Ui(a) =

∑
x∈X ui(x, ai)p(x | a).

Allowing the players to randomize over their actions, we denote by αi a mixed action of partner
i that is a probability distribution on Ai, and by Âi the set of all mixed actions of player i. Letting
αi(ai) be the probability assigned to action ai by a mixed action αi and considering a mixed action
profile α ∈ Â =×n

i=1Âi, the corresponding probability of the action profile a is given by the product
α(a) = Πn

i=1αi(ai). We let
p(x | α) =

∑
a

p(x | a)α(a).

The support of αi is the set S(αi) = {ai ∈ Ai : αi(ai) > 0}. Similarly, for α−i ∈×j 6=iÂj , we let
α−i(a−i) =

∏
j 6=i αj(aj), with a−i ∈×j 6=iAj = A−i, and

p(x | ai, α−i) =
∑
a−i

p(x | ai, a−i)α−i(a−i).

For a mixed action profile α ∈ Â, the payoff of player i is

Ui(α) =
∑
a∈A

Ui(a)

n∏
j=1

αj(aj)

and
Ui(ai, α−i) =

∑
a−i∈A−i

Ui(ai, a−i)
∏
j 6=i

αj(aj) =
∑
x∈X

ui(x, ai)p(x | ai, α−i).

5. As will be mentioned, some of our results will apply to the more general case where ui is defined on X ×A.
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In this elementary game an action profile a∗ is collectively efficient if there is no other action
profile a such that, for every i, Ui(a) ≥ Ui(a∗), with at least one inequality holding strictly (a∗ and
a may be respectively replaced by α∗ and α if we allow for mixed actions).

In such a game, one cannot expect in general that an efficient action profile (or any other action
profile) be directly enforceable as a noncooperative equilibrium, in the Nash sense, whereby no
player could increase his payoff by a unilateral deviation from the given efficient action profile. The
main objective is then to enforce an action profile (efficient or not) as a noncooperative equilibrium
indirectly, by designing some mechanism based on the publicly observed outcome and not on the
individual actions. Introducing such a mechanism amounts to modifying the elementary game. As
mentioned in the Introduction, two types of enforcement mechanisms have been considered. The
first type of mechanism, limited to a static framework where the utilities are measured in monetary
units and are transferable, consists of fixing monetary transfer schemes among the players. They will
be examined in the next section. The second type of mechanism, studied in Section 4, requires a
dynamic framework and consists of repeating the elementary game: Repetition itself will form the
enforcement mechanism.

The elementary game just described encompasses (in discrete terms) several models already
extensively analyzed in the literature. One example is the partnership model, as analyzed by
Holmstrom (1982), in which each agent supplies an unobservable input to a (deterministic or
stochastic) production process, and the output is shared by the team. Another example is given by
Green and Porter (1984), oligopoly model, in which firms’ output levels are not publicly observable
and the market price is a stochastic function of total output. A third example is the classic subscription
game for the (stochastic or deterministic) provision of a public good: Every individual subscribes
some monetary amount and the total is devoted to covering the cost of a public good (e.g., see Laffont,
1988). A last example is given by the design of international treaties on environmental issues (e.g.,
see Mäler, 1990; d’Aspremont and Gérard-Varet, 1992), in which the outcomes are states of the
natural environment and in which the individual utilities can be decomposed into two parts, the
abatement cost (of taking an action) and the damage cost associated with the state of the environment
and resulting from all individual actions.

3. Transfer schemes

3.1 A necessary and sufficient condition to enforce full sharing of the surplus

Let us first consider the static interpretation of the framework and assume that the agents have
quasi-linear utility functions: There is a good, playing the role of money, which is transferable
without any restrictions, and the utilities are measured in units of that good. Under the transferability
assumption, a mixed action profile α∗ is collectively efficient if and only if the following requirement
holds:

α∗ ∈ argmax
α∈Â

∑
i∈N

Ui(α).

In the design of an incentive mechanism to enforce a desired mixed action profile α∗, we shall
not restrict our attention to the case in which it is efficient. However, assuming that every agent has
an outside option giving a utility level normalized to 0, we shall always consider that α∗ produces a
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nonnegative (resp. positive) total surplus, that is,∑
i∈N

Ui(α
∗) ≥ 0 (resp. > 0).

An important advantage of the transferability assumption is to reduce the mechanism design to
the solving of a system of linear inequalities defining an appropriate transfer scheme. A transfer
scheme is a function t : X → Ren transforming the elementary game into a “new game,” with payoff
functions given by ∑

x∈X
[ui(x, ai) + ti(x)]p(x | a),

and strategy spaces still given by {Ai}. Such a transfer scheme should be designed to get α∗ as a
Nash equilibrium of the corresponding game: It should satisfy the following set of linear incentive
compatibility constraints:

Ui(α
∗) +

∑
x∈X

ti(x)p(x | α∗) ≥ Ui(ai, α∗−i) +
∑
x∈X

ti(x)p(x | ai, α∗−i)∀ i ∈ N ∀ ai ∈ Ai. (IC)

The mixed action profile α∗ is then said to be enforceable.
In addition, for feasibility, the surplus generated should be “fully shared” within the team. In

other words, the transfer scheme should satisfy the budget-balancing linear equalities

∀x
∑
i∈N

ti(x) = 0. (BB)

This is a strong property but indispensable to close the model. Weaker restrictions could allow
some outside distribution of the surplus (e.g., to the owners, if it is a firm, as suggested by Alchian
and Demsetz, 1972; Holmstrom, 1982). Alternatively, one could impose budget-balancing only in
expected value terms with respect to the stochastic outcome function p(· | α∗), but this would then
imply the intervention of some outside party ensuring ex post feasibility.∑

x∈X

∑
i∈N

ti(x)p(x | α∗) = 0. (EB)

A last property is that every agent be given at least the incentives to participate: The transfer
scheme should satisfy additional linear inequalities, the so-called individual rationality constraints

∀ i ∈ N Ui(α
∗) +

∑
x∈X

ti(x) p(x | α∗) ≥ 0. (IR)

The problem of finding, for a given action profile α, a transfer scheme satisfying this set of
incentive and feasibility constraints defines the “partnership problem.” The “linear approach” to the
problem consists of taking this set as a system of linear inequalities in t and applying standard results
about the consistency of such systems.6 To illustrate let us prove the following lemma, which is a
simple “theorem of the alternative” applied to the problem, and which will be used repeatedly in the
sequel.7

6. As mentioned in the Introduction, such a technique was first used to solve the team adverse selection problem, both in
the finite and in the infinite case. In both cases, results such as given in Fan (1956) can be used. In the infinite case,
though, for topological reasons, only ε-Bayesian incentive compatibility is obtained (d’Aspremont and Gérard-Varet,
1982). Such a technique was first used to solve the team moral hazard problem by Legros (1989) and Matsushima
(1989a).

