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Abstract

The purpose of this note is to show that the so-called Principle of Minimum Differenti-

ation, as based on Hotelling’s 1929 paper “Stability in Competition” is invalid.

The purpose of this note is to show that the so-called Principle of Minimum Differentiation,

as based on Hotelling’s 1929 celebrated paper (Hotelling [3]), is invalid. Firstly, we assert that,

contrary to the statement formulated by Hotelling in his model, nothing can be said about

the tendency of both sellers to agglomerate at the center of the market. The reason is that

no equilibrium price solution will exist when both sellers are not far enough from each other.

Secondly, we consider a slightly modified version of Hotelling’s example, for which there exists

a price equilibrium solution everywhere. We show however that, for this version, there is a

tendency for both sellers to maximize their differentiation. This example thus constitutes a

counterexample to Hotelling’s conclusions.

We shall first recall Hotelling’s model and notations. On a line of length `, two sellers A and

B of a homogeneous product, with zero production cost, are located at respective distances a

and b from the ends of this line (a+ b ≤ `; a ≥ 0, b ≥ 0). Customers are evenly distributed along

the line, and each customer consumes exactly a single unit of this commodity per unit of time,

irrespective of its price. Since the product is homogeneous, a customer will buy from the seller
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who quotes the least delivered price, namely the mill price plus transportation cost, which is

assumed linear with respect to the distance. Let p1 and p2 denote, respectively, the mill price

of A and B and let c denote the transportation rate.

The situation described above gives rise to a two-person game with playersA andB, strategies

p1 ∈ S1
def= [0,∞[, and p2 ∈ S2 = S1, and payoff functions given by the profit functions:

π1(p1, p2) = ap1 +
1
2

(`− a− b)p1 +
1
2c
p1p2 −

1
2c
p2
1, if |p1 − p2| ≤ c(`− a− b);

= ` p1, if p1 < p2 − c(`− a− b);

= 0, if p1 > p2 + c(`− a− b);

π2(p1, p2) = bp2 +
1
2

(`− a− b)p2 +
1
2c
p1p2 −

1
2c
p2
2, if |p1 − p2| ≤ c(`− a− b);

= ` p2, if p2 < p1 − c(`− a− b);

= 0, if p2 > p1 + c(`− a− b).

The profit function of seller A is illustrated in Figure 1 for a fixed value p2.

π1(ρ1,ρ2)

ρ2−c(  -a-b) 1ρ2+c(  +a-b)
2 2

ρ2+c(  -a-b) ρ
1

Clearly a particular feature of these profit functions is the presence of two discontinuities which

appear at the price where a whole group of buyers is indifferent between the two sellers.

A strategy p1 of player A is a best reply against a strategy p2 of player B when it maximizes

π1(·, p2) on the whole S1 for the given p2. Similarly for player B. A Nash-Cournot equilibrium

point is a pair (p∗1, p
∗
2) such that p∗1 is a best reply against p∗2 and vice-versa.

In the following proposition we shall treat the problem of existence of such an equilibrium

for every location a and b. More specifically, we shall derive necessary and sufficient conditions

on a and b for such an equilibrium to exist, and compute all equilibrium points.
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Proposition 1 For a + b = 1, the unique equilibirium point is given by p∗1 = p∗2 = 0. For

a+ b < 1, there is an equilibrium point, if and only if(
`+

a− b
3

)2

≥ 4
3
`(a+ 2b), (1)

(
`+

b− a
3

)2

≥ 4
3
`(b+ 2a), (2)

and, whenever it exists, an equilibrium point is uniquely determined by

p∗1 = c

(
`+

a− b
3

)
, (3)

p∗2 = c

(
`− a− b

3

)
. (4)

Proof. The case a+ b = ` is immediate. Then both sellers are located at the same place and,

as in Bertrand [1], there always exists an equilibrium uniquely determined by p∗1 = p∗2 = 0.

So let a + b < `. We shall begin by showing that any equilibrium must satisfy the condition

|p∗1 − p∗2| < c(`− a− b).

Suppose first on the contrary that (p∗1, p
∗
2) is an equilibrium but |p∗1 − p∗2| > c(` − a − b).

