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Abstract
The concept of Stackelberg-solvable games is introduced and analyzed as a generalization of

2-person zero-sum games. Then, the problem of sincere pre-play communication is examined
and the incentive compatibility of the Nash-equilibrium selection is shown to correspond to the
Stackelberg-equilibrium property.

As already recognized by Harsanyi (1967-68) and Aumann (1974), the introduction of inter-player
communication into the analysis of non-cooperative games, where the players restrict their choice to
Nash-equilibrium strategies, may change substantially the interpretation of a solution. Indeed, even
if in such games no individual commitment is irrevocable and no collective agreement enforceable,
some pre-play communication allows the players to coordinate their strategic choice.

However, pre-play communication generates additional strategic considerations: strategic con-
siderations of a higher order. First, in the case where the players have complete information about
the data of the game, communication is limited to the strategies to be played. But each player may
consider the advantage to commit himself to some specific strategic choice, having some expectation
concerning the others’ reaction, namely a best-reply behavior.

In the case of incomplete information, we suppose that each player has to communicate to the
others the data of the game which he privately knows. In this framework the additional strategic
considerations are linked to the fact that the players may find it in their self-interest to distort the
information they reveal to each other.

The purpose of this paper is to characterize the class of games which can be solved according to
the Nash-Equilibrium concept, in spite of these additional strategic considerations.

In Section 1, we define such a class of games using a generalization of the concept of Stackelberg-
point from duopoly theory and we analyze the complete information case. In Section 2, we treat the
incomplete information problem.

1. Stackelberg-solvable games

1.1. Let us consider an n-person game in normal form denoted

Γ
def
= {(Xi, Ui) | i ∈ N},

∗. Reprinted from Journal of Economic Theory, 23(2), 201–217, October 1980 (CORE Reprint no. 425).
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where N = {1, . . . , i, . . . , n} is the (finite) set of all players, Xi is player i’s strategy space and Ui
is his payoff function. We assume each Xi to be a compact space and each Ui to be continuous on

X
def
=×i∈NXi.

Denote for every i ∈ N , x−i
def
= (x1, . . . , xi−1, xi+1, . . . , xn), X−i

def
=×j∈N,j 6=iXj and

∀x−i ∈ X−i, µi(x−i)
def
= {xi ∈ Xi | Ui(x) = max

xi∈Xi

Ui(xi, x−i)}.

The correspondence µi from X−i to Xi is player i’s best reply correspondence in game Γ. We also
consider, for every i ∈ N , the following set:

Gi
def
= {x ∈ X | ∀ j ∈ N − {i}, xj ∈ µj(x−j)}.

We recall that for a game Γ, a Nash-equilibrium is any n-tuple of strategies x∗ ∈ X such that

∀ i ∈ N, x∗i ∈ µi(x∗−i).

Note that, for any x ∈ Gi, the (n−1)-tuple x−i is a Nash equilibrium in the (n−1)-person subgame,
where player i is excluded and the payoffs of the other players are defined by supposing that i plays
his strategy xi.

1.2. Following an idea introduced by Von Stackelberg (1934) for duopoly theory, we define a
different concept of equilibrium.1 For a game Γ we call Stackelberg-point for player i ∈ N any
n-tuple of strategies x(i) ∈ Gi such that

Ui(x
(i)) = max

x∈Gi

Ui(x).

This definition may be interpreted in the present framework of a game with pre-play communication.
Indeed we may view Ui(x

(i)) as the maximal payoff player i can expect if he commits himself to x(i)i
and supposes the others react noncooperatively. The others’ behavior is described by the definition
of Gi: they choose the Nash-equilibrium x

(i)
−i in the subgame where i plays x(i)i . The definition2 of

Gi we use is thus justified because we want to consider the maximal payoff player i can expect in
this way.

Now, we call a Stackelberg-equilibrium for game Γ any n-tuple of strategies x ∈ X which
is a Stackelberg-point for every player i ∈ N . Clearly, any Stackelberg-equilibrium is a Nash-
equilibrium. Also, we say that a game Γ is a Stackelberg-solvable game iff it possesses at least one
Stackelberg-equilibrium.

