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Abstract
The problem of incentives for correct revelation is studied as a game with incomplete information

where players have individual beliefs concerning others’ types. General conditions on the beliefs are
given which are shown to be sufficient for the existence of a Pareto-efficient mechanism for which
truth-telling is a Bayesian equilibrium.

1. Introduction

Much attention has been devoted recently to a game-theoretic analysis of the strategic use of
private information by individual agents in a decentralized mechanism, designed to reach a Pareto
optimal outcome (For a recent bibliography, see Green and Laffont, 1979). In a previous paper
(d’Aspremont and Gérard-Varet, 1979) we have distinguished two approaches to such games of
incomplete information. The first approach, the ‘complete ignorance’ approach, relies on strong
equilibrium concepts, such as the ‘uniform equilibrium’ or the ‘dominant strategy equilibrium’, which
are independent of any particular representation of the players’ expectations. This is not the case
for the second approach which is based on Harsanyi (1967-68) concept of ‘Bayesian equilibrium’.
One basic result for this approach (see Arrow, 1979; d’Aspremont and Gérard-Varet, 1975, 1979)
is that under a transferability assumption on the utility functions and an independence assumption
on the beliefs (or probability distributions) of the players, there exist Pareto-efficient mechanisms
(with feasible transfer schemes) for which ‘truth-telling’ is a Bayesian equilibrium. However, it
has also been shown that the same result could be obtained under a weaker condition – called the
‘compatibility condition’ – but for discrete probability distributions.

In the present work, we shall show how to extend to a more general framework the result
obtained under the assumption of discrete beliefs. We shall also provide a detailed discussion1 of the
‘compatibility condition’, implying in particular that it is not a necessary condition for the existence
of a Pareto-efficient mechanism for which ‘truth-telling’ is a Bayesian equilibrium. Finally we shall
show that a much less restrictive condition is required if Pareto-efficiency is weakened to a property
in expected value.
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†. The materials presented in this paper were worked out when the author was visiting the Institut für Gesellschafts- und
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The authors want to thank J.-P. Florens, G. Laffond, J.-F. Mertens, H. Moulin, S. Sorin and all participants at the 1980
Stanford I.M.S.S.S. Summer Workshop for helpful comments.

1. In particular we shall give stronger but more interpretable conditions.
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2. The communication game of incomplete information

In its simplest form a mechanism based on preference revelation may be described as follows.
Suppose a finite set N = {1, . . . , i, . . . , n} of players and a set X of outcomes. To give examples
(see Green and Laffont, 1977; Groves and Loeb, 1975) X can be a set of possible public projects
or a set of quantity levels of a public good (or bad) or, more generally, the set of joint strategies in
some n-person game. Assume that the set of admissible preference orderings of X for any player i
in N can be represented by the family of payoff functions Ui(x;αi), where αi is a general parameter
varying in some space Ai and summarizing all the private information of player i. We also say that
Ai is the space of possible types of player i ∈ N . Furthermore, we shall suppose that all payoff
transfers among players are permitted and that every Ui(·, αi) is so calibrated that, for any x in X
and any transfer y in R, the payoff of player i ∈ N of parameter αi ∈ Ai is equal to Ui(x;αi) + y.
In other words we assume unrestricted side-payments with full-transferability.

The sets X and {Ai; i ∈ N} and the functions {Ui; i ∈ N} are common knowledge, but player
i ∈ N is privately informed only about his own type in Ai. Let us assume that any player i ∈ N
has to independently announce to the others some type as being his own type and that Ai is the
space of all his possible messages. A mechanism is then defined as a selection rule s, which is a
function from the message n-tuple a = (a1, a2, . . . , an) in A = ×ni=1Ai to the set of outcomes, and
a transfer scheme t, which associates to each n-tuple of messages a ∈ A a certain vector of transfers
(t1(a), . . . , tn(a)) in Rn made to the individual players. So, for any n-tuple of messages a ∈ A, the
payoff of player i ∈ N of type αi ∈ Ai under the mechanism m = (s, t) can be defined as

Wm
i (a;αi) = Ui(s(a);αi) + ti(a).

Actually, we shall restrict our attention to transfer schemes t which may be called budget-balancing
in the sense that

∀ a ∈ A,
∑
i∈N

ti(a) = 0.

Also, in the following, we shall be concerned by selection rules which are efficient, namely such that

∀ a ∈ A,
∑
i∈N

Ui(s(a); ai) = max
x∈X

∑
i∈N

Ui(x; ai).

A mechanism m = (s, t) is called efficient if its selection rule is efficient and budget-balancing if its
transfer scheme is budget-balancing. These two properties ensure that a mechanism has to be feasible
and Pareto-optimal under ‘full information’ (see Harris and Townsend, 1981, for a discussion of the
notion of ‘full-information’ optimality, also sometimes called ‘ex-post’ optimality). Hence we shall
call Pareto-efficient a mechanism which is both efficient and budget-balancing.

In the approach we take here, every player i ∈ N is supposed to have only partial information
about the value of all players’ types. This generates a game of incomplete information. More
specifically we shall associate to each player i ∈ N a measurable space (Ai,Ai) and a transition
probability Pi from this space (Ai,Ai) towards the n− 1 product space denoted (A−i,A−i), where

A−i = ×
j∈N
j 6=i

Aj and A−i =
⊗
j∈N
j 6=i

Aj .
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This transition probability, also denoted for simplicity Pi = {Pi(· | αi);αi ∈ Ai}, represents the
beliefs of player i about the other players’ types conditional to his own type.2 All transitions Pi,
taken as functions, are of common knowledge. However, player i beliefs are fully known only when
his type αi ∈ Ai is also known.