7. Such a lemma is also proved in Legros and Matsushima (1991).
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Lemma 1 Consider any utility profile {ui}. Any mixed action profile α∗ producing nonnegative sur-
plus is enforceable by a budget-balancing and individually rational transfer scheme t ∈×n

i=1 ReX

if and only if: For every λ ∈×n
i=1 ReAi

+ , λ 6= 0, such that, ∀ i, j ∈ N, ∀x ∈ X ,∑
ai

λi(ai)[p(x | α∗)− p(x | ai, α∗−i)]

=
∑
aj

λj(aj)[p(x | α∗)− p(x | aj , α∗−j)],
(1)

we must have ∑
i∈N

∑
ai

λi(ai)[Ui(ai, α
∗
−i)− Ui(α∗)] ≤ 0. (2)

Proof We have to solve the following system of linear inequalities in t ∈ RenX :∑
x

ti(x)[p(x | α∗)− p(x | ai, α∗−i)] ≥ [Ui(ai, α
∗
−i)− Ui(α∗)] ∀ i ∀ ai∑

x

ti(x)p(x | α∗) ≥ −Ui(α∗) ∀ i∑
i

ti(x) = 0 ∀x.

By standard results, its consistency is equivalent to: For every λ ∈×n
i=1 ReAi

+ , λ 6= 0, for every
µ ∈ ReX and γ ∈ ReN+ such that∑

ai

λi(ai)[p(x | α∗)− p(x | ai, α∗−i)]− µ(x) + γip(x | α∗) = 0, ∀ i ∀x, (A1)

we must have ∑
i

∑
ai

λi(ai)[Ui(ai, α
∗
−i)− Ui(α∗)]−

∑
i

γiUi(α
∗) ≤ 0. (A2)

But (A1) implies (by summation over x) that
∑

x µ(x) = γi ≥ 0, ∀ i, so that γi = γj = γ̃, for
some γ̃ ≥ 0, and (1) holds. Moreover (2) implies (A2), since

∑
i γiUi(α

∗) = γ̃
∑

i Ui(α
∗) ≥ 0.

Therefore, if, ∀λ ∈×n
i=1 ReAi

+ , λ 6= 0 [(1) ⇒ (2)], then ∀λ ∈×n
i=1 ReAi

+ , λ 6= 0, ∀µ ∈ ReX ,
∀γ ∈ ReN+ [(A1)⇒ (A2)].

To show the converse, observe that (1) implies (A1). Indeed (1) implies that, for some κ ∈ ReX ,∑
ai
λi(ai)[p(x | α∗) − p(x | ai, α∗−i] = κ(x), ∀ i, ∀x, which leads to (A1) by posing µ ≡ κ and

γi = 0. Then (A2) coincides with (2), and the result follows.

From the proof of Lemma 1, it appears that individual rationality does not represent an effective
restriction. This is also established directly by Legros and Matsushima (1991), who obtain individual
rationality for any given utility profile {ui} and any action profile α∗ producing nonnegative surplus,
as soon as the action profile is enforceable by a budget-balancing transfer scheme t. Indeed, for
any sharing coefficients {δi}, with δi ≥ 0 and

∑n
i=1 δi = 1, it suffices to construct the new transfer

scheme t′, such that, ∀ i ∈ N , ∀x ∈ X ,

t′i(x) = ti(x)− Ui(α∗) +
∑
x∈X

ti(x)p(x | α∗) + δi
∑
j

Uj(α
∗). (3)
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By construction, this new transfer scheme satisfies individual rationality, is still budget-balancing
and maintains incentive compatibility (since it amounts to adding a term constant in ai).

It is important to notice that the condition given in Lemma 1 is a necessary and sufficient
condition and that it restricts, unseparably, both the outcome function p(· | ·) and the utility profile
{ui}. Legros and Matsushima (1991) use such a lemma to derive an alternative, somewhat more
interpretable, necessary and sufficient condition, but still restricting unseparably both the outcome
function and the utility profile. They first construct a measure β of the “likelihood of a deviation”
with respect to some (efficient) pure action profile a∗ as

β(α) =

∑
i[Ui(αi, a

∗
−i)− Ui(a∗)]

n[1−
∑

x mini p(x | αi, a∗−i)]
if
∑
x

min
i
p(x | αi, a∗−i) < 1

(if not, β(α) = 0). Then the alternative condition, necessary and sufficient to have a∗ enforceable by
a budget-balancing and individually rational transfer scheme, is that8

sup
α
β(α) <∞.

For the specification of both this necessary and sufficient condition and the one given by Lemma 1,
a crucial restriction is the budget-balancing condition (BB). If we replace (BB) by the weaker
restriction of expected-budget-balancing (EB), then, using an argument similar to the one of Lemma 1,
we get9

Theorem 1 For any utility profile {ui}, any efficient pure action profile a∗ producing nonnegative
surplus is enforceable by an individually rational, expected-budget-balancing transfer scheme.

Proof To solve the system of inequalities and equalities in t ∈ RenX , defined by (IC), (IR) and
(EB), we consider, as in the proof of Lemma 1, the corresponding dual conditions: For every
λ ∈×n

i=1 ReAi
+ , every µ ∈ Re, and every γ ∈ ReN+ such that∑
ai 6=a∗i

λi(ai)[p(x | a∗)− p(x | ai, a∗−i)] + (γi − µ)p(x | a∗) = 0 ∀ i ∀x, (4)

we must have∑
i

∑
ai 6=a∗i

λi(ai)
∑
x

[ui(x, ai)p(x | ai, a∗−i)−ui(x, a∗i )p(x | a∗)]−
∑
i

γi
∑
x

ui(x, a
∗
i )p(x | a∗) ≤ 0.