In a Stackelberg-solvable game no player has interest to block the communication process by
imposing a strategy of his choice without any coordination with the others. Indeed the Stackelberg-
equilibrium n-tuple of strategies is a Nash-equilibrium which gives to every player the maximal
payoff he can expect from such a behavior.

1. See Von Stackelberg (1934) or Fellner (1949).
2. Other interesting generalizations of von Stackelberg definition would be to let (a) G′i = {x ∈ X; ∀ j 6= i, xj ∈
µj(x−j) and ∀x′ ∈ X such that x′i = xi and ∀ j 6= i, x′j ∈ µj(x

′
−j), Ui(x

′) ≥ Ui(x)}. (b) G′′i = {x ∈ X; ∀ j 6=
i, xj ∈ µj(x−j) and ∀x′ ∈ X such that x′i = xi and ∀ j 6= i, x′j ∈ µj(x

′
−j), if U`(x

′) > U`(x), ` 6= i, then
Uk(x′) < Uk(x), k 6= i} and define a “Stackelberg-point for player i” accordingly.
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1.3. In the following we give first an important property of Stackelberg-solvable games and then
analyse few examples.

Given a game Γ, write U = (U1, . . . , Un). For any x ∈ X a vector u = U(x) ∈ Rn is
called a feasible payoff. If x∗ ∈ X is a Nash-equilibrium then u∗ = U(x∗) ∈ Rn is called a
Nash-equilibrium payoff. If x ∈ X is a Stackelberg-equilibrium then v = U(x) ∈ Rn is called a
Stackelberg-equilibrium payoff.3 For any two feasible payoff u and u′, we say that u′ dominates u
iff: ∀ i ∈ N, u′i ≥ ui.

Theorem 1 In an n-person Stackelberg-solvable game Γ, there is a unique Stackelberg-equilibrium
payoff v which dominates any Nash-equilibrium payoff.

Proof The first part of the theorem is immediate since, if x ∈ X and x ∈ X are two Stackelberg-
equilibria, then we have

∀ i ∈ N, Ui(x) = Ui(x) = max
x∈Gi

Ui(x) = vi.

For the second part, if x∗ ∈ X is a Nash-equilibrium then x∗ ∈ ∩i∈NGi, and hence

∀ i ∈ N, Ui(x∗) ≤ max
x∈Gi

Ui(x) = vi.

If a game is Stackelberg-solvable, the unique Stackelberg-equilibrium payoff v will be called the
Stackelberg-value of the game.

To illustrate these concepts we now study few examples.

Example A Given a game Γ, player i has a strictly dominating strategy x̃i ∈ Xi iff: ∀x−i ∈
X−i, ∀xi ∈ Xi, xi 6= x̃i ⇒ Ui(xi, x−i) < Ui(x̃i, x−i). If (x̃1, . . . , x̃i, . . . , x̃n) is an n-tuple of
strictly dominating strategies then it is the unique Nash-equilibrium and Stackelberg-equilibrium.
Accordingly, (2.2) is the Stackelberg-value of the following 2-person game:

x12 x22
x11 3,0 0,1
x21 5,0 2,2

Example B A two-person game Γ = {X1, X2, U1, U2} is called strictly competitive iff:

∀x ∈ X, ∀x′ ∈ X,
U1(x

′) > U1(x) iff U2(x
′) < U2(x)

and
U1(x

′) = U1(x) iff U2(x
′) = U2(x).

Concerning this class of games we have the following statement: If Γ is a 2-person strictly competitive
game, then every Nash-equilibrium is a Stackelberg-equilibrium.

3. If x(i) ∈ X is a Stackelberg point for player i ∈ N , then vii = Ui(x
(i)) ∈ R denotes player i’s Stackelberg payoff.

However, (v11 , . . . , v
n
n) ∈ Rn is not necessarily a Nash equilibrium payoff and is not even necessarily feasible.
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Proof If Γ is a strictly competitive game, we may write

G1 = {x ∈ X : U2(x) = max
x̃2∈X2

U2(x1, x̃2)}

= {x ∈ X : U1(x) = min
x̃2∈X2

U1(x1, x̃2)}

G2 = {x ∈ X : U1(x) = max
x̃1∈X1

U1(x̃1, x2)}

= {x ∈ X : U2(x) = min
x̃1∈X1

U2(x̃1, x2)}.