For the sequel, we shall maintain all the following assumptions:

• For every i ∈ N , Ai is a compact metric space and Ai denotes its Borel σ-algebra.

• X is a compact metric space.

• For every i ∈ N,Ui is a continuous function from X ×Ai to R.

• For every i ∈ N,Pi is a continuous function from Ai to the space of probability measures over
(A−i,A−i), endowed with the topology of pointwise convergence. Every Pi(· | αi) is of full
support.

• The space X and all functions Ui are such that there exists a continuous efficient-selection
rule.

We shall call continuous efficient mechanisms these mechanismsm = (s, t) which are continuous
and where s is efficient.

One particular case, to be called the discrete case, arises when for every player i ∈ N , Ai is a
finite set. Then, we define Ai as the set of all subsets of Ai and continuity is considered, trivially,
with respect to the discrete topology. In the discrete case, every Pi(· | αi) will simply denote a
function from A−i to R+ such that

∑
α−i∈A−i

Pi(α−i | αi) = 1.
We may now introduce the game of incomplete information which can be associated to a

mechanism m.
We first define, for every player i ∈ N , a set of (normalized) strategies as the setA∗i of measurable

functions (decision rules) a∗i : Ai → Ai associating to each possible type αi ∈ Ai a message (or
revealed type) ai = a∗i (αi). We then define, for every player i ∈ N , for every type αi ∈ Ai, and
for any choice a∗−i = (a∗1, . . . , a

∗
i−1, a

∗
i+1, . . . , a

∗
n) of strategies by the other players, the conditional

expected payoff which player i is supposed to maximize on Ai,

W
m
i (ai, a

∗
−i;αi) =

∫
A−1

Wm
i (ai, a

∗
−i(α−i);αi)Pi(dα−i | αi),

where, for notational convenience,

a∗−i(α−i) = (a∗1(α1), . . . , a
∗
i−1(αi−1), a

∗
i+1(αi+1), . . . , a

∗
n(αn)).

A Bayesian equilibrium in such a game is a n-tuple of strategies a∗ ∈ A∗ = ×i∈NA∗i such that, for
every i ∈ N and every αi ∈ Ai,

∀ ai ∈ Ai, W
m
i (ai, a

∗
−i;αi) ≤W

m
i (a∗i (αi), a

∗
−i;αi).

We are interested here by those mechanisms which are such that every player has ‘interest to reveal’
the information he is privately controlling. Consider, for that matter, the truth-telling strategy denoted

2. The notion of a transition probability is defined in Neveu (1970). Notice that Pi may be considered as a regular version
of the conditional probability given Ai arising from a basic probability measure over (A,A) = (×i∈NAi,

⊗
i∈N Ai).
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â∗i for i ∈ N and defined by ∀αi ∈ Ai, â∗i (αi) = αi (i.e., â∗i is the identity function). Thus, a
mechanism m is said to be Bayesian Incentive Compatible (for short BIC) if and only if the n-tuple
â∗ ∈ A∗ of truth-telling strategies is a Bayesian equilibrium in the game of incomplete information
associated to m.

3. Pareto-efficiency and the BIC-property

The difficulty associated to the determination of efficient BIC-mechanisms arises essentially when
one requires, in addition, that the transfers cancel each other (budget-balance). In a previous paper
(d’Aspremont and Gérard-Varet, 1979), we have given a ‘compatibility condition’ imposed on the
players’ beliefs which, in the discrete case (every Ai is finite), is sufficient for the existence of a
Pareto-efficient BIC-mechanism.

The present section is devoted to the more general case. In that framework we first give a
condition, involving both individual beliefs and payoffs, which is necessary and sufficient for the
existence of a Pareto-efficient mechanism having a slightly weaker BIC-property. We finally obtain
a sufficient condition, concerning the beliefs alone which coincides, for the discrete case, with the
‘compatibility condition’.

We say that, for every ε > 0, a mechanism m satisfies the ε-BIC-property iff

∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai, W
m
i (ai, â

∗
−i;αi)−W

m
i (αi, â

∗
−i;αi) ≤ ε,

i.e., in words, the n-tuple â∗ ∈ A∗ of truth-telling strategies is a Bayesian ε-equilibrium of the game
associated to m.

In order to investigate the possibility of finding Pareto-efficient ε-BIC-mechanisms let us intro-
duce some more notation. Let C(A) be the space of real-valued continuous function on A. Let T
denote the space C(A)n of continuous functions from A to Rn and T̃ = {t ∈ T ;

∑
i∈N ti(·) ≡ 0}.

Let, for every i ∈ N , Gi be the linear application from C(A) to RA2
i defined by

∀ z ∈ C(A), Gi(z)(ai, αi)
def
=

∫
A−i

[z(α)− z(ai, α−i)]Pi(dα−i | αi).

To interpret this definition, suppose z ∈ C(A) is a ‘payoff function’ of some player i, defined on the
space A of all types. Then the quantity Gi(z)(ai, αi) appears as an expected gain (or loss) obtained
by player i ex ante for deviating from the situation where all players use their truth-telling strategies:
this expected gain results from his announcing of ai ∈ Ai, while being of type αi. Thus it may be
called player i’s expected gain from (unilateral) deviation at (ai, αi) w.r.t. z.