(5)
But (4) implies (by summation over x) that µ = γi ≥ 0, ∀ i, so that∑

ai 6=a∗i

λi(ai)[p(x | a∗)− p(x | ai, a∗−i)] = 0 ∀ i ∀x. (6)

8. Legros and Matsushima (1991, Theorem 2).
9. The analogue to this theorem for the adverse selection case is Theorem 10 in d’Aspremont and Gérard-Varet (1982).
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By efficiency we may write∑
i

∑
ai 6=a∗i

λi(ai)
∑
x

[ui(x, ai)p(x | ai, a∗−i)− ui(x, a∗i )p(x | a∗)]

≤
∑
i

∑
ai 6=a∗i

λi(ai)
∑
x

[∑
j 6=i

uj(x, a
∗
j )p(x | a∗)−

∑
j 6=i

uj(x, a
∗
j )p(x | ai, a∗−i)

]
=
∑
i

∑
x

∑
j 6=i

uj(x, a
∗
j )
∑
ai 6=a∗i

λi(ai)[p(x | a∗)− p(x | ai, a∗−i)].

(7)

This last expression is null by (6). Finally, since∑
i

γi
∑
x

ui(x, a
∗
i )p(x | a∗) = µ

∑
x

∑
i

ui(x, a
∗
i )p(x | a∗) ≥ 0,

we get (5).

In this proof, efficiency of the chosen pure action profile is essential. It shows that allowing the
budget to balance only in expected value is a way to solve the moral hazard problem, but relying on
some (unspecified) external agency to ensure ex post feasibility.

Returning to the strong budget-balancing property, we shall now take another route and use
Lemma 1 to analyze alternative sufficient conditions imposed only on the stochastic outcome function,
independently from any restriction imposed on the utility profile. For that purpose, as mentioned in
the introduction, we distinguish two kinds of conditions among those introduced in the literature. One
kind will include conditions sufficient to enforce any efficient pure actions and stronger conditions,
sufficient to enforce any actions (efficient or not). The other kind will only be enough to obtain
approximate efficiency via mixed actions.

3.2 Sufficient conditions of the first kind: enforcing efficient actions

The first condition that we define will be shown to be sufficient to enforce any efficient pure action
profile a∗. This is simply an analogue to the “compatibility condition” initially introduced to solve
the team adverse selection problem.10 However, it has never been considered in the team moral
hazard problem, and it will turn out to be the weakest of its kind (among those that have appeared in
the literature).

A mixed action profile α∗ is compatible with p(· | ·), or p(· | ·) ∈ Cα∗ , if: For every λ ∈
×n

i=1 ReAi
+ such that (1) of Lemma 1 holds, we have∑

ai

λi(ai)[p(x | α∗)− p(x | ai, α∗−i)] = 0 ∀ i ∈ N ∀x ∈ X. (2*)

Then the condition to be imposed on the stochastic outcome function p(· | ·) is simply stated as:

Compatibility Condition (C*). Any pure action profile a∗ ∈ A is compatible with p(· | ·).

We let also C∗ = ∩a∗Ca∗ denote the subset of all stochastic outcome functions p(· | ·) satisfying
the compatibility condition. We shall see below various ways to interpret this condition. But, using
Lemma 1, we immediately obtain:

10. This is also called condition C. See d’Aspremont and Gérard-Varet (1979, 1982). In the second reference the condition
is stated in a slightly more general and more adequate form (see Johnson et al., 1990, footnote 2).
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Theorem 2 Suppose C* holds. For any utility profile {ui}, any efficient pure action profile a∗

producing nonnegative surplus is enforceable by an individually rational and budget-balancing
transfer scheme, i.e., satisfying (IC), (IR) and (BB).

Proof Take any utility profile {ui} and efficient pure action profile a∗ producing a nonnegative
surplus. If, for λ ∈×n

i=1 ReAi
+ , (1) in Lemma 1 holds, then C* implies (2*). Using efficiency as in

the proof of Theorem 1 (inequality (7)), we get (2).

Observe that in this theorem, based on C*, the utility profile is not restricted (except that it
should produce nonnegative surplus). However, only efficient pure action profile can be enforced
as required. As shown in d’Aspremont and Gérard-Varet (1992); d’Aspremont et al. (1997), for its
adverse selection analogue, condition C* can be expressed equivalently in “primal” terms, leading to
an alternative proof of Theorem 2. Indeed, condition C* is equivalent to11

Condition C. ∀ a∗ ∈ A,∀ p ∈ ReX ,∃ t ∈ RenX such that
∑

i ti(x) = ρ(x), and∑
x

ti(x)p(x | a∗) ≥
∑
x

ti(x)p(x | ai, a∗−i) ∀ ai ∈ Ai ∀ i ∈ N.

This condition is easy to interpret. It means that, for any given budget, and the identically zero
utility profile, any joint action profile should be enforceable by a transfer scheme balancing this
budget. Then, an alternative way to prove Theorem 1 is to start by constructing transfers of the
Clarke–Groves–Vickrey type by letting, relative to the given utility profile {ui} and the efficient
action profile a∗ (producing nonnegative surplus),

t0i (·) ≡
∑
j 6=i

uj(·, a∗j ).

Efficiency implies that the (IC)-constraints are satisfied but that the budget-balancing constraint might
be broken. However, taking ρ(·) ≡ −

∑
i t

0
i (·), and applying Condition C, there is a transfer scheme

t satisfying all equalities and inequalities listed in the condition. Then, defining t∗ ≡ t0 + t, we get
budget-balancing while preserving incentive compatibility. Finally, to ensure individual rationality,
we may apply the construction given by (3) above.

Fudenberg et al. (1994) – hereafter denoted FLM – introduce a stronger condition. It is more
restrictive than condition C* (as we will see in Theorem 3), but leads to an alternative interpretation
of it. To state this other condition we need additional notation. Consider a mixed action profile
α ∈ Â and, for every i, j ∈ N , the following matrices, of dimension |Ai| × |X|, |Aj | × |X|, and
(|Ai|+ |Aj |)× |X|, respectively:

Πi(α−i) = [p(x | ai, α−i)]ai∈Ai,x∈X

Πj(α−j) = [p(x | aj , α−j)]aj∈Aj ,x∈X

Πij(α) =

[
[p(x | ai, α−i)]ai∈Ai,x∈X
[p(x | aj , α−j)]aj∈Aj ,x∈X

]
.

