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Abstract
The problem of incentives for correct revelation in a collective decision model is presented as a

game with incomplete information. Two approaches to incomplete information are used, a first
where the individual beliefs are not introduced and a second where they are. In the first approach
it is recalled that the mechanisms for which the solution to the incentive problem is in dominant
strategies lead in general to a budgetary problem for the central agency. For these mechanisms a
uniqueness property is demonstrated. In the second approach it is shown that if a compatibility
condition is imposed on the individual beliefs and if a Bayesian solution is given to the incentive
problem, then it is possible to avoid the budgetary problem.

1. Introduction

In a collective decision context, a selection rule may be called decentralized if it relies, at least
partially, on the information that each individual participant holds. With such a rule, some participant
may find in his self-interest to distort the information on which is based the selection, in a way
undetectable by the others.

Historically this incentive problem has been brought up in the theory of Public Expenditure and
Taxation (see Wicksell, 1896; Lindahl, 1919; Samuelson, 1969) and was also considered, more or
less explicitly, in some discussions concerning the Lange-Lerner economic model. However, as well
established by Hurwicz (1972), this problem may arise for any collective decision rule preserving
some kind of informational decentralization.

In this paper we shall argue that the problem of incentives for correct revelation should be viewed
as a game with incomplete information (see Harsanyi, 1967-68). That it could be viewed as a game
was already recognized by Samuelson (1969) and non-cooperative game-theoretic concepts were
introduced by Drèze and de la Vallée Poussin (1971) and Hurwicz (1971). In Section 2, we shall in
fact introduce two approaches to incomplete information.

The first approach, which does not take explicitly into account the partial information that
each participant may have concerning the others, is developed in Section 3. The results presented
there are typically based on a class of transfer schemes among participants with a strong incentive
property, which was analyzed by several authors and which leads in general to the budgetary problem
of balancing the transfers. In Section 4, the second approach, in which the participants’ beliefs
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concerning each other are introduced, provides a particular way for solving the budget problem
whenever these beliefs satisfy a compatibility condition and only a Bayesian incentive property is
required.

2. The model

2.1 The basic collective decision problem

We shall consider a set N of n individual agents or players plus a special agent called the central
agency. To define the collective decision problem, let us assume that there exists a subset X of
Rm describing all possible physical outcomes for the individual agents and which form the set of
alternatives.1 Assume also the existence of a commodity called money. The choice of an outcome
x ∈ X is supposed to be the responsibility of the central agency which has to define simultaneously a
vector y = (y1, . . . , yi, . . . , yn) ∈ Rn of monetary transfers for all individual agents. In the process
of selecting an outcome and of defining a vector of transfers the central agency is restricted by the ‘a
priori information specifications’ and by the rules of a given ‘mechanism.’

2.2 The a priori information assumptions

Each individual agent i ∈ N is supposed to be described by a k-dimensional vector of characteristics
belonging to Rk. When αi is the value of agent i’s characteristics, we say that agent i is of type
αi. Furthermore, to each agent i ∈ N , we associate a function Vi(·;αi) from Rm+1 to R such that
Vi(x, yi;αi) denotes the payoff, for player i, in the situation where x ∈ X is the outcome selected
and yi ∈ R is his monetary transfer. For the following, we shall actually restrict to the case where,
for every i ∈ N , there exists a real-valued function2 Ui(·;αi) such that, for every x ∈ X and every
yi ∈ R:

Vi(x, yi;αi) = Ui(x;αi) + yi.

This separability requirement amounts, in game-theoretic terms, to admit unrestricted side-payments
with full-transferability.

In decentralized contexts, to which we want to restrict our attention, it is supposed that every
agent has incomplete information concerning the types αi, except his own type, which is his private
information. Indeed we assume that every agent only knows that the type αi of any other agent i
belongs to some space Ai ⊆ Rk, which is the space of descriptions of all possible types of agent i.
All the sets Ai are assumed to be of common knowledge,3 in the Aumann (1975) sense, meaning that
no agent can consciously disagree on what they are. Furthermore we assume that the functions Vi
and Ui are respectively defined on X × R×Ai and X ×Ai and are of common knowledge. In the
language of probability theory, the type of agent i is for every other agent a random phenomenon and
Ai is its sample space.

In this incomplete information framework, we introduce strategic considerations by allowing
some kind of communication process between the agents. Specifically we assume that each agent i
has to announce to the other agents some type ai ∈ Rk as being his own type αi. We shall call such

1. The set X may actually be interpreted as being the set of outcomes associated to joint strategies in a game or in an
‘organization form’ as defined by Groves (1975). It may also be the set of all ‘possible public projects’ in a public
good allocation problem as studied by Green and Laffont (1976).

2. Functions Ui are interpreted, according to the model considered, as utilities or profits.
3. Clearly player i’s payoff function is fully known only when his type αi is known.
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an announcement by agent i a message of agent i. Moreover, as a plausibility condition, we shall
require that every individual message ai belongs to the space Ai of possible types. Hence Ai is both
the ith sample space and the message space of individual i.

2.3 Definition of a mechanism

Let {Ai; i ∈ N} be a given family of sets of messages of the individual agents. We will denote
by A =×i∈NAi the set of all n-tuples a = (a1, . . . , an) of individual messages and by A−i =

×j∈N,j 6=iAi the set of all (n−1)-tuples (a1, . . . , ai−1, ai+1, . . . , an) of individual messages. Before
sending any message to the central agency each individual agent is supposed to know the mechanism
ruling the agency behavior. Formally, we call mechanism any function m = (d, t) from A to X ×Rn
where:

1. d is a function fromA toX called decision rule and such that d(a) = x is the outcome selected
by the central agency whenever a ∈ A is the n-tuple of messages received from the individual
agents.