Now, for any selection rule s and i ∈ N , we denote by

U
s
i (ai, αi)

def
=

∫
A−i

[
Ui(s(ai, αi);αi)− Ui(s(α);αi)

]
Pi(dα−i | αi).

With this notation the problem of finding a continuous Pareto-efficient ε-BIC mechanism amounts
to find a solution t ∈ T̃ to the following system of linear inequalities:

∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai, ai 6= αi, Gi(ti)(ai, αi) > U
s
i (ai, αi)− ε, (I)

where s is assumed to be efficient and continuous.
Let Λ denote the set of vectors of finite Borel-measures λ = (λ1, λ2, . . . , λn) 6= 0, where each

λi is a measure on (Ai ×Ai,Ai ⊗Ai. Then we can state:
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Theorem 1 A necessary and sufficient condition for the existence of a continuous Pareto-efficient
ε-BIC-mechanism is: ∀λ ∈ Λ, if

∀ z ∈ C(A), ∀ i, j ∈ N,
∫
A2

i

Gi(z)(ai, αi)λi(dai, dαi) =

∫
A2

j

Gj(z)(aj , αj)λj(daj , dαj), (1)

then ∑
i∈N

∫
A2

i

[
U
s
i (ai, αi)− ε

]
λi(dai, dαi) < 0. (2)

Proof We proceed in two steps:
Step 1 First we can show that if, for any z ∈ C(A) and i ∈ N , Gi(z) is a continuous func-
tion defined on A2

i then the result derives directly from the necessary and sufficient condition
given in Theorem 15 in Fan (1956). Indeed letting Y denote the product space ×i∈NC(A2

i )
with ‖y‖ = maxN×A2

i
|yi(ai, αi|, y ∈ Y ? and ‖t‖ = maxN×A |ti(α)|, t ∈ T , the application

G = (G1, . . . , Gi, . . . , Gn) from T̃ to Y is continuous and the set IntQ def
= Int{y ∈ Y : y ≥ 0} 6= ∅.

So Ky Fan’s condition may be written: ∀ g 6= 0 belonging to the conjugate convex cone Q∗ of Q
(i.e., Q∗ = {g ∈ Y ∗ : ∀ y ∈ Q, g(y) ≥ 0}) if

(a) ∀ t ∈ T̃ , g(G(t)) = 0, then

(b) g(U
s − ε) < 0 for (U

s − ε) def
= (U

s
1 + ε, . . . , U

s
i − ε, . . . , U

s
n − ε). Now ∀ y ∈ Y , ∀ g ∈ Q∗,

g(y) =
∑

i∈N gi(yi), where every gi is the bounded linear functional defined on C(A2
i ) by

gi(yi) = g(0, . . . , yi, . . . , 0). Clearly gi(yi) ≥ 0 if yi ≥ 0. Hence, by Riesz representation
theorem, to every such gi there corresponds a unique finite Borel measure λi on A2

i such that

(c) ∀ yi ∈ Ai, gi(yi) =
∫
A2

i
yi(ai, αi)λi(dai, dαi).

It follows immediately that (b) is equivalent to (2). To get the equivalence of (a) and (1), suppose
that (1) holds for some λ ∈ Λ. Then for any t ∈ T̃ and any i ∈ N ,∫

A2
i

Gi(ti)(ai, αi)λi(dai, dαi) =

∫
A2

i

G1(ti)(a1, α1)λ1(da1, dα1),

and hence we may associate some g ∈ Q∗, g 6= 0, such that g satisfies (c) and

∀ t ∈ T̃ , g(G(t)) =
∑
i∈N

∫
A2

i

Gi(ti)(ai, αi)λi(dai, dαi)

=

∫
A2

1

G1

(∑
i∈N

ti

)
(a1, α1)λ1(da1, dα1) = 0.

To prove the converse take any g ∈ Q∗, g 6= 0, such that, ∀ t ∈ T̃ , g(G(t)) = 0 and take any
z ∈ C(A). If (a) holds we may then define, for any pair {i, j} ⊂ N , some t̂ ∈ T̃ such that
t̂i = z, t̂j = −z and t̂k ≡ 0, for k /∈ {i, j}, and thus get

0 = g(G(t̂)) = gi(Gi(z))− gj(Gj(z))

=

∫
A2

i

Gi(z)(ai, αi)λi(dai, dαi)−
∫
A2

i

Gj(z)(aj , αj)λj(daj , dαj),

where λ ∈ Λ is defined according to (c).
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Therefore the two conditions are equivalent and to prove the result it remains only to show the
following.

Step 2 ∀ i ∈ N , ∀ z ∈ C(A), Gi(z) ∈ C(A2
i ).

Take any z ∈ C(A). By the definition of Gi, it is enough to show that both
∫
A−i

z(αi, α−i)

Pi(dα−i | αi) and
∫
A−i

z(ai, α−i)Pi(dα−i | αi) belong to C(A2
i ). Since A2

i is compact z is the limit

of sums of the form
∑K

k=1 f
k
K(αi)g

k
K(α−i), where every fkK ∈ C(Ai) and every gkK ∈ C(A−i).

Take any sequence (ami , α
m
i ) in A2

i which is convergent to (a0i , α
0
i ). Clearly, by assumption or

definition, we have that

lim
m→∞

Pi(· | αmi ) = Pi(· | α0
i ), lim

m→∞
fkK(ami ) = fkK(a0i ), lim

m→∞
fkK(αmi ) = fkK(α0

i ).