Also if x is a Nash-equilibrium in Γ we must have

U1(x) = max
x1∈X1

min
x2∈X2

U1(x1, x2) = max
x∈G1

U1(x)

U2(x) = max
x2∈X2

min
x1∈X1

U2(x1, x2) = max
x∈G2

U2(x).

This with the fact x ∈ G1 ∩G2 implies that x is a Stackelberg-equilibrium.
This proves that in some sense the notion of Stackelberg-solvable games is a generalization of the

notion of 2-person strictly competitive games, (i.e., games equivalent to a 2-person 0-sum game).

Example C Consider two firms producing the same good in nonnegative quantity q1 and q2 at a cost
a1q1 and a2q2, respectively, and selling on a market where the demand function is piecewise linear,
i.e., for B > b > 0, the price p is given by

p(q1, q2) = B − b(q1 + q2) q1 + q2 ≤ B/b
= 0 q1 + q2 > B/b.

We suppose that a1 and a2 belong to the open interval (0, B). For each value of the parameters a1
and a2 we can construct a duopoly game Γ(a) as follows. Let X1 = X2 = [0, B/b] and

U1(q1, q2) = (B − a1)q1 − bq21 − bq2q1 q1 + q2 ≤ B/b
= −a1q1 q1 + q2 > B/b

U2(q1, q2) = (B − a2)q2 − bq22 − bq1q2 q1 + q2 ≤ B/b
= −a2q2 q1 + q2 > B/b.

In the Appendix, we give the computation of the Stackelberg-point q(1) for player 1. The result is

q
(1)
1 = 0; q

(1)
2 =

B − a2
2b

, if (B − a1) ≤
1

2
(B − a2),

q
(1)
1 =

B − a1
2b

; q
(1)
2 = 0, if (B − a1) ≥ 2(B − a2),

q
(1)
1 =

1

b

[
(B − a1)−

B − a2
2

]
; q

(1)
2 = 0; if

3

2
(B − a2) < (B − a1) < 2(B − a2)

q
(1)
1 =

1

b

[
(B − a1)−

B − a2
2

]
;

q
(1)
2 =

1

2b

[
3

2
(B − a2)− (B − a1)

]
, otherwise.
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The Stackelberg-point for player 2, q(2) may be written symmetrically. Now, if the values of the
parameters are such that 1

2(B − a2) < (B − a1) < 2(B − a2), then the unique Nash-equilibrium q∗

is given by:

q∗1 =
1

b

[
2

3
(B − a1)−

(B − a2)
3

]
;

q∗2 =
1

b

[
2

3
(B − a2)−

(B − a1)
3

]
.

For this Nash-equilibrium to be a Stackelberg-equilibrium one should have

2

3
(B − a1)−

B − a2
3

= (B − a1)−
B − a2

2
, i.e.

B − a2
2

= B − a1

and
2

3
(B − a2)−

B − a1
3

= (B − a2)−
B − a1

2
, i.e. B − a1 = 2(B − a2),

which is impossible. Hence, for values of the parameters such that the Nash-equilibrium quantities
are positive for each duopolist,4 the game Γ(a) is not Stackelberg-solvable and the situation, as
recognized in Stackelberg original analysis, is very unstable, if both desire to be leader.

1.4. Let us now consider the relationship between Stackelberg-solvable games, almost-strictly-
competitive games as introduced by Aumann (1961) and a-cooperative games as defined by Moulin
(1976a).

First recall that a twisted equilibrium for a game Γ is any n-tuple x̂ ∈ X such that

∀ i ∈ N, ∀x−i ∈ X−i, Ui(x̂) ≤ Ui(x̂i, x−i).

In a 2-person game, a twisted equilibrium is such that no player can decrease the other player’s
payoff by a unilateral change of strategy. If x̂ ∈ X is a twisted equilibrium then û = U(x̂) ∈ Rn is a
twisted equilibrium payoff.