2. t is a function from A to Rn called transfer scheme and such that t(a) = (t1(a), . . . , tn(a)) is
the vector of individual transfers yi = ti(a) determined by the central agency whenever a ∈ A
is the n-tuple of messages received from the individual agents.

In the following, we shall restrict the set of all possible mechanisms to a certain admissible subset
M . A first requirement for M that we shall use in most results is an outcome efficiency requirement:

∀ a ∈ A, d(a) ∈ P(a)
def
=

{
x∗ ∈ X :

∑
i∈N

Ui(x
∗; ai) = max

x∈X

∑
i∈N

Ui(x; ai)

}
.

For any m (or d) satisfying this condition we shall say that m (or d) is outcome efficient.
In order for such a requirement to be meaningful, we shall impose one of the following alternative

regularity hypotheses:

• H1: X is compact and ∀ a ∈ A,
∑

i∈N Ui(·; ai) is upper semicontinuous on X .

• H2: X is open convex and ∀a ∈ A,
∑

i∈N Ui(·; ai) is a differentiable strictly concave function
having a critical point in X .

Condition H1 implies that, for every a ∈ A, P(a) 6= ∅ and condition H2 ensures in addition that
P(a) is single-valued. Other conditions could be used.

2.4 The communication game: Alternative approaches to incomplete information

Suppose that a mechanism m ∈M has been chosen and that α ∈ A is the n-tuple of the individual
agents’ types. A communication process between the individual agents and the center can be
formalized as an n-person game in normal form4 conditional to α ∈ A. In this game, the strategy
space of each i ∈ N is his message space Ai. Given α ∈ A the payoff functions are:

∀ i ∈ N, ∀ a ∈ A,Wm
i (a;αi)

def
= Vi(m(a);αi)

= Ui(d(a);αi) + ti(a).

4. See (Luce and Raiffa, 1957, p. 157).
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Thus, for every α ∈ A, we have the normal form game:

Γm(α) = {{Ai; i ∈ N}, {Wm
i (·;αi); i ∈ N}}.

However, because of the incomplete information framework, every player ignores what game
Γm(α) is to be played. Hence, when he wants to characterize the behavior of any other player j,
player i must consider not only what message aj player j announces but also what type αj could be
player j’s true type.

This consideration is essential in the formulation of the incentive problem that will be examined
in the subsequent sections. Indeed the question will be to determine whether every player has interest
to reveal his true type. In this context, every player may want to characterize, for every other player,
the particular behavior consisting in revealing his true type.

For this reason, we shall introduce a more sophisticated strategy concept. For every i, we
introduce the notion of a normalized strategy of player i to be a decision rule a∗i associating a unique
strategy choice to each of his possible types. Formally a∗i is a function from Ai to Ai. We denote A∗i
the set of all admissible normalized strategies for i. The strategy, consisting in declaring the true
value of his parameter in the communication game, is a normalized strategy for each player.

Now to treat the incentive problem we shall distinguish two approaches, each one associated to a
different definition of the communication process. The first approach, treated in Section 3, considers
that, for every player i ∈ N , the other players’ space of types A−i is a space of states of nature for
which player i satisfies, as a decision-maker, the ‘complete ignorance’ postulate (Luce and Raiffa,
1957, p. 294). Let, for m ∈ M , G(m) = {{Γm(α);α ∈ A}, {A∗i ; i ∈ N}}. According to the first
approach, all the games belonging to G(m) have to be considered simultaneously by all agents,
i.e. by the players and by the central agency, for every matter related to the mechanism m ∈ M .
Consequently, we say of G(m) that it is the standard form of the communication game associated to
the mechanism m ∈M under the complete ignorance postulate.

The second approach, treated in Section 4, considers that every player i, whatever his type
αi ∈ Ai, has some ’beliefs’ concerning the other types. We shall assume5 that the beliefs of player i
are represented by a real-valued function pi defined over B−i×Ai, where B−i is the Borel σ-algebra
on A−i, and such that for every αi ∈ Ai, pi(· | αi) is a probability on (A−i, B−i) with fulll support.
All functions pi are of common knowledge. However, player i beliefs are fully known only when his
type αi ∈ Ai is also known.

In this model, we may associate to a mechanism m ∈M not only the family G(m) of games,but
also the family {pi; i ∈ N} of beliefs. We get the standard form of the communication game
associated to the mechanism m ∈M under the (Bayesian) probabilistic postulate6 which may be
denoted:

Γ(m) = {{Γm(α), α ∈ A}, {A∗i ; i ∈ N}, {pi; i ∈ N}}.

The basic difference with the complete ignorance framework is that players have now beliefs
about which one is the true game in G(m). Notice that the central agency, which is not a player, does
not have any beliefs.

5. In Section 4, we shall see that some additional assumptions should be put on these functions pi like requiring that
pi(· | αi) be discrete or, more generally, that pi be a transition probability between the spaces (Ai, Bi) and (A−i, B−i)
(see Neveu, 1970, p. 69), where Bi is the Borel σ-algebra on Ai.