Hence, by a general convergence argument (see e.g. Proposition 18 in Royden, 1968, p. 232)

lim
m→∞

∫
A−i

gkK(α−i)Pi(dα−i | αmi ) =

∫
A−i

gkK(α−i)Pi(dα−i | α0
i ),

and, by Lebesgue convergence theorem,

∀αi ∈ Ai,
∫
A−i

[
lim
K→∞

K∑
k=1

fkK(αi)g
k
K(α−i)

]
Pi(dα−i | αi)

= lim
K→∞

∫
A−i

[
K∑
k=1

fkK(αi)g
k
K(α−i)

]
Pi(dα−i | αi).

Finally, using properties of limits, we get

lim
m→∞

∫
A−i

z(αmi , α−i)Pi(dα−i | αmi )

= lim
m→∞

lim
K→∞

K∑
k=1

∫
A−i

fkK(αmi )gkK(α−i)Pi(dα−i | αmi )

= lim
K→∞

K∑
k=1

lim
m→∞

[
fkK(αmi )

∫
A−i

gkK(α−i)Pi(dα−i | αmi )

]

= lim
K→∞

K∑
k=1

fkK(α0
i )

∫
A−i

gkK(α−i)Pi(dα−i | α0
i )

=

∫
A−i

z(α0
i , α−i)Pi(dα−i | α0

i ).

Similarly,

lim
m→∞

∫
A−i

z(ami , α−i)Pi(dα−i | αmi ) = lim
k→∞

K∑
k=1

fkK(a0i )

∫
A−i

gkK(α−i)Pi(dα−i | α0
i )

=

∫
A−i

z(a0i , α−i)Pi(dα−i | α0
i ).
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An unsatisfactory feature of the necessary and sufficient condition stated in this theorem is that
it involves not only the given transition probabilities but also the given payoff functions. It is a
joint condition on the beliefs and on the utilities of the players. Our purpose now is to state another
condition which will concern only the beliefs of the players. This seems to be more conform to the
classical problem of preference revelation. We shall see later that this condition is equivalent, in the
discrete case, to the ‘compatibility condition’ stated in d’Aspremont and Gérard-Varet (1979).

Condition C ∀λ ∈ Λ, if

∀ z ∈ C(A), ∀ i ∈ N, ∀ j ∈ N,∫
A2

i

Gi(z)(ai, αi)λi(dai, dαi) =

∫
A2

i

Gj(z)(aj , αj)λj(daj , dαj),
(3)

then
∀ z ∈ C(A), ∀ i ∈ N,

∫
A2

i

Gi(z)(ai, αi)λi(dai, dαi) = 0. (4)

To enunciate Condition C verbally, interpret λ = (λ1, . . . , λi, . . . , λn) as being a system of
individual scaling rules where λi gives weights which are attributed ex ante to player i for every value
of his private information and declaration. Thus

∫
A2

i
Gi(z)(ai, αi)λi(dai, dαi) is player i weighted

sum, under the system λ, of all possible expected gains from deviation w.r.t. z ∈ C(A). Condition
C says that if for some system λ ∈ Λ of individual scaling rules the weighted sums of all possible
expected gains from deviation are made comparable and identical, across payoff functions z ∈ C(A)
and players, then they should be identically zero.

Assume that all players met before knowing of any mechanism and before having been privately
informed about their own type. They plan to cooperate against the mechanism. Condition C says
that there is no room for such cooperation in the sense that there does not exist a system λ ∈ Λ of
individual scaling rules making the weighted sum of conditional expected gains from deviation of
every player both comparable and equal to some non-zero-amount.

In order to show that Condition C is sufficient to give the existence of a solution t ∈ T̃ to system
(I), we need the following lemma where a continuous efficient BIC-mechanism is constructed:

Lemma 1 Let s be a continuous efficient selection rule. ∃ t∗ ∈ T such that

∀ i ∈ N, ∀ ai ∈ Ai, ∀αi ∈ Ai, Gi(ti)(ai, αi) ≥ U
s
i (ai, αi).

Proof Define
∀ i ∈ N, ∀ a ∈ A, t∗i (a) =

∑
j 6=i

Uj(s(a); aj).

Since every Ui and s are continuous functions, t∗ ∈ T . Moreover by the efficiency of s,

∀ i ∈ N, ∀ ai ∈ Ai, ∀αi ∈ Ai, ∀α−i ∈ A−i,
Ui(s(α);αi) + t∗i (α) ≥ Ui(s(ai, α−i);αi) + t∗i (ai, α−i).

Integrating on both sides the result follows.

With this lemma we can state and prove the following theorem:
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Theorem 2 If the given beliefs {Pi, i ∈ N} satisfy Condition C, then there exists a continuous,
Pareto-efficient ε-BIC-mechanism.

Proof We show that, with Lemma 1, Condition C implies the necessary and sufficient condition of
Theorem 1. First notice that this last condition has the same antecedent as Condition C. Also, by
Lemma 1, we have, for any λ ∈ Λ, if

∀ t ∈ T,
∑
i∈N

∫
A2

i

Gi(ti)(ai, αi)λi(dai, dαi) = 0, (5)

then ∑
i∈N

∫
A2

i

U
s
i (ai, αi)λi(dai, dαi) ≤ 0. (6)

Indeed, for t∗ ∈ T as defined in Lemma 1, we get

0 =
∑
i∈N

∫
A2

i

∫
Ai

Gi(t
∗
i )(ai, αi)λi(dai, dαi) ≥

∑
i∈N

∫
A2

i

U
s
i (ai, αi)λi(dai, dαi).