A game Γ is almost-strictly-competitive (for short a.s.c.) iff there exists an n-tuple of strategies
which is both a Nash-equilibrium and a twisted-equilibrium and the set of Nash-equilibrium payoffs
coincides with the set of twisted equilibrium payoffs. In an a.s.c. game, there is a unique Nash-
equilibrium payoff which is also the unique twisted equilibrium payoff.5

All 2-person zero-sum-games are a.s.c. Other games are both a.s.c. and Stackelberg-solvable as
shown by the “prisoners’ dilemma.”

Example D
x12 x12

x11 4,4 0,5
x21 5,0 2,2

However, the class of a.s.c. games is different from the class of Stackelberg-solvable games. On one
hand, Example A provides a game which is Stackelberg-solvable but is not a.s.c. since the unique
Nash-equilibrium is not a twisted equilibrium. On the other hand, there exist games which are a.s.c.
but are not Stackelberg-solvable, as shown by Example E.

4. For other values of the parameters, we have q∗ = q(1) = q(2) and one of the duopolists produces nothing.
5. This result forms an easy extension to the n-person case of Theorem A in Aumann (1961) which is proved for the

2-person case. Notice that other properties of 2-person a.s.c. games do not remain valid in the general case.
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Example E
x12 x12

x11 4,4 0,3
x21 5,0 1,1

In this game (x21, x
2
2) is the unique Nash-equilibrium and the unique twisted-equilibrium. However,

it is not a Stackelberg-equilibrium.
Given a game Γ, we say of an n-tuple x ∈ X that it is Pareto-optimal iff there is no other n-tuple

of strategies giving at least as much to every player and more to some player, i.e.,

6 ∃x′ ∈ X such that ∀ i ∈ N, Ui(x′) ≥ Ui(x)

and
∃ j ∈ N such that Uj(x′) > Uj(x).

If x ∈ X is a Pareto-optimal n-tuple then u = U(x) ∈ Rn is a Pareto-optimal payoff.

A game Γ is a-cooperative iff it has at least one Pareto-optimal twisted equilibrium. The class
of a-cooperative games (strictly) contains the class of 2-person zero-sum games and is (strictly)
contained in the class of a.s.c. games.6 Moreover,

Theorem 2 In a game Γ, any Pareto-optimal twisted equilibrium is a Stackelberg-equilibrium.

Proof Suppose x̂ ∈ X is a Pareto-optimal twisted-equilibrium. First we may show that x̂ is a
Nash-equilibrium. Indeed if such was not the case we would have

∃ j ∈ N, ∃xj ∈ Xj such that Uj(x̂) < Uj(xj , x̂−j).

And, since x̂ is a twisted-equilibrium, we get, in addition,

∀ i ∈ N − {j}, Ui(x̂) ≤ Ui(xj , x̂−j),

a contradiction to the Pareto-optimality of x̂.
Hence, we must have x̂ ∈ ∩i∈NGi. Moreover, if we don’t have U(x̂) = v, i.e., ∃ j ∈ N ,

∃x ∈ Gj such that Uj(x̂) < Uj(x̄) = maxx∈Gj Uj(x), then, by the Pareto-optimality of x̂ and the
fact that xj ∈ Gj , we get

∃ k ∈ N − {j} such that Uk(x̂) > Uk(x) ≥ Uk(x̂k, x−k),

a contradiction to x̂ being a twisted equilibrium.

Theorem 2 shows that any a-cooperative game is a Stackelberg-solvable game. The prisoner’s
dilemma (Example D) provides an example of a game which is Stackelberg-solvable but is not
a-cooperative.

Remark 1 It is interesting to note that Theorems 1 and 2 imply that in any zero-sum game having a
twisted equilibrium, there is a unique Nash-equilibrium payoff. Indeed in such a game any twisted
equilibrium is Pareto-optimal and, by Theorem 2, it is also Stackelberg-equilibrium which, by
Theorem 1, gives the unique Nash-equilibrium payoff.