6. As introduced by (Harsanyi, 1967-68, Part 1, p. 72). Notice that Γ(m) is not a normal form game.
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3. Incentives under the complete ignorance postulate

Let us consider first the case where the incomplete information game which formalizes the communi-
cation process associated to a mechanism m ∈M is defined under the (nonprobabilistic) complete
ignorance postulate.

The study of the solution of the incentive problem will result from the analysis of the behavior of
the players in the game G(m).

3.1 Incentive and strongly incentive compatible mechanisms

Take any mechanism m ∈M and consider the communication game G(m) associated to m under
the complete ignorance postulate. For notational convenience we let: ∀ a ∈ Rnk, ∀ i ∈ N , ∀ai ∈ Rk,
(ai, a−i) = (a1, . . . , ai−1, ai, ai+1, . . . , an),

A∗ = ×
i∈N

A∗i , a
∗(α) = (a∗1(α1), a

∗
1(α2), . . . , a

∗
n(αn)),

A∗−i = ×
j∈N
j 6=i

A∗j , a
∗
−i(α−i) = (a∗1(α1), . . . , a

∗
i−1(αi−1), a

∗
i+1, (αi+1), . . . , a

∗
n(αn)).

We say that an n-tuple of normalized strategies a∗ ∈ A∗ is a Nash Equilibrium (locally) for some
α ∈ A iff a∗(α) is a Nash Equilibrium for the game Γm(α), i.e.

∀ i ∈ N, ∀ ai ∈ Ai,Wm
i (ai, a

∗
−i(α−i);αi) ≤Wm

i (a∗(α);αi).

An n-tuple a∗ ∈ A∗ is a uniform equilibrium iff it is a Nash equilibrium for every possible α ∈ A. It
is clear now that the notion of normalized strategy is needed here so that each player can characterize
the behavior of the others. We denote by E(m) the subset of A∗ of all uniform equilibria for the
game G(m).

With these notions we are able to define a first solution concept to the incentive problem (due
primarily to Hurwicz, 1972). Define the particular normalized strategy â∗i for player i by

∀αi ∈ Ai, â∗i (αi) = αi.

This is the normalized strategy, for player i, consisting in always revealing his true type. We say
that the mechanism m is (locally) incentive compatible for some α ∈ A iff â∗ is a Nash equilibrium
for that α. Of course one is generally interested to show that this local property holds for a large
subset of A. For this reason, we say that a mechanism m is incentive compatible iff it is incentive
compatible for every α ∈ A, i.e. α̂∗ ∈ E(m).

Some authors7 have introduced a stronger concept of incentive compatibility. To introduce this
other concept we recall that a dominant strategy for any player i for a game Γm(α) is a strategy
ai ∈ Ai such that: ∀a−i ∈ A−i,∀ ai ∈ Ai, Wm

i (ai, a−i;αi) ≤ Wm
i (ai, a−i;αi). We say that an

n-tuple a∗ ∈ A∗, is a dominant uniform equilibrium iff, for every α ∈ A, every a∗i (αi) is a dominant
strategy for player i. We denote by ED(m) the subset of A∗ of all dominant uniform equilibria
for the game G(m). Then we may say that a mechanism m is strongly incentive compatible iff
â∗ ∈ ED(m).

It is clear that this concept of incentive compatibility is stronger than the previous one, since, for
every mechanismm, ED(m) ⊆ E(m). However under the plausibility condition we have introduced
we get:

7. See, for instance, Groves (1973, 1975), Groves and Loeb (1975) and Green and Laffont (1976).
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Theorem 1 Any mechanism m ∈M is strongly incentive compatible iff it is incentive compatible.

Proof We only prove sufficiency. If m ∈M is incentive compatible we may write:

∀ i ∈ N, ∀αi ∈ Ai, ∀α−i ∈ A−i,∀ ai ∈ Ai,Wm
i (ai, â

∗
−i(α−i);αi) ≤Wm

i (â∗(α);αi).

This implies:

∀ i ∈ N, ∀αi ∈ Ai, ∀ a−i ∈ A−i, ∀ ai ∈ Ai,Wm
i (ai, a−i(α−i);αi) ≤Wm

i (αi, a−i;αi),

i.e. m is strongly incentive compatible.

3.2 A class of strongly incentive compatible mechanisms and the budget problem

We say of a mechanism m ∈M that it is a distribution mechanism iff the transfer scheme is such
that:

∀ i ∈ N, ∀ a ∈ A, ti(a) =
∑
j∈N
j 6=i

Uj(d(a); aj)− fi(a),

where fi is, for every i ∈ N , a real-valued function defined overA. In this case player i ∈ N receives
from (pays to) the central agency the difference between the amounts

∑
j∈N,j 6=i Uj(d(a); aj) and

fi(a) both defined in terms of the declared types and of the corresponding decision rule. The n-tuple
(f1, . . . , fi, . . . , fn) is a distribution rule. In particular, a distribution rule is said to be discretionary
iff:

∀ i ∈ N, ∀ a−i ∈ A−i,∀ ai ∈ Ai,∀ a′i ∈ Ai, f(ai, a−i) = fi(a
′
i, a−i).

In that case, for every player, the distribution rule is constant with respect to the messages that
the player sends to the agency. Accordingly, we shall say of a mechanism that if a discretionary
mechanism whenever it is a distribution mechanism with discretionary distribution rule.