Clearly (5) above is equivalent to the consequent (4) of Condition C. Therefore (6) must hold, which
implies the consequent (2) of the condition in Theorem 1, since the vector measure λ is different
from zero and ε > 0. The result follows.

We shall now show that Condition C is equivalent to a statement about individual beliefs. For
that let A0 = {E ∈ A;E =×i×NEi and ∀ i ∈ N,Ei ∈ Ai} be the semi-algebra of rectangles in A.
Then we show:

Theorem 3 A family of beliefs {Pi, i ∈ N} satisfies Condition C if and only if ∀λ ∈ Λ, if

∀E ∈ A0, ∀ i ∈ N, ∀ j ∈ N,∫
Ai×Ei

Pi(E−i | αi)λi(dai, dαi)−
∫
Ei×Ai

Pi(Ei | αi)λi(dai, dαi)

=

∫
Aj×Ej

Pj(E−j | αj)λj(daj , dαj)−
∫
Ej×Aj

Pj(E−j | αj)λj(daj , dαj),

(7)

then
∀E ∈ A0, ∀ i ∈ N,∫
Ai×Ei

Pi(E−i | αi)λi(dai, dαi)−
∫
Ei×Ai

Pi(E−i | αi)λi(dai, dαi) = 0.
(8)

Proof Let, for every i ∈ N and λ ∈ Λ, F λi denote the following bounded linear functional on C(A):

∀ z ∈ C(A), F λi (z) =

∫
A2

i

Gi(z)(ai, αi)λi(dai, dαi).

By Riesz representation theorem there corresponds a unique finite signed Borel measure Qiλ on A
such that, ∀ z ∈ C(A), F λi (z) =

∫
A z(α)Qλi (dα).
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Now take, for every i ∈ N and λ ∈ Λ, the signed measure P λi on (A,A) defined by the property

∀E ∈ A0, P λi (E) =

∫
Ai×Ei

Pi(E−i | αi)λi(dai, dαi)

−
∫
Ei×Ai

Pi(E−i | αi)λi(dai, dαi).

We see that

∀ z ∈ C(A),∫
A
z(α)P λi (dα) =

∫
A−i

∫
A2

i

z(α)Pi(dα−i | αi)λi(dai, dαi)

−
∫
A−i

∫
A2

i

z(ai, α−i)Pi(dα−i | αi)λi(dai, dαi)

=

∫
A2

i

Gi(z)(ai, αi)λi(dai, dαi) = F λi (z)

=

∫
A
z(α)Qλi (dα),

i.e., P λi = Qλi . The theorem follows.

In the discrete case, Theorem 3 shows that Condition C is equivalent to the ‘compatibility
condition’ already mentioned.3 Therefore by Theorem 7 in d’Aspremont and Gérard-Varet (1979),
Theorem 2 can be strengthened in the discrete case by putting ε = 0.

4. On compatible beliefs

Our purpose in the present section is to provide a detailed analysis of the compatibility condition
– Condition C – determining families of beliefs which are admissible for the existence of Pareto-
efficient mechanisms satisfying the BIC-property. We first consider two conditions which are stronger
than Condition C, but such that each one of them has a more specific interpretation. Second, we
study connections between Condition C and another restriction upon beliefs known in the literature
as the ‘consistency’ condition. In that case a weaker budget-balancing property can be defined
and a stronger positive result can be obtained. Last, we show that Condition C is not necessary by
exhibiting a family of discrete beliefs which do not fulfill the requirement and however is such that,
whatever may be the players’ payoffs (under the full-transferability assumption), there exist efficient
budget-balancing BIC-mechanisms.

Take the beliefs of a particular player, say player i ∈ N . We say that player i beliefs are free of
any dependency with respect to his own types or, for short, that he has free beliefs iff4

∀αi ∈ Ai, ∀αi ∈ Ai, Pi(· | αi) = Pi(· | αi).

3. One may provide for the statement of Theorem 3 an interpretation similar to the one given for Condition C. Indeed,
in a Bayesian set-up, the beliefs Pi give the bets Pi(E−i | ·) of player i ∈ N on events E−i ∈ A−i concerning the
others’ information type, conditional to the player’s own information Ai.

4. Thus, A−i and Ai are σ-algebras which are independent with respect to the probability over (A,A) generating Pi.
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In terms of information, free beliefs mean that the true beliefs of player i ∈ N are common
knowledge.

Consider now the whole family {Pi; i ∈ N} of beliefs. We state:

Condition F There exists at least one player who has free beliefs.
We shall now see that Condition F is sufficient for having Condition C, and, as a consequence,

the result of Theorem 2. We first prove:

Lemma 2 Given a family of beliefs {Pi; i ∈ N}, for every λ ∈ Λ, if

∀ i ∈ N, ∀ j ∈ N, ∀E ∈ A0,∫
Ai×Ei

Pi(E−i | αi)λi(dai, dαi)−
∫
Ei×Ai

Pi(E−i | αi)λi(dai, dαi)

=

∫
Aj×Ej

Pj(E−j | αj)λj(daj , dαj)−
∫
Ej×Aj

Pj(E−j | αj)λj(daj , dαj)

then
∀ i ∈ N, ∀Ei ∈ Ai, λi(Ei ×Ai) = λi(Ai × Ei).