6. Characterizations of a-cooperative games have been provided for the 2-person case by Moulin (1976a,b). Example D
gives a game which is a.s.c. but not a-cooperative.
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As a last example we give the “variable-threat bargaining game.”

Example F Consider a compact convex set X of “outcomes” on which are defined two continuous
utility functions U1 and U2. Each player i is supposed to have a compact convex set7 of available
“threat” strategies Xi such that X1 ×X2 ⊂ X . Then an “arbitration scheme” is any function σ from
X1 ×X2 to X . The following minimal requirements are usually imposed on σ:

(i) Individual Rationality: ∀x ∈ X,∀ i ∈ {1, 2},

Ui(σ(x)) ≥ Ui(x).

(ii) Pareto Optimality: ∀x ∈ X , ∀x′ ∈ X , ∀ i ∈ {1, 2}, ∀ j ∈ {1, 2},

Ui(x
′) > Ui(σ(x))⇒ Uj(x

′) < Uj(σ(x)).

For any arbitration scheme σ one may associate a game, also called the “threat-game” and
denoted

Γσ = {X1, X2, U
σ
1 , U

σ
2 },

where
Uσi

def
= Ui(σ(·)), i = 1, 2.

As remarked in Aumann (1961) if σ satisfies (i) and (ii) and if the game Γσ has a Nash-equilibrium
then it is almost strictly competitive. Hence there is a unique Nash-equilibrium and twisted-
equilibrium payoff which by condition (ii) is Pareto-optimal. So we may conclude then that Γσ is
a-cooperative and, by Theorem 2, that it is Stackelberg-solvable.

2. Incentives and complete ignorance in non-cooperative games

2.1. The game Γ introduced in the previous section is a game with complete information: all payoff
functions and all strategy spaces are “common knowledge” in the sense that no player can consciously
disagree with some other about what they are. However, in practice, some of this information might
be initially “private information” and then some kind of communication between players might
have to take place before the game. In this context, the complete information assumption appears
as equivalent to a sincere pre-play communication assumption. Our purpose now is to weaken this
assumption considerably. We proceed as follows.

We suppose first that every player i is described by some parameter αi of finite or infinite
dimension. To introduce incomplete information we assume then that every player only knows his
parameter and that the parameter value of any other player j, αj , belongs to some space Aj , which is
the space of descriptions of all possible values.8

Also we assume that the functionsUi are respectively defined onX×Ai, i.e., if αi is the parameter
value for player i, Ui(·;αi) is his payoff function. Hence for every n-tuple α = (α1, . . . , αn) ∈ A,
whereA =×i∈NAi, we get a game Γ(α) = {(Xi, Ui(·;αi)); i ∈ N} of the type described in Section
1.1. Player i’s best reply correspondence in game Γ(α) can be denoted µi(·;αi) and accordingly

7. As in Nash (1953), Raiffa (1953) and Kalai and Rosenthal (1978), we could have started with a two-person finite
game, consider Γ as its mixed extension and X as the set of correlated pairs of strategies.

8. In probabilistic terms, for every player j 6= i, αi is a random phenomenon and Ai is its sample space.
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every set Gi will be recognized to depend on α−i = (α1, . . . , αi−1, αi+1, . . . , αn) ∈ A−i, where
A−i =×j∈N,j 6=iAj .

In such an incomplete information framework, pre-play communication can no longer be consid-
ered as straightforward. For our purpose we shall assume that during the pre-play communication
period the players have to settle two problems:

(i) They have to agree on a selection rule x from A to X giving the unique n-tuple of strategies
x(α) ∈ X which would have to be played if the game is Γ(α).

(ii) Each player i has to announce a value ai ∈ Ai of his parameter which is taken by the other
players as his true value. Each possible ai is called a message of player i. Hence Ai can also be
viewed as the message space of player i. In fact, to solve problem (ii), known as the “incentive
problem”, the players have to play another kind of game. More specifically we define the
pre-play communication game given the selection x as the set of normal form games – one for
every α ∈ A – denoted

G(x;α) = {(Ai, Ui(x(·);αi); i ∈ N}, a ∈ A,

where the players strategy spaces Ai are their message space and where their payoff functions
are the composition of their initial payoff functions with x. This is a game with incomplete
information in which no account is taken of the beliefs of the players regarding each other
parameters. This is in contrast to Harsanyi (1967-68) Bayesian approach and, by similarity with
the well-known distinction in the theory of decision under uncertainty,9 the present approach
may be called the “complete ignorance” approach (see d’Aspremont and Gérard-Varet, 1979).