We are interested by mechanisms which are simultaneously outcome efficient and discretionary.
(They are sometimes called Groves-mechanisms.8) The reason for restricting to this class of mecha-
nisms is that it turns out to coincide with the class of strongly incentive mechanisms. More precisely,
we have the characterization resulting from the next two theorems:9

Theorem 2 (a) If H1 holds, then any mechanism which is outcome efficient and discretionary is
strongly incentive compatible. (b) If H1 holds, any mechanism which is strongly incentive compatible
and outcome efficient is discretionary.

Note that, by Theorem 1, Theorem 2 characterizes also incentive compatible mechanisms.
The above result is clearly due to the structure of the transfers in a discretionary mechanism.

However these transfers are made through the budget of the central agency. Hence, an important

8. This terminology which is used by Green and Laffont (1976, 1977) is based on Groves (1973) and Groves and Loeb
(1975) papers. Groves mechanisms are in fact analogous to Vickrey (1961) and Clarke (1971) mechanisms and
identical to Smets (1973) compensation principle.

9. Theorem 2(a) is proved by Groves and Loeb (1975) and Theorem 2(b) is proved by Green and Laffont (1977). Both of
them are presented in Groves (1975) and Green and Laffont (1976).
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consideration is to know whether the structure of the transfers makes it possible for the agency to
balance its budget. More generally we shall say that a mechanism m = (d, t) is budget balancing iff:∑

i∈N
ti(·) = 0.

The question is therefore to know whether an outcome efficient discretionary mechanism can be
budget balancing. However, as noted in Groves and Loeb (1975) the answer is often negative10

except when the utility functions are of a particular quadratic type.
In Groves and Ledyard (1977) model of a general equilibrium economy with public goods, where

the utility functions are not supposed to be separable but in which the agents are only required
to communicate marginal willingness to pay functions, the budget problem is similarly treated by
quadratic approximation.

In a partial equilibrium approach with only two alternative outcomes, Green and Laffont (1976)
assume that the willingness to pay individual values are randomly sampled from a continuous
distribution of a given law.11 With such an assumption, they show that the budget differences, in the
strongly incentive compatible mechanism they use, may become negligible in expected value when
the sample size is increased.

In Section 4, we shall treat the budget problem in an alternative way by using the Bayesian
approach.

3.3 Almost strictly incentive compatible mechanisms

It is clear from the definitions that even for incentive compatible mechanisms there may be other
uniform equilibria, for the corresponding game G(m), than the truth normalized strategy n-tuple
â∗. The simplest way to solve this problem would be to restrict oneself to mechanisms for which
â∗ is the only uniform equilibrium for the game G(m). Without being so restrictive, we define a
mechanism to be almost strictly incentive compatible iff: (i) â∗ ∈ E(m), (ii) ∀ a∗ ∈ E(m),∀α ∈ A,
d(â∗(α)) = d(a∗(α)). This means that for any other uniform equilibrium in the game the outcome
remains unchanged. Now, we have the following theorem.

Theorem 3 If H2 holds, then any mechanism which is outcome efficient and discretionary is almost
strictly incentive compatible.

Proof Suppose m = (d, t) is outcome efficient and discretionary. Then we have the following three
facts:

∀ a∗ ∈ E(m),∀α ∈ A,∀ i ∈ N,Wm
i (a∗(α);αi) = Wm

i (αi, a
∗
−i), αi). (1)

Indeed, since â∗ ∈ ED(m) by Theorem 1, we have

∀ a∗ ∈ A∗,∀α ∈ A, ∀ i ∈ N,Wm
i (αi, a

∗
−i(α−i);αi) ≥Wm

i (a∗(α);αi),

and, by definition,

∀ a∗ ∈ E(m), ∀α ∈ A,∀ i ∈ N,Wm
i (a∗(α);αi) ≥Wm

i (αi, a
∗
−i(α−i);αi).

∀ a∗ ∈ E(m), ∀α ∈ A,∀ i ∈ N, d(αi, a
∗
−i(α−i)) = d(a∗(α)).

(2)

10. Proposition 4, p.27, in d’Aspremont and Gérard-Varet (1975) and Theorem 9, p.39, in Green and Laffont (1976)
demonstrate for different particular cases, the impossibility of having a budget balancing outcome efficient discretionary
mechanism.

11. See also Green et al. (1976).
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Indeed, since m is defined by a discretionary distribution rule, (1) is equivalent to:

∀a∗ ∈ E(m), ∀α ∈ A,∀ i ∈ N,Ui(d(a∗(α));αi) +
∑
j 6=i

Uj(d(a∗(α)); a∗j (αj))

=Ui(d(αi, a
∗
−i(α−i));αi) +

∑
j 6=i

Uj(d(αi, a
∗
−i(α−i)); a

∗
j (αj)).

Hence, since by H2 the function Ui(x;αi) +
∑

j 6=i Uj(x; a∗j (αj)) has a unique maximum, we get
(2).

∀ a∗ ∈ E(m),∀α ∈ A, d(a∗(α)) = d(α). (3)

Indeed, by H2 and (2), ∀a∗ ∈ E(m), ∀α ∈ A, ∀ i ∈ N , the first derivative DUi(d(a∗(α));αi) =
−
∑

j 6=iDUj(d(a∗(α)); a∗j (αj)) = DUi(d(a∗(α)); a∗i (αi)).
Hence: ∀ a∗ ∈ E(m), ∀α ∈ A,∑

i∈N
DUi(d(a∗(α));αi) =

∑
i∈N

DUi(d(a∗(α)); a∗i (αi)) = 0.