Proof Take any i ∈ N and consider E = Ei ×A−i in A0 in the antecedent. We get, for j 6= i,

λi(Ai × Ei)− λi(Ei ×Ai) =

∫
Aj×Aj

Pj(E−j | αj)λj(daj , dαj)

−
∫
Aj×Aj

Pj(E−j | αj)λj(daj , dαj) = 0.

Theorem 4 Given a family of beliefs {Pi; i ∈ N}, Condition F implies Condition C.

Proof Suppose w.l.o.g. that player 1 has free beliefs, i.e., ∀α1, ∀α1, P1(· | α1) = P1(· | α1) = π1(·)
and that Condition C does not hold. Then, by Theorem 3, there exist λ ∈ Λ and E ∈ A0, such that
∀ j ∈ N − {1},

π1(E−1)[λ1(A1 × E1)− λ1(E1 ×A1)]

=

∫
Aj×Ej

Pj(E−j | αj)λj(daj , dαj)−
∫
Ej×Aj

Pj(E−j | αj)λj(daj , dαj) 6= 0.

This is a contradiction to Lemma 2.

Since Condition F implies Condition C, its only advantage is that it provides an interpretation for
an important subcase, in which the beliefs of at least one player are fully known. An even stronger
condition is to require that every player has free beliefs. We shall call it Condition F∗ (it is called the
independence condition in d’Aspremont and Gérard-Varet, 1979). In this case we obtain a stronger
result, namely that there exists a Pareto-efficient BIC-mechanism. However other interpretable
subcases may be considered.
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An n-person normal form game over the spaces {Ai; i ∈ N}, taken as strategy spaces, is a
function ω from A to Rn where ωi is the payoff function of player i ∈ N . The game is zero-sum if∑

i∈N ωi ≡ 0. Moreover we say that the family {Pi; i ∈ N} provides a strict correlated equilibrium
for the game iff

∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai, ai 6= αi,∫
A−i

ωi(ai, α−i)Pi(dα−i | αi) <
∫
A−i

ωi(αi, α−i)Pi(dα−i | αi).

This non-cooperative equilibrium notion has to be considered as referring to an underlying random
mechanism designed by the players for selecting their strategies. Thus the Pi’s represent the beliefs
of the players about the outcome of this mechanism (see Aumann, 1974).

We now consider the following new condition relative to the family of beliefs {Pi; i ∈ N}. In
order to match Condition C, we give a continuous version of this condition:

Condition B There exists a zero-sum game, {(Ai, ωi); i ∈ N}, with continuous payoff functions and
for which the family of beliefs {Pi, i ∈ N} provides a strict correlated equilibrium.
The statement of Condition B may be written as follows:

∃ω ∈ T̃ ,

such that
∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai, Gi(ωi)(ai, αi) > 0.

Consider on the other hand any family of payoff functions {Ui; i ∈ N} and take an efficient selection
rule s. Define, as in the beginning of Section 3, the numbers U si (ai, αi), i ∈ N , ai ∈ Ai, αi ∈ Ai.
From Condition B, each ωi being multiplied by a constant correctly chosen, one easily deduce the
solvability of system (I) with ε = 0, i.e.

∃ t ∈ T̃ ,
such that

∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai, Gi(ti)(a, αi) ≥ U
s
(ai, αi).

Thus, we prove:

Theorem 5 Assuming Condition B, there exists a (continuous) efficient and budget-balancing BIC-
mechanism.

One interpretation of Theorem 5 is that the individual beliefs characterized by Condition B must
introduce sufficient ‘disagreements’ between the players in order to make ‘correlation’ worthwhile in
a game having a strong competitive character 5

Comparisons of Condition B with Conditions F, F∗ and C, are based on the following characteri-
zation:

Lemma 3 Given {Pi; i ∈ N}, Condition B holds if and only if there is no λ ∈ Λ, such that

∀ z ∈ C(A), ∀ i ∈ N, ∀ j ∈ N,∫
A2

i

Gi(z)(ai, αi)λi(dai, dαi) =

∫
A2

i

Gj(z)(aj , αj)λj(daj , dαj).

5. See (Aumann, 1974, p .67, and example 2.1, p. 68). This property captures features similar to those which are noticed
in an example given in (Laffont and Maskin, 1979, p. 307).
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Proof Using, as in Theorem 1, Fan (1956), a necessary and sufficient condition for solving system
(I), in which we take U si (·) – ε identically null, is simply: there is no g 6= 0 in Q∗ such that, ∀ t ∈ T̃ ,
g(G(t)) = 0. By the same reasoning as in Theorem 1 we get the result.

Theorem 6 Given a family of beliefs {Pi; i ∈ N}, if Condition B holds, then

(i) Condition C holds.

(ii) Condition F does not hold.

Proof (i) is immediate from Lemma 3. To prove (ii), suppose w.l.o.g. that player 1 has free beliefs
represented by π1. Then Condition B implies

∃ω ∈ T̃ ,

such that

∀αi ∈ Ai, ∀ ai ∈ Ai,
∫
A−i

ωi(αi, α−i)π(dα−i) >

∫
A−i

ωi(ai, α−i)π(dα−i),

which forms a set of contradictory inequalities.

Theorem 6 shows that the beliefs satisfying Condition F and those satisfying Condition B are
two distinct subclasses of those satisfying Condition C. However, the size of the class of beliefs
satisfying C but neither B nor F, remains an open question.