A mixed action profile α is said to be pairwise identifiable for i and j whenever the rank of matrix
Πij(α) equals [rank(Πi(α−i))+ rank(Πj(α−j))]− 1. We can now state FLM’s condition:

11. Following the convention introduced by d’Aspremont and Gérard-Varet (1992); d’Aspremont et al. (1997), the letter
denoting the dual version of a condition will be starred.
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Pairwise Identifiability (PI). For every pair i, j in N , every pure action profile a in A is pairwise
identifiable for i and j.

The idea of pairwise identifiability of an action profile is that the probability distributions, induced
by one player’s deviating mixed action, be distinguishable from the probability distributions induced
by some other player’s deviation, in order to avoid that “the two players’ deviations cannot be
distinguished statistically” (see FLM). A similar interpretation can be given to the compatibility
condition, since, whenever violated for some action profile a∗, it leads to the existence of a profile of
(deviating) mixed actions12 λ such that, for any pair i, j and any ai, aj ,∑

ai

λi(ai)p(· | ai, a∗−i)− p(· | a∗) =
∑
aj

λj(aj)p(· | aj , a∗−j)− p(· | a∗) 6= 0.

For every player i, the probability distribution induced by the deviation λi is different from the
one induced by a∗i , but undistinguishable from the probability distributions induced by any other
player’s deviation. The logical relation between pairwise identifiability and compatibility is precisely
established by the following.

Theorem 3 For a stochastic outcome function p(· | ·), the mixed action profile α is pairwise
identifiable for some pair i, j ∈ N if and only if α is compatible with p(· | ·).

Proof To prove the “only if” part, assume that (1) holds (with α∗ = α) and that, for some i, j, rank
Πij(α) = rank Πi(α−i)+ rank Πj(α−j)− 1. Then there is λ = [λi, λj , λ]t ∈ Re|Ai|+|Aj |+1, with
λi = (λi(ai))ai , λj = (λj(aj))aj , solving the following homogeneous system:∑

ai

p(x | ai, α−i)λi(ai)−
∑
aj

p(x | aj , α−j)λj(aj)− p(x | α)λ = 0 ∀x ∈ X.

It implies, by summation over x, that λ =
∑

ai
λi(ai)−

∑
aj
λj(aj). In matrix notation it becomes

Π̃ij(α)λ = 0, with

Π̃ij(α) = [(p(· | ai, α−i))ai , (−p(· | aj , α−j))aj , (−p(· | α))],

the corresponding |X| × (|Ai|+ |Aj |+ 1) matrix. Since the last column (−p(· | α)) can be written
as (
∑

ai
α(ai)p(· | ai, α−i)), we get rank Π̃ij(α) = rank Πij(α).

To show that α is compatible with p(· | ·), we need to show that (2*) holds. In fact, using
(1), it is enough to show that the following two subsystems can be solved, respectively, in λi =
(λi(ai))ai and λi (implying that λi =

∑
ai
λi(ai)), and in λj = (λj(aj))aj and λj (implying that

λj = −
∑

aj
λj(aj)). The first is given by∑

ai

p(x | ai, α−i)λi(ai)− p(x | α)λi = 0 ∀x ∈ X,

or, in matrix notation, with Π̃i(α−i) = [(p(· | ai, α−i))ai , (−p(· | α))] the corresponding (|X| ×
|Ai|+ 1)-matrix: Π̃i(α−i)[λi, λi]

t = 0. The second subsystem is

−
∑
aj

p(x | aj , α−j)λj(aj)− p(x | α)λj = 0 ∀x ∈ X,

12. The normalization to 1 of
∑

ai
λi(ai) is obtained without loss of generality since Condition C* imposes no value for

every λi(a
∗
i ).
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or
Π̃j(α−j)[λj , λj ]

t = 0,

with Π̃j(α−j) = [(−p(· | aj , α−j))aj , (−p(· | α))] the corresponding (|X| × |Aj |+ 1)-matrix.
Clearly, again, rank Π̃i(α−i) = rank Πi(α−i) and rank Π̃j(α−j) = rank Πj(α−j), so that rank

Π̃ij(α) = rank Π̃i(α−i)+ rank Π̃j(α−j)− 1, and, from known results on linear transformations,

dim(Ker Π̃i(α−i)) + dim(Ker Π̃j(α−j))

=[|Ai|+ 1− rank Π̃i(α−i)] + [|Aj |+ 1− rank Π̃j(α−j)]

=|Ai|+ |Aj |+ 1− rankΠ̃ij(α) = dim(Ker Π̃ij(α)).

Thus, defining two subspaces of Ker Π̃ij(α),

Ki = {` ∈ Re|Ai|+|Aj |+1 : [`i, `i]
t ∈ Ker Π̃i(α−i), `j = 0}

Kj = {` ∈ Re|Ai|+|Aj |+1 : [`j , `j ]
t ∈ Ker Π̃j(α−j), `i = 0},

we get that Ker Π̃ij(α) = Ki �Kj . In other terms, if λ ∈ Ker Π̃ij(α), then λ can be decomposed
uniquely into the sum of [λi, 0, λi]

t ∈ Ki with [0, λj , λj ]
t ∈ Kj , where λi =

∑
ai
λi(ai) and

λj = −
∑

aj
λj(aj). By (1), this is enough to get (2*).

To prove the converse (the “if” part), it is enough now to observe that if

dim(Ker Π̃i(α−i)) + dim(Ker Π̃j(α−j)) < dim(Ker Π̃ij(α)),

for some pair i, j, then there is some λ ∈ Ker Π̃ij(α) which can be decomposed in such a way that,
for λi =

∑
ai
λi(ai) and λj = −

∑
aj
λj(aj), λ = λi − λj , but either [λi, λi]

t /∈ Ker Π̃i(α−i) or

[λj , λj ]
t /∈ Ker Π̃j(α−j).

This result leads to still another way to state condition C*: For every pure action profile a∗, there
exists a pair of players for which a∗ is pairwise identifiable. Also, that PI implies C* is an immediate
consequence of the “only if” part of this theorem:

Corollary 1 Condition PI implies condition C*.

However it should be stressed that C* is effectively weaker than PI (which is a condition imposed
to all pairs of players), since there are meaningful cases where the first holds and not the second.
Consider the following class of stochastic outcome functions having a “product structure.”13 To
illustrate, suppose there are four partners and that any outcome x in X is decomposable into two
statistically independent components, the first component being influenced by the actions of the first
two partners, the second by the actions of the other two: x = (y, z) ∈ Y × Z = X and

p(x | a1, a2, a3, a4) = q(y | a1, a2)r(x | a3, a4).