Therefore, by H2 again, (3) follows.

4. Incentives under the Bayesian postulate

We want now to turn to the case where for any mechanism m ∈ M the behavior of the individual
agents satisfies the Bayesian postulate. Accordingly the relevant standard form of the communication
game is Γ(m) which includes the players’ beliefs. The concept of incentive compatibility may also
be reformulated since each player is now supposed to maximize a mathematical expectation of his
payoffs in terms of his subjective probability.

4.1 Bayesian and strongly Bayesian incentive compatible mechanisms

In a game Γ(m), the message of every player i is going to be determined by his expected-payoff
conditional to αi and relative to the choice of normalized strategy by every other player. Hence we
shall write ∀ i ∈ N , ∀αi ∈ Ai, ∀ a∗−i ∈ A∗−i, ∀ai ∈ Ai,

W
m
i (ai, a

∗
−i;αi) =

∫
A−i

Wm
i (ai, a

∗
−i(α−i);αi)pi(dα−i | αi)

=

∫
A−i

[Ui(d(ai, a
∗
−i(α−i));αi) + ti(ai, a

∗
−i(α−i))] · pi(dα−i | αi).

In order for such an expression to be well defined we shall add a measurability restriction (R):
every message space must be bounded and measurable and all the normalized strategies, the decision
rules and the transfer schemes are restricted to be measurable functions.

Under the measurability assumption, we may define a weaker notion of equilibrium for the
communication game.

We shall say that a Bayesian equilibrium for Γ(m) is an n-tuple of normalized strategies a∗ ∈ A∗
such that

∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai,W
m
i (ai, a

∗
−i;αi) ≤W

m
i (a∗i (αi), a

∗
−i;αi).
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We denote by B(m) the subset in A∗ of all Bayesian equilibria for Γ(m)
Notice that, as in the complete ignorance case (see 3.1), the equilibrium notion is defined with

respect to every possible individual type. Consider the n-tuple of normalized strategies â∗ ∈ A∗ (the
‘truth’ strategies) such that: ∀ i ∈ N , ∀αi ∈ Ai, â∗i (αi) = αi.

We now say of a (measurable) mechanism m that it is Bayesian incentive compatible iff â∗ ∈
B(m). Clearly this is defined by the condition: ∀ i ∈ N , ∀αi ∈ Ai, ∀ ai ∈ Ai,

W
m
i (ai, â

∗
−i;αi) ≤W

m
i (αi, â

∗
−i;αi).

In other words, for every player i ∈ N and every possible type αi ∈ Ai, sending as a message
this information to the center dominates every other possible message ai ∈ Ai, whenever the other
players have presumably the same behavior.

Like in the complete ignorance case a stronger incentive compatible notion is obtained if such a
dominance property has to hold for every player whatever the behavior of the n− 1 other players. A
strategy a∗i ∈ A∗i is dominating for player i ∈ N iff:

∀αi ∈ Ai,∀ ai ∈ Ai, ∀ a∗−i ∈ A∗−i,
W

m
i (ai, a

∗
−i;αi) ≤W

m
i (a∗i (αi), a

∗
−i;αi).

An n-tuple of strategies a∗ ∈ A∗ dominating for every player is called a strong Bayesian equilibrium
for Γ(m). Let Bs(m) be the set of all strong Bayesian equilibria with respect to m ∈ M . We
may now say of a (measurable) mechanism m that it is strongly Bayesian incentive compatible iff
a∗ ∈ Bs(m), or:

∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai, ∀ a∗−i ∈ A∗−i,W
m
i (ai, a

∗
−i;αi) ≤W

m
i (αi, a

∗
−i;αi).

Now it is clear that if a (measurable) mechanism m is strongly incentive compatible then it is
Bayesian incentive compatible. In addition, we have:

Theorem 4 Under Assumption R, a mechanism m is strongly Bayesian incentive compatible if and
only if it is strongly incentive compatible.

Proof (1) Assumem is strongly Bayesian incentive compatible but not strongly incentive compatible,
i.e. ∀ i ∈ N , ∀αi ∈ Ai, ∀ a∗i ∈ A∗i , ∀ a∗−i ∈ A∗−i,∫

A−i

Wm
i (a∗i (αi), a

∗
−i(α−i);αi)pi(dα−i | αi)

≤
∫
A−i

Wm
i (αi, a

∗
−i(α−i);αi)pi(dα−i | αi),

but, ∃ i ∈ N , ∃αi ∈ Ai,∃ a−i ∈ A−i,∃ ai ∈ Ai such that:

Wm
i (ai, a−i;αi) > Wm

i (αi, a−i;αi).

Now define: ∀ k ∈ N , ∀αk ∈ Ak, a∗k(α) = ak. Clearly a∗k ∈ A∗k. Then

Wm
i (ai, a−i;αi) =

∫
A−i

Wm
i (a∗i (αi), a

∗
−i(α−i);αi)pi(dα−i | αi)

≤
∫
A−i

Wm
i (αi, a

∗
−i(α−i);αi)p(dα−i | αi) = Wm

i (αi, a−iαi),
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which is a contradiction.
(2) Assume m is strongly incentive compatible; then ∀ i ∈ N ; ∀αi ∈ Ai, ∀ a∗i ∈ A∗i , ∀a∗−i ∈

A∗−i,
Wm
i (a∗i (αi), a

∗
−i(α−i);αi) ≤Wm

i (αi, a
∗
−i(α−i);αi),∀α−i ∈ A−i.