Our next objective is to compare Condition C with another condition known as ‘consistency’
(see, for example Harsanyi, 1967-68, for a detailed discussion of this condition). Let, for that matter,
Mi be the set of all probability measures over (Ai,Ai) and M be the set of all probability measures
over (A,A). We say that {Pi; i ∈ N} is a consistent family of beliefs if

∃ ν ∈×i∈NMi, ∃R ∈M, R 6= 0,

such that
∀E ∈ A0, ∀ i ∈ N,

∫
Ei

Pi(E−i | αi)νi(dαi) = R(E).

Thus the Pi’s are, for the respective players, the different conditionalizations of the same joint
probability.

Our first result is for the two player case:

Theorem 7 Assuming N = {1, 2} and given {P1, P2}, a pair of consistent beliefs, Condition C is
equivalent to Condition F∗.

Proof Given {P1, P2}, by consistency we have

∃ν1 ∈M1, ∃ ν2 ∈M2, ∃R ∈M, R 6= 0,

such that
∀E ∈ A0, ∀ i, j ∈ {1, 2}, i 6= j,

∫
Ei

Pi(Ej | αi)νi(dαi) = R(E).
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Also, the negotiation of Condition C is, by Theorem 3, equivalent to

∃λ ∈ Λ,

such that ∫
Ai×Ei

Pi(Ej | αi)λi(dai, dαi)−
∫
Ei×Ai

Pi(Ej | αi)λi(dai, dαi)
def
= κ(E)

is equal for both i and all E ∈ A0 and different from zero for some E in A0.
Define λ ∈ Λ to be

∀ i ∈ {1, 2}, ∀Ei, Fi ∈ Ai, λi(Ei × Fi) = νi(Ei) · νi(Fi).

Thus,

∀E ∈ A0, ∀ i ∈ {1, 2},∫
Ai×Ei

Pi(Ej | αi)λi(dai, dαi)−
∫
Ei×Ai

Pi(Ej | αi)λi(dai, dαi)

=

∫
Ei

Pi(Ej | αi)νi(dαi)−
[∫

Ai

Pi(Ej | αi)νi(dαi)
] [∫

Ei

νi(dai)

]
=R(E)−R(Ai × Ej) · νi(Ei)
=R(E)− νj(Ej) · νi(Ei).

If Condition F ∗ does not hold ten it is well known that R(E) − ν1(E1) · ν2(E2) 6= 0 for some
E ∈ A0, and so Condition C does not hold either. Theorem 4 implies the other direction.

However, this negative result only holds in the case of two players, as the following example
demonstrates:

Theorem 8 For |N | > 2, there exist consistent families of beliefs which satisfy Condition C and not
Condition F∗.

Proof According to Theorem 2, it is sufficient to find a consistent family of beliefs for which only
one player has free beliefs (i.e., satisfying Condition F).

Consider N = {1, 2, 3}, A1 = {α1, α2}, A2 = {β1, β2}, A3 = {γ1, γ2}, the following beliefs
satisfy the requirements:
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For player 1, P1

β1γ1 β2γ1 β1γ2 β2γ2
α1 4/15 1/15 8/15 2/15
α2 1/9 2/9 2/9 4/9

For player 2, P2

α1γ1 α2γ1 α1γ2 α2γ2
β1 4/15 1/15 8/15 2/15
β2 1/9 2/9 2/9 4/9

For player 3, P3

α1β1 α1β2 α2β1 α2β2
γ1 12/24 3/24 3/24 6/24
γ2 12/24 3/24 3/24 6/24

As a last example, we shall take the simplest case of two players, each having only two types,
i.e.,

N = {1, 2}, A1 = {α1, α2}, A2 = {β1, β2}.

We shall, for this case, consider the following class of beliefs, choosing δ 6= 1
2 , 0 ≤ δ ≤ 1:

P1 P2

β1 β2 α1 α2

α1 δ 1− δ β1 δ 1− δ
α2 1− δ δ β2 1− δ δ

Notice that none of these beliefs are free and that it is a consistent family of beliefs. Consider now
any set X of outcomes and any family of two payoff functions {U1, U2} satisfying the side-payment
full-transferability assumption. Take any selection rule s which is efficient. As in the proof of
Theorem 1, finding a balanced transfer scheme t ∈ RN×A, such that m(s, t) is a BIC-mechanism,
consists in showing that, ∀(λ1(α1, α2), λ1(α2, α1), λ2(β1, β2), λ2(β2, β1)) ∈ R4

+−{0}, if ∀ t ∈ T̃ ,

(i) λ1(α1, α2)
∑
b∈A2

[t1(α2, b)− t1(α1, b)]P1(b | α2)

+λ1(α2, α1)
∑
b∈A2

[t1(α1, b)− t1(α2, b)]P1(b | α1)

+λ2(β1, β2)
∑
a∈A1

[t2(a, β2)− t2(a, β1)]P2(a | β2)

+λ2(β2, β1)
∑
a∈A1

[t2(a, β1)− t2(a, β2)P2(a | β1) = 0,

then
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(ii) λ1(α1, α2)U
s
1(α1, α2) + λ2(α2, α1)U

s
1(α2, α1)

+λ2(β1, β2)U
s
2(β1, β2) + λ2(β2, β1)U

s
2(β2, β1) ≥ 0.

Now, assuming (i), we get

λ1(α2, α1) = λ1(α1, α2) = λ1, λ2(β2, β1) = λ2(β1, β2) = λ2,

and
[P1(β1 | α1)− P1(β1 | α2)]λ1 = [P2(α1 | β1)− P2(α1 | β2)]λ2.