In this approach one may define the following solution concept: an n-tuple of messages a∗ ∈ A
is a Nash-equilibrium for α (or for the game G(x,α)) iff:

∀ i ∈ N, ∀ ai ∈ Ai, Ui(x(ai, a
∗
−i), αi) ≤ Ui(x(a∗);αi).

Now, following Hurwicz (1972), we may say that a selection x is incentive compatible for α iff α is
a Nash-equilibrium for α, i.e.,

∀ i ∈ N, ∀ ai ∈ Ai, Ui(x(ai, α−i);αi) ≤ Ui(x(α);αi).

Of course such a property is very weak since it is a “local” property. Hence, one has to look for
classes of values α for which the property holds.10

2.2. In the present paper we assume that for every a ∈ A the revealed game Γ(a) is expected to be
played non-cooperatively and hence that the selection x gives some Nash-equilibrium x(a) for the
game Γ(a). Such a selection should be viewed as an agreement between the players which is not
enforceable. Actually, we call x a Nash selection (undominated) iff for every a ∈ A, x(a) is some
Nash-equilibrium for Γ(a) (which is dominated by no other Nash-equilibrium).

We have now the following:

9. See Luce and Raiffa (1953, Chap. 13).
10. We consider the following stronger property in d’Aspremont and Gérard-Varet (1979). We say that a selection x is

uniformly incentive compatible iff it is incentive compatible for every α ∈ A. We show that if x is uniformly incentive
compatible then it is true that for every α ∈ A and every player i ∈ N , αi is a dominating strategy in the game
G(x;α).
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Theorem 3 If Γ(α) is a Stackelberg-solvable game and if for every i ∈ N and every ai ∈ Ai,
x(ai, α−i) is some undominated Nash-equilibrium for Γ(ai, α−i) then the selection x is incentive
compatible for α.

Proof Since x(α) is an undominated Nash-equilibrium for Γ(α), for every i ∈ N , Ui(x(α);αi)
= vi, where v is the Stackelberg-value of Γ(α) (by Theorem 1). Moreover, since ∀ i ∈ N, ∀ ai ∈ Ai,
x(ai, α−i) is a Nash-equilibrium for the game Γ(ai, α−i), we get: x(ai, α−i) ∈ Gi(α−i).

But then:

∀ i ∈ N, ∀ ai ∈ Ai, Ui(x(ai, α−i);αi) ≤ max
x∈Gi(α−i)

Ui(x;αi) = vi = Ui(x(α);αi).

By using Theorem 2, a corollary of Theorem 3 is that the same incentive compatibility property
holds at α whenever Γ(α) is an a-cooperative game.

Let us now consider the possibility of a converse result. We need for that matter a reasonable
condition ensuring the relative “richness” of each space Ai of possible reported values of the
parameters. In some sense to get the most general result, one should allow each player to announce
any kind of payoff function. However in the present context where we restrict our attention to
Nash selections, any player i, knowing the other players’ parameters α−i, cannot expect to reach
a point outside Gi(α−i). The following theorem is based on a condition taking into account these
considerations.

Theorem 4 Assume a selection rule x such that, for some α ∈ A and every i ∈ N , {x(ai, α−i) :
ai ∈ Ai} = Gi(α−i). If in addition the selection x is incentive compatible for α, then x(α) is a
Stackelberg-equilibrium in Γ(α).

Proof By the assumption on x, we can find, for the game Γ(α) and every i ∈ N , some ai ∈ Ai such
that

max
x∈Gi(α−i)

Ui(x;αi) = Ui(x(ai, α−i);αi).

Moreover, since x is incentive compatible for α,

Ui(x(ai, α−i);αi) ≤ Ui(x(α);αi).

But, by assumption,
∀ i ∈ N, x(α) ∈ Gi(α−i).