For i, j = 1, 2, i 6= j, let Qi(aj) = [q(y | ai, aj)]ai∈Ai,y∈Y , and

Q12(a1, a2) =

[
[q(y | a1, a2)]a1∈A1,y∈Y
[q(y | a1, a2)]a2∈A2,y∈Y

]
.

13. For results using such a structure see, e.g., Holmstrom (1982), Radner (1985), and Fudenberg et al. (1994).
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For any given a∗ and i, j = 1, 2, i 6= j, rank(Πi(a
∗
−i)) = rank(Qi(a∗j )) and rank(Q12(a

∗
1, a
∗
2)) =

rank(Π12(a
∗)). If, on the one hand, we assume that q does not satisfy PI, because

rank(Q12(a
∗
1, a
∗
2)) < rank(Q1(a

∗
2)) + rank(Q2(a

∗
1)),

then
rank(Π12(a

∗)) < rank(Π1(a
∗
−1)) + rank(Π2(a

∗
2)),

so that p does not satisfy PI either. On the other hand, if we assume that r satisfies Condition C,
then, for any ρ : Y × Z → Re and any y ∈ Y , there is ty : Z → Re4 such that ty1 ≡ 0, ty2 ≡ 0,
ty3(z) + ty4(z) = ρ(y, z) and∑

z

tyi (z)r(z | a
∗
3, a
∗
4) ≥

∑
z

tyi (z)r(z | ai, a
∗
j ),

for any i, j = 3, 4, i 6= j, and any ai ∈ Ai. Multiplying each side by q(y | a∗1, a∗2) and summing
over y, we get that p satisfies Condition C. Therefore the product stochastic outcome function as
constructed satisfies Condition C but not PI.

3.3 Enforcement without using efficiency

Up to now we have concentrated our efforts on the enforcement of efficient action profiles, and
efficiency was used in the argument to get incentive compatibility. However, there might be reasons
for which some actions must be chosen that are not efficient for the team. For example, the team might
be embedded in a larger community and the recommended actions might be the ones corresponding
to efficient actions for the whole community, taking into account all external effects. This raises the
issue whether it is possible to ensure the enforceability of any action profile (efficient or not from the
team point of view) by a budget-balancing and individually rational transfer scheme. We then need
to impose a stronger restriction on the stochastic outcome function. By analogy with the adverse
selection case,14 we propose:

Condition B. ∀ a∗ ∈ A,∃ t ∈ RenX such that∑
i

ti(x) = 0

∑
x

ti(x)p(x | α∗) >
∑
x

ti(x)p(x | ai, α∗−i) ∀ ai ∈ Ai, ai 6= a∗i , ∀ i ∈ N.

Suppose Condition B holds. Then for any utility profile {ui} we can multiply the given transfer
scheme t by an arbitrarily large positive number M and obtain∑

i

Mti(x) = 0 ∀x ∈ X,

M
∑
x

ti(x)[p(x | a∗)− p(x | ai, a∗−i)] >
∑
x

[ui(x, ai)p(x | ai, a∗−i)− ui(x, a∗i )p(x | a∗)]

∀ ai ∈ Ai, ai 6= a∗i , ∀ i ∈ N.

14. This condition was introduced in d’Aspremont and Gérard-Varet (1982). It was adapted to the moral hazard problem
by Matsushima (1989b). See also Legros and Matsushima (1991).
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So the transfer scheme Mt satisfies (IC) and (BB). Also, by the construction given in (3), we get
a transfer scheme t′ satisfying (IC), (BB), and (IR). Moreover, the converse holds. It is enough to
consider the utility profile where ui ≡ 0 for all i ∈ N . Then (BB) and (IC) (holding strictly) imply
Condition B. We have thus proved the following:

Theorem 4 Condition B holds if and only if, for any utility profile {ui} and any a∗ producing
nonnegative surplus, a∗ is strictly enforceable (IC), with all inequalities strict) by a budget-balancing
(BB) and individually rational (IR) transfer scheme.

Obviously the same theorem holds for the case15 where each ui depends directly on the actions
of all players (ui = ui(x, a)), although logically, neither version of the theorem is stronger than the
other. Indeed for one direction the condition allows us to wipe out any counterincentive effect due to
the utilities. In the other direction, the argument is based on the identically null utility profile.

Let Ba∗ denote the set of outcome functions p(· | ·) such that the system defined by (1), with
α∗ = a∗, admits only solutions where, ∀ i, λi(ai) = 0, if ai 6= a∗i . The dual version of Condition B
is then:

Condition B*. For any pure action profile a∗ ∈ A, p(· | ·) ∈ Ba∗ .

Thus Condition B* (or B) is stronger than Condition C* (or C), but entails (and is even equivalent
to) enforceability of all action profiles by budget-balancing, individually rational transfer schemes.
Clearly such conditions require that the set X of observable outcomes be of sufficient size with
respect to the sets of actions. More formally, if the cardinality of X is large enough, relative to the
number of actions available to some partners, the set B* of all stochastic outcome functions satisfying
B, and hence the larger set C*, are very large indeed: They contain an open and dense subset of all
stochastic outcome functions. That is, Conditions B and C are generic.16

Theorem 5 Assuming that there exists a pair i, j ∈ N such that |X| ≥ |Ai| + |Aj | − 1 ≥ 2,
Conditions B and C hold generically.

Proof For i, j ∈ N and a∗ ∈ A, assuming |X| ≥ |Ai| + |Aj | − 1, the matrix defining the
homogeneous system (1) contains a square sub matrix of dimension (|Ai| + |Aj | − 1)2 which is
regular if and only if p(· | ·) ∈ Ba∗ . Hence,17 Ba∗ is an open and dense subset of all stochastic
outcome functions. Since the intersection of open and dense subsets is open and dense, the set
[∩a∗Ba∗ ] is also an open and dense subset. The result follows because [∩a∗Ba∗ ] ⊂ B∗ ⊂ C∗.