Hence ∫
A−i

Wm
i (a∗i (αi), a

∗
−i(α−i);αi)p(dα−i | αi)

≤
∫
A−i

Wm
i (αi, a

∗
−i(α−i);αi)pi(dα−i | αi),

and m is strongly Bayesian incentive compatible.

As a corollary, we may get a theorem analogous to Theorem 3 since we know, by Theorem 2(b),
that every strongly incentive compatible mechanism, which is outcome efficient, is discretionary.

Corollary 1 If H2 and R hold, then any mechanism m which is outcome efficient and strongly
Bayesian incentive compatible is almost strictly incentive compatible.

4.2 Bayesian incentive compatible mechanisms and a solution to the budget problem

For any distribution mechanism satisfying R, we say that the associated distribution rule f is
subjectively discretionary iff:

∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai, ∀ a′i ∈ Ai,∫
A−i

fi(ai, α−i)pi(dα−i | αi) =

∫
A−i

fi(a
′
i, α−i)pi(dα−i | αi).

A subjectively discretionary mechanism is a distribution mechanism for which the associated distribu-
tion rule is subjectively discretionary. In contrast with discretionary distribution rules, the restriction
introduced here on f imposes only that, for every i ∈ N , the expected value of fi must be constant
with respect to i’s messages.

The interest we have for the class of subjective discretionary mechanisms comes not only from
the fact that it includes the class of discretionary mechanisms, but also because it is included in the
class of Bayesian incentive compatible mechanisms as shown by the next result paralleling Theorem
2a.

Theorem 5 Under Assumptions H1 and R, any mechanism m ∈M which is outcome efficient and
subjectively discretionary is Bayesian incentive compatible.

Proof By Assumption R the individual payoffs are well-defined. We want to show that for the
mechanism m:

∀ i ∈ N, ∀αi ∈ Ai, ∀ ai ∈ Ai, W
m
i (ai, â

∗
−i;αi) ≤W

m
i (αi, â

∗
−i;αi). (4)

Since m is outcome efficient: ∀α ∈ A, ∀ i ∈ N , ∀ ai ∈ Ai,

Ui(d(α);αi) +
∑
j∈N
j 6=i

Uj(d(α);αj) ≥ Ui(d(ai, α−i);αi) +
∑
j∈N
j 6=i

Uj(d(ai, α−i);αj),
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which implies:∫
A−i

Ui(d(α);αi)pi(dα−i | αi) +

∫
A−i

∑
j 6=i

Uj(d(α);αj)pi(dα−i | αi)

≥
∫
A−i

Ui(d(ai, α−i);αi)pi(dα−i | αi) +

∫
A−i

∑
j 6=i

Uj(d(ai, α−i);αj)pi(dα−i | αi).
(5)

Since m is subjectively discretionary:

∀ i ∈ N, ∀αi ∈ Ai,∀ ai ∈ Ai,∫
A−i

fi(αi, α−i)pi(dα−i | αi) =

∫
A−i

fi(ai, α−i)pi(dα−i | αi).
(6)

Clearly, in light of (6), (5) is equivalent to (4).

We now want to study the balanced budget problem. The first result we have concerning
this problem uses a strong assumption on the various beliefs of the individual players, called the
independence condition.12 It requires that for every player i:

∀αi ∈ Ai, ∀α′i ∈ Ai, pi(· | αi) = pi(· | α′i)
def
= πi.

This condition is, in terms of information, very restrictive since it implies in fact that the true beliefs
of any agent is of common knowledge.

Theorem 6 Let H and R hold. If the independence condition is satisfied, then the mechanism
m = (d, t), where d is any outcome efficient decision rule and t is such that, ∀ i ∈ N , ∀ a ∈ A,

ti(a) =

∫
A−i

[∑
j 6=i

Uj(d(a); aj)

]
πi(da−i)

− 1

n− 1

∑
j 6=i

∫
A−j

[∑
k 6=j

Uk(d(a); ak)

]
πj(da−j)

is both budget balancing and Bayesian incentive compatible.

Proof By construction
∑

i∈N ti(·) = 0, hence m is budget balancing. Also we may rewrite m as
the following distribution mechanism:

∀ i ∈ N, ∀ a ∈ A, fi(a) =
∑
j 6=i

Uj(d(a); aj)− gi(ai) + g−i(a−i),

where

gi(ai) =

∫
A−i

[∑
j 6=i

Uj(d(a); aj)

]
πi(da−i)

12. It has been shown in d’Aspremont and Gérard-Varet (1975) that a converse theorem to Theorem 5 holds if the
independence condition holds.

11



and
g−i(a−i) =

1

n− 1

∑
j 6=i

gj(aj).

Then we have: ∀α ∈ A, ∀ i ∈ N , ∀ ai ∈ Ai∫
A−i

fi(ai, α−i)πi(dα−i) =

∫
A−i

g−i(α−i)πi(dα−i),

which is a constant. Hence m is subjectively discretionary and so Bayesian incentive compatible by
Theorem 5.

Since the independence condition is a very restrictive sufficient condition it seems important to
establish whether or not it is also necessary for the result of Theorem 6 to hold. In this paper we
answer this question only in the finite case. Indeed, in that case, we may show that the result of
Theorem 6 holds for a much larger class than the class of independent beliefs.