Therefore, x(α) is a Stackelberg-equilibrium for Γ(α).

It is clear that if we require the selection to be a Nash selection, then this converse result holds,
with a much weaker “richness” condition. Actually, the following characterization results by the
arguments used in Theorems 3 and 4.

Theorem 5 Assume an undominated Nash selection such that, for some α ∈ A and every i ∈ N ,

x(ai, α−i) = xi,

where ai ∈ Ai and xi is some Stackelberg-point for i in Γ(α). Then the selection x is incentive
compatible for α iff x is a Stackelberg-equilibrium in Γ(α).
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2.3. To illustrate the richness assumptions of Theorems 4 and 5, consider the particular case where
there are only two players and where every µi(·;αi) is a function. In this case we may draw a figure
of the kind of Figure 1. The condition used in Theorem 4 requires that player 1 can displace his best-
reply function µ1 so that nay point on µ2(x;α2) = G1(α2) may be obtained as a Nash-equilibrium.
The one used in Theorem 5 only requires that in addition to x∗ the Stackelberg-point x(1) may be
obtained. Similarly for player 2. It is easy to see then that the second condition is weaker than the
first. Returning to Example C we may check that the two conditions are satisfied.

Figure 1

Example C (continued) It is enough to consider any α ∈ A such that 1
2(B − α2) < (B − α1) <

3
2(B − α2) and let, say for player 1, a1 be such that

(B − a1) =
3

2
(B − α1)−

1

4
(B − α2).

Then, we get
1

2
(B − a2) < (B − a1) < 2(B − α2)

and
q∗1(a1, α2) = q

(1)
1 (α).

In conclusion, we should remark that a result like Theorem 5 is of the same family as Hurwicz
(1972) “Impossibility Theorem”: one is concerned with a Nash selection, the other with a Pareto
selection. Theorem 5 shows that, if we adop a “richness” assumption corresponding to a Nash
selection, then the class of games for which this selection is incentive compatible reduces to a very
particular subclass of all games, namely the class of Stackelberg-solvable games. Similarly, Hurwicz’s
argument can be interpreted by saying that, if we adopt a “richness” condition corresponding to a
Pareto selection, then the class of games for which this selection is incentive compatible reduces to
an even more restrictive subclass.

In this context, it is interesting to come back to the variable-threat bargaining example, since,
there, the Nash selection is also a Pareto selection.
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Example F (continued) Consider now the case where incomplete information is introduced. Suppos-
ing that every player i is described by some parameter αi belonging to some space Ai, we get here,
for every α ∈ A, a game Γσ(α) = {X1, X2, U

σ
1 (·;α1), U

σ
2 (·;α2)}. However, it is crucial to note

that if an arbitration scheme σ must satisfy conditions (i) and (ii) (see page 9), then it will directly
depend – in general – of the announced value a, i.e., σ will be a function from A1 ×A2 ×X1 ×X2

to X . The main consequence of this fact is that in general, for every player i the correspondence
Gi will not only be a function of a−i, the other player’s parameter, but also a function of ai, his
own parameter. Hence Theorem 3 cannot be applied in general. Of course, in some particular
situations, such a problem could be avoided. For example, noting that conditions (i) and (ii) are
purely ordinal properties on the set X , we could let, for every i ∈ N , Ai be the set of all monotone
strictly increasing transformation from R to itself such that, for every transformation αi ∈ Ai and
every x ∈ X

Ui(x;αi) = αi(ui(x)),

where ui(·) is some given function from X to R. Then, any scheme σ satisfying (i) and (ii) for some
arbitrary α ∈ A necessarily satisfies (i) and (ii) for any other a ∈ A. But, this provides a trivial
example since such arbitration schemes are constant in α ∈ A. Moreover, as shown by Shapley
(1969), any arbitration scheme which would depend only on the utility payoffs of the players cannot
be invariant to any pair of order-perserving transformations of the two players payoffs. However, this
is not equivalent to the impossibility of finding an arbitration scheme which satisfies (i) and (ii) and
depends on α ∈ A in such a way that the argument of Theorem 3 still holds.