But, for the given family of beliefs, we have

P1(β1 | α1)− P1(β1 | α2) = P2(α1 | β1)− P2(α1 | β2) = 2δ − 1,

implying

(iii) λ1 = λ2 = λ0.

Now, given (iii) and the assumed family of beliefs, we have in (ii)

λ0[U
s
1(α1, α2) + U

s
1(α2, α1) + U

s
2(β1, β2) + U

s
2(β2, β1)]

=(1− δ)λ0[U1(s(α1, β1), α2) + U1(s(α2, β2), α1) + U2(s(α1, β1), β2)

+U2(s(α2, β2), β1)− U1(s(α2, β1), α2)− U1(s(α1, β2), α1)

−U2(s(α1, β2), β2)− U2(s(α2, β1), β1)]

+δλ0[U1(s(α1, β2), α2) + U1(s(α2, β1), α1) + U2(s(α2, β1), β2)

+U2(s(α1, β2), β1)− U1(s(α2, β2), α2)− U1(s(α1, β1), α1)

−U2(s(α2, β2), β2)− U2(s(α1, β1), β1)].

By applying twice the efficiency property, this is smaller than or equal to

(1− δ)λ0[U1(s(α2, β2), α1) + U2(s(α2, β2), β1)

−U1(s(α1, β1), α1)− U2(s(α1, β1), β1)]

+δλ0[U1(s(α1, β2), α2) + U2(s(α1, β2), β1)

−U1(s(α2, β1), α2)− U2(s(α2, β1), β1)] ≤ 0.

Thus, there exists, for the given family of beliefs, an efficient budget-balancing mechanism which is
BIC. Also, since δ 6= 1

2 , Condition C does not hold (see Theorem 3). Therefore, we may state:

Theorem 9 Condition C is not necessary for the existence of an efficient budget-balancing mechanism
which is BIC.

The last situation which we shall consider using the same approach is the one where we keep the
consistency condition but without requiring Condition C. In this case we can only find efficient-BIC-
mechanisms satisfying a weak budget-balancing property, namely,∫

A

[∑
i∈N

ti(α)

]
R(dα) = 0.

For the sake of simplicity we shall consider this new property, called the expected-budget-
balancing property, only in the discrete case:
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Theorem 10 In the discrete case and for any consistent family of beliefs, there exists an efficient
BIC-mechanism which satisfies the expected-budget-balancing property.

Proof of Theorem 9 We have to show the existence of t ∈ T solving the following system of
inequalities:

∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai, Gi(ti)(ai, αi) ≥ U
s
i (ai, αi),

and ∑
α∈A

∑
i∈N

ti(α)R(α) = 0, (5-II)

where s is some efficient selection rule.
A well-known (see e.g. Fan, 1956) necessary and sufficient condition for the existence of a

solution of (5-II) is, ∀λ ∈ Λ, ∀µ ∈ R, if

∀ t ∈ T,
∑
i∈N

∑
ai∈Ai

∑
αi∈Ai

Gi(ti)(ai, αi)λi(ai, αi) = µ
∑
α∈A

∑
i∈N

ti(α)R(α), (9)

then ∑
i∈N

∑
ai∈Ai

∑
αi∈Ai

U
s
i (ai, αi)λi(ai, αi) ≤ 0. (10)

But ∑
i∈N

∑
ai∈Ai

∑
αi∈Ai

Gi(ti)(ai, αi)λi(ai, αi)

=
∑
i∈N

∑
ai∈Ai

∑
αi∈Ai

∑
α−i

[ti(α)− ti(ai, α−i)]Pi(α−i | αi)λi(ai, αi)

=
∑
α∈A

∑
i∈N

ti(α)
∑
αi∈Ai

[Pi(α−i | αi)λi(ai, αi)− Pi(α−i | ai)λi(αi, ai)].

So that (1) is equivalent to the following:

∀ i ∈ N, ∀αi ∈ Ai,∑
ai∈Ai

[Pi(α−i | αi)λi(ai, αi)− Pi(α−i | ai)λi(αi, ai)] = µR(α). (5-9’)

Since, for some α−i ∈ A−i,
∑

αi
R(α−i, αi) 6= 0, we get in (5-9’) that µ = 0. Therefore the

necessary and sufficient condition becomes, ∀λ ∈ Λ, if

∀ t ∈ T,
∑
i∈N

∑
ai∈Ai

∑
αi∈Ai

Gi(ti)(ai, αi)λi(ai, αi) = 0, (11)

then ∑
i∈N

∑
ai∈Ai

∑
αi∈Ai

U
s
i (ai, αi)λi(ai, αi) ≤ 0. (12)

This holds by Lemma 1 (see the argument in the proof of Theorem 2).
In conclusion, the first contribution of this section is to provide some interpretable conditions on

the beliefs implying Condition C, and thus representing sufficient conditions for the existence of a
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Pareto-efficient BIC-mechanism [whatever the (transferable) payoff functions]. They require that
the beliefs of at least one player be fully known or that the beliefs of all players be sufficiently in
‘disagreement’ to make correlation, in some sense, profitable. However, the Compatibility Condition
C is not necessary. There are families of beliefs which do not satisfy Condition C but have such
strong symmetry properties that it remains possible to design a Pareto-optimal feasible mechanism
which is Bayesian incentive compatible.

The second contribution concerns the much more general ‘consistency’ condition. Under this
condition we prove (for the discrete case) that it is always possible to find an efficient BIC-mechanism,
provided the budget is only balanced in expected value.
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