Let, for every i ∈ N , the setAi be finite and for every αi ∈ Ai, pi(· | αi) be a discrete probability

of full support over A−i. For the following let also: ∀ i ∈ N , Ci
def
= {(ai, αi) ∈ Ai ×Ai : αi 6= ai},

and Λ
def
= {λ = (λ1, . . . , λi, . . . , λn): ∀ i ∈ N , λi ∈ RCi+ }. The compatibility condition we use in

the next theorem can be written as:
∀κ ∈ RA, if κ 6= 0 then there is no λ ∈ Λ such that, ∀ i ∈ N , ∀α ∈ A,

pi(α−i | αi)
∑
ai∈Ai
ai 6=αi

λi(αi, ai) = κ(α) +
∑
ai∈Ai
ai 6=αi

λi(αi, ai)pi(α−i | ai).

That this new condition is implied by the independence condition is immediate. In addition, the
following example ensures easily that the converse does not hold. For n = 2, let p1 and p2 satisfy:
∀α1 ∈ A1,∃α2 ∈ A2 such that

(i) ∀ a1 ∈ A1, a1 6= α1, p1(α2 | a1) > p1(α2 | α1) and

(ii) ∀ a2 ∈ A2, a2 6= α2, p2(α1 | a2) < p2(α1 | α2).

Indeed for any κ ∈ RA such that κ(α) 6= 0, for some α ∈ A, and for any λ ∈ Λ such that:

p1(α2 | α1)
∑
a1∈A1
ai 6=αi

λ1(α1, a1)−
∑
a1∈A1
ai 6=αi

λ1(α1, a1)p1(α2 | a1) = κ(α) 6= 0,

we must have ∑
a1∈A1
ai 6=αi

λ1(α1, a1) > 0.

Hence for α2 such that (α1, α2) satisfies (i) and (ii) we get:

p1(α2 | α1)
∑
a1∈A1
ai 6=αi

λ1(α1, a1)−
∑
a1∈A1
ai 6=αi

λ1(α1, a1)p1(α2 | a1) < 0,
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and
p2(α1 | α2)

∑
a2∈A2
a2 6=α2

λ2(α2, a2)−
∑
a2∈A2
a2 6=α2

λ2(α2, a2)p2(α1 | a2) ≥ 0.

We can now state our last theorem:

Theorem 7 Let H hold and, for every i ∈ N , let Ai be finite and pi be discrete. If the compatibility
condition is satisfied, then there exists an outcome efficient mechanism which is both budget balancing
and Bayesian incentive compatible.

Proof Let d be any outcome efficient decision rule. For every i ∈ N , we write:

∀ a ∈ A,∀ i ∈ N, ∀αi ∈ A, ui(a;αi)
def
= Ui(d(a);αi)

and

∀ ai ∈ Ai, ∀αi ∈ Ai, ui(ai, αi)
def
=

∑
α−i∈A−i

[ui(ai, α−i;αi)− ui(αi, α−i;αi)] · pi(α−i | αi).

Consider the following system of linear inequalities where z ∈ RnA is taken as variable:

∀ i ∈ N, ∀ (ai, αi) ∈ Ci,
∑

α−i∈A−i

[
zi(αi, α−i)−

1

n− 1

∑
j 6=i

zj(αi, α−i)

−zi(ai, α−i) +
1

n− 1

∑
j 6=i

zj(ai, α−i)

]
pi(α−i | αi) ≥ ui(ai, αi).

(7)

Clearly if the system (7) has a solution z ∈ RnA then the mechanism m = (d, t), where,

∀ a ∈ A, ∀ i ∈ N, ti(a)
def
= zi(a)− 1

n− 1

∑
j 6=i

zj(a),

is both budget balancing and Bayesian incentive compatible. Thus we have to show that the system
(7) is consistent. The proof is divided into three steps.

Step 1 ∀λ ∈ Λ, if

∀α ∈ A, ∀ i ∈ N, pi(α−i | αi)
∑
ai∈Ai
ai 6=αi

λi(ai, αi) =
∑
ai∈Ai
ai 6=αi

λi(αi, ai)pi(α−i | ai), (8)

then ∑
i∈N

∑
(ai,αi)∈Ci

λi(ai, αi)ui(ai, αi) ≤ 0. (9)

Proof of Step 1 Since d is outcome efficient, we have, ∀ i ∈ N , ∀αi ∈ Ai, ∀ ai ∈ Ai,

ui(ai, αi) ≤
∑

α−i∈A−i

[∑
j 6=i

uj(αi, α−i;αj)−
∑
j 6=i

uj(ai, α−i;αj)

]
× pi(α−i | αi).
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This implies that for any λ ∈ Λ we get:∑
i∈N

∑
(ai,αi)∈Ci

λi(ai, αi)ui(ai, αi)

≤
∑
i∈N

∑
αi∈A

∑
α−i∈A−i

∑
j 6=i

uj(αi, α−i;αj)pi(α−i | αi)
[ ∑
ai∈Ai
ai 6=αi

λi(ai, αi)

]

−
∑
i∈N

∑
ai∈Ai

∑
α−i∈A−i

∑
j 6=i

uj(ai;α−i;αj)

[ ∑
αi∈Ai
αi 6=ai

λi(ai, αi)pi(α−i | αi)
]

=
∑
i∈N

∑
αi∈Ai

∑
α−i∈A−i

∑
j 6=i

uj(αi, α−i, αj)

[
pi(α−i | αi)

∑
ai∈Ai
ai 6=αi

λi(ai, αi)−
∑
ai∈Ai
ai 6=αi

λi(αi, ai)pi(α−i | ai)
]
.