Appendix: Computations for Example C

The “reaction curves” are described by

q̂1(q2) =
B − a1

2b
− 1

2
q2, q2 <

B − a1
b

,

= 0, otherwise.

q̂2(q1) =
B − a2

2b
− 1

2
q1, q1 <

B − a2
b

,

= 0, otherwise.

Now to compute the Stackelberg-point for player 1 in the game Γ(a), we must find the quantity q(1)1

which maximizes

U1(q1, q̂2(q1)) = (B − a1)q1 −
(
B − a2

2

)
q1 −

b

2
q21, q1 ≤ (B − a2)/b,

= (B − a1)q1 − bq21,
(B − a2)

b
≤ q1 ≤ B/b.

We see that for every a, the function U1(·, q̂2(·)) is continuous in q1. Now we shall consider three
cases:

(i) (B − a1)/2 < (B − a1) < 2(B − a2).
In this case, for (B − a2)/b ≤ q1 < B/b,

U ′1(q1, q̂2(q1)) = (B − a1)− 2bq1 ≤ (B − a1)− 2(B − a2) < 0
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and hence U1(q1, q̂2(q1)) is decreasing for q1 ≥ (B − a2)/b.
Therefore in this case: 0 ≤ q(1)1 (a) < (B − a2)/b.
Now the function [(B−a1)q1− (B−a2/2)q1− (b/2)q21] is strictly concave and its maximum
is for q1 = (B − a1)/b − (B − a2)/2b, which is in this case both positive and less than
(B − a1)/b. Therefore q(1)1 = (B − a1)/b− (B − a2)/2b.

(ii) (B − a2)/2 ≥ (B − a1).
Again U1(q1, q̂1(q1)) is decreasing for q1 ≥ (B − a2)/B. In addition[

(B − a1)−
(
B − a2

2

)]
q1 −

b

2
q21 ≤ 0,

and so
U1(q1, q̂2(q1)) ≤ 0, ∀ q1.

Therefore q(1)1 = 0.

(iii) (B − a1) ≥ 2(B − a2).
The maximum value (for q1 ≥ 0) of [(B − a1)q1 − (B − a2/2)q1 − (b/2)q21] is (1/2b)[(B −
a1) − (B − a2)/2]2. On the other hand the function [(B − a1)q1 − bq21] is strictly concave,
obtains its maximum for q1 = (B − a1)/2b and reaches there the value [(1/2b)(B − a1)2]
which, in this case, is greater than (1/2b)[(B−a1)−(B−a2)/2]2. Hence q(1)1 = (B−a1)/2b.
In conclusion we get

q
(1)
1 =

(B − a1)
2b

; q
(1)
2 = 0 if (B − a1) ≥ 2(B − a2)

q
(1)
1 = 0; q

(1)
2 =

(B − a2)
2b

if
1

2
(B − a2) ≥ (B − a1)

q
(1)
1 =

1

2

[
(B − a1)−

(B − a2)
2

]
; q

(1)
2 = 0; if

3

2
(B − a2) < (B − a1) < 2(B − a2)

q
(1)
1 =

1

b

[
(B − a1)−

(B − a2)
2

]
;

q
(1)
2 =

1

2b

[
3

2
(B − a2)− (B − a1)

]
, otherwise.
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Claude d’Aspremont and Louis-André Gérard-Varet. Incentives and incomplete information. Journal
of Public economics, 11(1):25–45, 1979.

William Fellner. Competition among the Few. Kelley, New York, 1949.

John C Harsanyi. Games with incomplete information played by ‘Bayesian’ players. Parts I–III.
Management science, 14:158–182, 320–334, 486–502, 1967-68.

Leonid Hurwicz. On informationally decentralized systems. In R. Radner and C.D. McGuire, editors,
Decision and Organization. North Holland, Amsterdam, 1972.

Ehud Kalai and Robert W Rosenthal. Arbitration of two-party disputes under ignorance. International
Journal of Game Theory, 7(2):65–72, 1978.

R Duncan Luce and Howard Raiffa. Games and decisions: Introduction and critical survey. L.
Wilsey, New York, 1957.
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