3.4 Sufficient conditions of the second kind

Although the compatibility condition is generic, and weaker than both pairwise identifiability and
Condition B, there are still many meaningful cases where it is not satisfied. For instance, an important

15. This is the case treated by Legros and Matsushima (1991, Proposition 3). For the model with adverse selection, see
Johnson et al. (1990), who call this the mutually-payoff- relevant case, and d’Aspremont and Gérard-Varet (1992).

16. In the adverse selection case, the genericity of C* was shown by d’Aspremont et al. (1990).
17. See, e.g., Hirsch and Smale (1974, 7.3)
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case is the one where

p(x | a) = g

(
x |

n∑
i=1

ai

)
, ∀x ∀ a,Ai = {0, 1, . . . ,K}, ∀ i,

with g(· | r) 6= g(· | r′) whenever r 6= r′. In this case, for any a∗ ∈ A such that 0 ≤ a∗j − a∗1 < K,
∀ j 6= 1, it is possible to find a′ ∈ A satisfying (a′j − a∗j ) = (a′1 − a∗1) 6= 0, so that, ∀ j 6= 1,∑

i 6=j
a∗i + a′j =

∑
i 6=1

a∗i + a′1 6=
∑
i

a∗i .

Notice this set of action profiles includes more than the symmetric profiles, where each player
uses the same action. Also, letting λj(a′j) = λ1(a

′
1) 6= 0, ∀ j 6= 1, and λj(aj) = 0, ∀ j,∀ aj 6= a′j ,

we see that Condition C* is violated: (1) holds but not (2*).
An example of such a case is given by the classical subscription game for the production of

a public good (assuming transferable utilities), where the only actions are subscriptions in some
private good made by the consumers and where the total amount subscribed is used as an input
to produce the public good. Another example is the discretized version of the stochastic Cournot
oligopoly model of Green and Porter (1984), where, to obtain the collusive outcome, the actions are
the quantities to be produced and the market price is a function of the total quantity.

Because the compatibility condition does not hold in such models, one may look, as is done by
FLM, for conditions of another kind, enforcing only approximate efficiency for the partnership, i.e.,
such conditions are sufficient to enforce a mixed action profile arbitrarily close to some efficient
profile.

We need some definitions. First, a mixed action profile α is said to be nearly-efficient for ε > 0 if∣∣∣∣max
a∈A

∑
i∈N

Ui(a)−
∑
i∈N

Ui(α)

∣∣∣∣ < ε.

Second, FLM define a mixed action profile α to have pairwise full rank for a pair i, j of players,
whenever the rank of the matrix Πij(α) is equal to |Ai|+ |Aj |−1. They have the following condition
(FLM, Condition 6.2):

Local Pairwise Full Rank (LPF). For every pair i, j ∈ N , there exists a mixed action profile α which
has pairwise full rank.

This is a weak condition since it only restricts some mixed action profiles. As observed by FLM,
this condition is the conjunction of two weaker conditions. One is to impose, for every pair i, j ∈ N ,
the existence of some mixed action profile α having pairwise identifiability. In fact we shall need
only an even weaker condition, i.e., to impose the same property only to some pair of players. But,
by Theorem 3, this is equivalent to having α compatible with p(· | ·).

Local Compatibility (LC). There exists a mixed action profile α which is compatible with p(· | ·).
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The second weaker condition included in LPF is based on another property applying to a mixed
action profile α, namely, to have individual full rank for i in the sense that the matrix Πi(α−i) should
have full rank. The condition is18:

Local Individual Full Rank (LIF). For every i ∈ N , there exists a mixed action profile α which has
individual full rank for i.

Finally, using FLM Lemma 6.2, our Theorem 3 and Lemma 1, it is now possible to show that the
conjunction of LC and LIF is sufficient to enforce nearly efficient mixed joint actions.

Theorem 6 Assume that LC and LIF hold. Then, for any utility profile {ui} and for any joint
mixed action producing positive surplus (in particular, for any efficient pure joint action a∗), there
is an arbitrarily close joint mixed action α∗ which is enforceable by an individually rational and
budget-balancing transfer scheme, i.e., satisfying (IC), (IR), and (BB). Moreover for an efficient
pure joint action a∗ an any ε > 0, α∗ may be chosen to be nearly efficient and produce positive
surplus.

Proof First, by Theorem 3, LC is equivalent to the existence of some mixed action profile α having
pairwise identifiability for some pair of players i, j. So, it may be shown that the conjunction of
LC and LFI imply that there exists an open and dense set of mixed action profiles each of which is
pairwise identifiable for this pair of players and has individual full rank for all players. The argument
is the same as in Lemma 6.2 of FLM. Therefore, for any joint mixed action producing positive
surplus, it implies that there exists an arbitrarily close joint mixed action α∗ (hence all producing
positive surplus) which is pairwise identifiable for i, j and has individual full rank for all k ∈ N .
Now use Lemma 1 for this α∗ and consider any λ ∈×n

i=1 ReAi
+ , λ 6= 0, satisfying (1). Because α∗

is pairwise identifiable for i, j we get by Theorem 3 (and (1)) that α∗ is compatible with p(· | ·):∑
ak

λk(ak)[p(x | α∗)− p(x | ak, α∗−k)] = 0 ∀ k ∈ N ∀x ∈ X.

Since α∗ has individual full rank for every k, every solution to these equations satisfies

λk(ak) = θk α
∗(ak) ∀ ak, for some θk ≥ 0,

implying, for every k, ∑
k∈K

∑
ak

λk(ak)[Uk(ak, α
∗
−k)− Uk(α∗)] = 0,

so that (2) of Lemma 1 holds. Therefore α∗ is enforceable by an individually rational and budget-
balancing transfer scheme. If α∗ is chosen arbitrarily close to an efficient joint action a∗ producing
positive surplus, then, for any ε > 0, we can take α∗ to be nearly efficient and to produce positive
surplus. The result follows.

18. In Fudenberg et al. (1994), a stronger condition is defined, Condition 6.3, which requires that any pure action profile
has individual full rank.
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4. Repetition

The two kinds of conditions imposed on the stochastic outcome functions can also be used in a
dynamic framework, in which the elementary (or stage) game is infinitely repeated and the total
payoffs over time are discounted. In this framework, the purpose is to study the set of payoffs in the
elementary game that can be attained, or nearly attained, as average discounted equilibrium payoffs
in the infinitely repeated game, when the players are sufficiently patient (i.e., the discount factor is
sufficiently close to 1). The assumption of quasi-linear utilities is thus not needed anymore, since
immediate transfers in the basic game can be replaced by intertemporal transfers, realized along
the equilibrium path in the repeated game. FLM base their analysis on two conditions: pairwise
identifiability and pairwise full rank. We show in this section that their results can be generalized
using, respectively, the compatibility condition and the conjunction of local compatibility with local
individual full rank.