Assuming (8) we get (9).

Step 2 ∀λ ∈ Λ, if

∀ z ∈ RnA,
∑
i∈N

∑
(ai,αi)∈Ci

λi(ai, αi)
∑

α−i∈A−i

[
zi(αi, α−i)−

1

n− 1

∑
j 6=i

zj(αi, α−i)

− zi(ai, α−i) +
1

n− 1

∑
j 6=i

zj(ai, α−i)

]
pi(α−i | αi) = 0, (10)

then

∃κ ∈ RA,∀α ∈ A, ∀ i ∈ N, pi(α−i | αi)
∑
ai∈Ai
ai 6=αi

λi(ai, αi)

−
∑
ai∈Ai
ai 6=αi

λi(αi, ai)pi(α−i | ai) = κ(α). (11)

Proof of Step 2 Take z ∈ RnA such that for some k ∈ N and α0 ∈ A we have zk(α0) > 0 and
∀ j 6= k, ∀α 6= α0, zj(α0) = 0. Then, by (10), we get:

zk(α
0)

[
pk(α

0
−k | α0

k)
∑
ak∈Ak
ak 6=α

0
k

λk(ak, α
0
k)−

1

n− 1

∑
i 6=k

pi(α
0
−i | α0

i )
∑
ai∈Ai
ai 6=α0i

λi(ai, α
0
i )

−
∑
ak∈Ak
αk 6=α

0
k

λk(α
0
k, αk)pk(α

0
−k | αk) +

1

n− 1

∑
i 6=k

∑
αi∈Ai
αi 6=α0i

λi(α
0
i , αi)pi(α

0
−i | αi)

]
= 0

or, equivalently,

pk(α
0
−k | α0

k)
∑
ak∈Ak
ak 6=α

0
k

λk(a
0
k, α

0
k)−

∑
ak∈Ak
ak 6=α

0
k

λk(α
0
k, αk)pk(α

0
−k | αk)

=
1

n

[∑
i

pi(α
0
−i | α0

i )
∑
ai∈Ai
ai 6=α0i

λi(ai, α
0
i )−

∑
i

∑
αi∈Ai
αi 6=α0i

λi(α
0
i , αi)pi(α

0
−i | αi)

]
.
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Since the same argument holds for every k ∈ N and every α0 ∈ A, we may conclude that (10)
implies (11).

Step 3 By the compatibility condition, for any λ ∈ Λ, (11) implies (8).

Proof of Step 3 First we note that if λ ∈ Λ satisfies (11), then ∀ i ∈ N , ∀α ∈ A,∑
ai∈Ai
at 6=αt

λi(ai, αi)−
∑
ai∈Ai
at 6=ai

λi(αi, ai)

=
∑

α−i∈A−i

[
pi(α−i | αi)

∑
ai∈Ai
ai 6=αi

λi(ai, αi)−
∑
αi∈Ai
ai 6=αi

λi(αi, ai)pi(α−i | ai)
]

=
∑

a−i∈A−i

κ(α−i, αi)

=
∑

a−i∈A−i

[
pj(α−j | αj)

∑
aj∈Aj
aj 6=αj

λj(aj , αj)−
∑
aj∈Aj
aj 6=αj

λj(αj , aj)pj(α−j | aj)
]

=0.

Now suppose that λ ∈ Λ such that (11) holds but not (8). Then ∃κ ∈ RA

∀α ∈ A,∀ i ∈ N, pi(α−i | αi)
∑
ai∈Ai
ai 6=αi

λi(αi, ai)−
∑
ai∈Ai
at 6=αi

λi(αi, ai)pi(α−i | ai) = κ(α),

but κ 6= 0. But this contradicts the compatibility condition.

In summary, we thus get that, for any λ ∈ Λ, (10) implies (11) (by Step 2), (11) implies (8) (by
Step 3) and (8) implies (9) (by Step 1). Hence, ∀λ ∈ Λ, (10) implies (9). But this is a well-known
sufficient condition for system (7) to be consistent (see for example Fan, 1956, theorem 1).

The compatibility condition and the argument of Theorem 7 can be stated for the general class of
beliefs we have been considering previously. However to get a theorem analogous to Theorem 7 we
need to introduce an assumption like H2 (instead of H1) and to use some representation theorem of
functionals in terms of conjugate spaces. We propose to discuss this matter elsewhere.

5. Conclusion

The main contribution of this paper is to show that by using the Bayesian approach to incomplete
information, one may find mechanisms to solve efficiently a collective decision problem, which
ensure simultaneously incentive compatibility and budget equilibrium. This positive result however
relies on a compatibility condition which is imposed on the beliefs of the agents. Whether this
condition is not only sufficient but also necessary remains an open question the answer to which
would give a corresponding impossibility result.

The compatibility condition includes, as a particular case, the requirement of independence of
the players’ beliefs with respect to their own type. This independence condition implies that all
players’ beliefs are fully known. However, one can also consider it as associated to a statistical
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experiment, as (Green et al., 1976, p. 384) who assume that each of the individuals in the society
believes that all of the others are drawn independently from a normal population with zero mean.’13

More generally, on the basis of some preliminary empirical evidence, all agents may agree on some
class of individual beliefs satisfying some compatibility condition and ask the central agency to reject
any announcement outside this restricted class.
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