The repeated game is constructed as follows. At each stage t = 0, 1, . . . ,∞ and for each player
i, the action space is given by {Ai} and the payoff function given by Ui(ai) =

∑
x ui(x, ai)p(x | a),

the payoff of the elementary game. At each stage, the game results in an outcome xt ∈ X which is
publicly observable. Also, only the outcome (and not the others’ actions) is observed by each agent
at each stage. A public history at stage t is a sequence (x0, x1, . . . , xt−1) in Xt = X × . . . ×X
and a public strategy σi is an infinite sequence σ1i , σ

2
i , . . . , σ

t
i , . . . , σ

∞
i , where every σti is a map

from the set of all public histories at stage t to Âi: for any sequence (x0, x1, . . . , xt−1) in Xt, σ
t
i(· |

x0, x1, . . . , xt−1) is a mixed action of player i. A vector of public strategies σ induces a probability
distribution over the set of public histories at stage t, allowing to define the expected payoff of agent
i at stage t, which we denote by U ti (σ). Then, given a common discount factor δ ∈ (0, 1), the payoff
of agent i in the repeated game is defined as the payoff (1− δ)

∑∞
t=0 δ

tU ti (σ). Because of the factor
(1− δ), this is an “average payoff per period,” comparable to the stage game payoff. The equilibrium
concept used by FLM is the perfect public equilibrium (PPE). It is a vector of public strategies σ such
that, for each t = 0, 1, . . ., and for each public history (x0, x1, . . . , xt−1) in Xt, the continuation of
these strategies, from stage t on, forms a Nash equilibrium of the remaining game. Since, when the
other agents use public strategies, no agent can gain by playing a nonpublic strategy and the beliefs
about the others’ past actions are irrelevant, a PPE is a true perfect Bayesian equilibrium. The set
of discounted average payoff vectors that correspond to PPEs, for a discount factor δ, is denoted
E(δ). Also, in the stage game, because there is a finite number of pure joint actions, the set of payoff
vectors generated by all joint mixed actions is a polytope in ReN . Hence a joint mixed action α∗ is
Pareto efficient if and only if α∗ ∈ argmaxα

∑
i∈N βiUi(α), for some β = (β1, β2, . . . , βN )� 0.

Even restricting to public strategies, FLM get “folk theorems” for the infinitely repeated game.
This is to show that “large sets” of payoff vectors of the stage game, including nearly efficient
ones, can be attained through repetition as perfect Bayesian equilibrium payoffs of the repeated
game, at least when the players are sufficiently patient. Consider any Nash equilibrium α0 ∈ Â of
the stage game, with corresponding payoff vector v0 ≡ (U1(α

0), . . . , Un(α0)). We shall take as a
“large set” of payoff vectors to be attained19 the set V 0 which is the convex hull of v0 and all the
Pareto-efficient payoff vectors in the stage game Pareto-dominating v0. V 0 is a polytope generated

19. A stronger version of the folk theorem corresponds to taking as the large set of payoff vectors to be attained (or
nearly attained) the set of all payoff vectors that are above the min-max payoff vector. This would require stronger
assumptions, such as Condition 6.3 in FLM (see Footnote 18 here above).
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by v0 and all payoff vectors, say vk, k = 1, 2, . . . ,K, corresponding to Pareto-efficient pure action
profiles, a1, a2, . . . , aK . V 0 is assumed to have a nonempty interior.

The method for constructing, in the repeated game, PPE’s giving discounted average payoff
vectors that are in the set V 0 for some discount factor δ, relies on the dynamic-programming
decomposition of equilibrium payoffs into “current” and “continuation” payoffs, as in Abreu et al.
(1986). More precisely, a payoff vector v ∈ Ren is said to be decomposable for a subset W ⊂ Ren,
a discount factor δ and a mixed action profile α∗, if there exists a set of (continuation) payoff vectors
w(·) ∈ RenX such that

w(x) ∈W ∀x ∈ X

and, ∀ i ∈ N, ∀ ai ∈ Ai,

vi = (1− δ)Ui(α∗) + δ
∑
x

wi(x)p(x | α∗)

≥ (1− δ)Ui(ai, α∗−i) + δ
∑
x

wi(x)
∑
a−i

p(x | ai, a−i)
∏
j 6=i
α∗j (aj).

In the following theorem, it will be enough to restrict to W ’s that are regular hyperplanes {w ∈ Ren |∑
i biwi = c}, with bi > 0 for all i. This will allow us to rely on the analogy between the problem

of finding continuation payoffs satisfying these inequalities (including the constraint w(x) ∈ W ,
∀x ∈ X) for a mixed action profile α∗ ∈ A and the problem of finding transfer schemes to enforce
α∗ (including the budget balancing constraint) as considered in the previous sections. Indeed, it
amounts to replacing, in the (BB)-constraints, each Ui by [((1 − δ)/δ)biUi] (a simple change of
units) and replace, in the (BB)-constraints, each ti(x) by [biwi(x)− (c/n)].

FLM define a subset V ⊂ Ren to be locally self-decomposable if, for each v ∈ V , there is a
δ ∈ [0, 1) and an open set W containing v such that every u ∈ V ∩W is decomposable for V itself,
for δ and some mixed action profile α∗. We shall need the following result (FLM, Lemma 4.2),
where E(δ) denotes the set of discounted average payoff vectors resulting from PPEs in the infinitely
repeated game with discount factor δ.

Lemma 2 If V ⊂ Ren is compact, convex, and locally self-decomposable, then there exists δ′ < 1
such that V ⊂ E(δ) for all δ ∈ (δ′, 1).

Now, in order to approximate the polytope V 0, we shall restrict our attention to a certain class of
polytopes which are “reduced copies” of V 0. Let ω be the barycenter of V 0 and, for θ ∈ (0, 1), let
vkθ = θω + (1− θ)vk, for each k = 0, 1, 2, . . . ,K. Then a reduced copy of V 0 is the polytope V 0

θ

generated by the family {vkθ : k = 0, 1, . . . ,K}.
Our final theorem generalizes Theorem 6.1 of FLM, replacing the conditions of pairwise identi-

fiability and local pairwise full rank used in FLM by, respectively, the compatibility Condition C
and the conjunction of local compatibility and local individual full rank. As far as it is based on the
compatibility condition, it has to rely on Pareto-efficient payoffs resulting from pure action profile in
the stage game and hence requires a new argument.

Theorem 7 If either Condition C or the conjunction of LC and LIF is satisfied, then for any subset
V 0
θ , a reduced copy of V 0, with nonempty interior and θ arbitrarily small, there exists δ′ < 1 such

that, for all δ ≥ δ′, V 0
θ ⊂ E(δ).
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Proof By Lemma 2, and because V 0
θ is compact and convex by construction, it is enough to show

that V 0
θ is locally self-decomposable. Consider two cases. First consider W 0

θ , the set of points in V 0
θ

that are Pareto dominated by some other point in V 0
θ . Let P 0

θ ≡ V 0
θ \W 0

θ denote the Pareto frontier
of V 0

θ . By construction of V 0, and because V 0
θ is a reduced copy of it, for any point v ∈ W 0

θ , the
line going through v0 (the Nash payoff) and v crosses the boundary of V 0

θ at some point û. Since the
interval [v, û] on this line is, by convexity, contained in V 0

θ , there exist δ ∈ (0, 1) and u′ ∈ (v, û) ⊂
Interior V 0

θ satisfying v = (1 − δ)v0 + δu′. Now, given this δ, there exists also a neighborhood
W of v such that, for every u ∈ V 0

θ ∩W , u = (1− δ)v0 + u′′, for some u′′ ∈ V 0
θ . Hence for any

u ∈ V 0
θ ∩W , since v0 is the payoff corresponding to the Nash equilibrium α0 and u′′ is taken as a

lump-sum payment, u is decomposable for V 0
θ , δ, and α0.

Second, consider P 0
θ , the set of Pareto-optimal points in V 0

θ . Observe that, for every vk ∈ V 0,
corresponding to the Pareto-efficient pure action profile ak, k = 1, 2, . . . ,K, there are positive
coefficients {βki : i ∈ N} such that vk ∈ argmaxu∈V 0

∑
i β

k
i ui. Therefore, by Condition C, for

every k there exist continuation payoffs {wk(x)} such that vk is decomposable for the hyperplane
{w ∈ Ren |

∑
i β

k
i wi = 0}, for any δ ∈ (0, 1), and for the pure action profile ak. Now consider

a point v ∈ P 0
θ . We want to show that there exist k ≥ 1, δ ∈ (0, 1), and u′ in the interior of V 0

θ

such that v = (1 − δ)vk + δu′. If v is an extreme point (v = vmθ , for some m ≥ 1), then we can
take k = m, δ = (1 − θ), and u′ = ω. If v is not an extreme point then it can be written as a
convex combination of some extreme point vkθ and a point v′ which is a nonextreme point of P 0

θ and
belongs to the same face of the polytope V 0

θ as v and vkθ . Consider the triangle generated by vk0 , v′

and ω. Except for the edge containing v, all points of this triangle are in the interior of V 0
θ and, by

construction, the point vkθ is on the line joining ω and vk. Therefore the line joining vk to v intersects
the edge between v′ and ω at a point u′ interior to V 0

θ . (See Figure 1).

So, for some δ ∈ (0, 1), v = (1− δ)vk + δu′. As above, given this δ, there exists a neighborhood
W of v such that, for every u ∈ V 0

θ ∩W , u = (1− δ)vk + δu′′ for some u′′ ∈ V 0
θ . Then, for every

u ∈ V 0
θ ∩W , we may construct new continuation payoffs ŵki (x) ≡ u′′i +wki (x)−

∑
x p(x | ak)wki (x).

Since
∑

x p(x | ak)ŵki (x) = u′′i , for all i, and since the difference [u′′i −
∑

x p(x | ak)wki (x)] is
constant in x, u is decomposable for V 0

θ , δ, and ak.
Therefore V 0

θ , which is compact and convex by construction, is locally self-decomposable, and
the first part of the theorem (based on Condition C) follows from Lemma 2.
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Under conditions LC and LIF, the above argument must be modified only for points in P 0
θ . Take

any such point v and consider the line starting from ω and going through v and cutting V 0 at a point
v′. The line segment (w, v) is in Interior V 0

θ . So, there exists a point u arbitrarily close to the line
segment (v, v′) and decomposable for the hyperplane {w ∈ Ren |

∑
i β

k
i wi = 0}, for any δ ∈ (0, 1),

and for a joint mixed action α. And, there exists δ ∈ (0, 1) and u′ in the interior of V 0
θ such that

v = (1 − δ)u + δu′. Again, given this δ, there exists a neighborhood W of v such that, for every
u ∈ V 0

θ ∩W , u = (1− δ)u+ δu′′, for some u′′ ∈ V 0
θ , so that, by the same argument as above, u is

decomposable for V 0
θ , δ, and α. The result follows.

5. Conclusion

In this paper, we have reviewed several conditions to be imposed on stochastic outcome functions to
enforce either efficient or nearly efficient partnerships. Their logical relationship has been explored.
We have distinguished two kinds of conditions. However, the property for an action profile to be
“compatible” plays a crucial role in both kinds of conditions. In so doing, we have illustrated the
fruitfulness of transporting belief restrictions used under adverse selection to the stochastic outcome
functions in team moral hazard. Another lesson carried out by this paper is the importance of
weakening efficiency into near-efficiency and of the use of mixed strategies. Then, only conditions
of the second kind are required. These are “local conditions,” i.e., applying to a single mixed action
profile. They have been used for two types of enforcement mechanisms: for static enforcement via
transfer schemes and for dynamic enforcement through repetition. For the first type, these conditions
allow us to solve approximately problems that have “too much symmetry,” such as collusion in
stochastic Cournot oligopoly or efficiency in the subscription equilibrium for public goods, which
cannot be solved by conditions of the first kind. With the second type, any payoff on the Pareto
frontier can be approximated as a noncooperative equilibrium of the supergame.
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Claude d’Aspremont and Louis-André Gérard-Varet. Incentives and incomplete information. Journal
of Public economics, 11(1):25–45, 1979.
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