Then, one of the two sellers – the one who charges the strictly larger (and hence positive) price

– gets a null profit and so may gain by charging a positive price equal to the delivered price

of the other. But this contradicts the fact that (p∗1, p
∗
2) is an equilibrium. Suppose now that

|p∗1− p∗2| = c(`− a− b), say, for instance, p∗2− p∗1 = c(`− a− b). If p∗1 = 0, then the profit of A is

zero and so he would profit by charging a positive price less than p∗2 + c(`−a− b). If p∗1 > 0, two

cases may arise. Either A gets the whole market and so B, who charges a positive price, can

increase his profit by decreasing his price. Or A gets only a fraction of the market, i.e., q1 < `,

and it is then sufficient for A to charge a slightly lower price to capture the whole market and

make a larger profit: indeed for 0 < ε < (` − q1)p∗1/` we have π1(p∗1 − ε, p∗2) = `(p∗1 − ε) > q1,

p∗1 = π1(p∗1, p
∗
2). In any case we always get a contradiction. Accordingly any equilibrium (p∗1, p

∗
2)

must satisfy the condition |p∗1 − p∗2| < c(`− a− b).

A consequence of this condition is that, for any equilibrium (p∗1, p
∗
2), p∗1 must maximize ap1 +

1
2

(`− a− b)p1 + (1/2c)p∗2p1 − (1/2c)p2
1 in the open interval ]p∗2 − c(`− a− b), p∗2 + c(`− a− b)[,
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and similarly for p∗2. Taking first order conditions we get (3) and (4). Hence, we shall now

verify that the pair of prices given by (3) and (4) is indeed an equilibrium. Recall that to be

an equilibrium strategy p∗1 must maximize π1(p1, p
∗
2) not only in the above interval but on the

whole domain S1, and similarly for p∗2. Let us see that this is true only on a restricted set of

possible locations. Indeed, given a and b, for p∗2 to be an equilibrium strategy against p∗2, we

must have in particular that, for any ε > 0,

(?) π1(p∗1, p
∗
2) =

c

2

[
`+

a− b
3

]2

≥ `[p∗2 − c(`− a− b)− ε].

The right hand side of the inequality is the profit of A, should be quote a delivered price slightly

smaller than p∗2. But condition (?) can be rewritten as (1). By symmetry we get condition (2).

To show that conditions (1) and (2) are also sufficient for (p∗1, p
∗
2) to be an equilibrium it

remains only to check that they imply |p∗1 − p∗2| < c(`− a− b). This completes the proof or our

proposition.

Note in passing that if we consider only symmetric locations around the center (a = b), then

the necessary and sufficient conditions (1) and (2) reduce to a = b ≤ `/4. In other words, both

the duopolists must be located outside the quartiles to get a Cournot equilibrium in prices.

If conditions (1) and (2) are strictly verified, then, as noted by Hotelling, both ∂ π1(p∗1, p
∗
2)/∂a

and ∂π2(p∗1, p
∗
2)/∂b are strictly positive, which implies a tendency of both sellers towards the

center. But a major consequence of the preceding proposition is that, as far as the Cournot

equilibirum is taken as the market solution, nothing can be said on this solution when conditions

(1) and (2) are violated. Hotelling seems to be unaware of this difficulty while deriving the

implications of his model, and in particular the tendency of both sellers to agglomerate at the

center of the market.1 Indeed should conditions (1) and (2) be violated, i.e., should the firms

be located relatively close to each other, the Cournot equilibirum could no longer serve as a
1In footnote (8) of his paper, Hotelling remarks however that, for some values of a and b, the pair of prices

defined by (3) and (4) cannot be an equilibrium, but proposes then another pair of prices of an equilibrium. By our

proposition, we know that they are not. It seems that Hotelling has neglected to consider strategies through which

a merchant undercuts the delivered price of the other, and attracts to him the whole market. These strategies

are particularly advantageous when both merchants are close to each other.
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reference point since it no longer exists!2

Having reached this negative outcome, it seems natural to work out an example, which is

as close as possible to Hotelling’s one, but avoiding the difficulty exhibited above.3 If, for this

alternative example, the principle of minimal differentiation could be retrieved, the defect in

Hotelling’s argumentation would be immaterial. Unfortunately, this principle is invalidated by

the following reexamination.

A slightly modified version of Hotelling’s example for which there exists a price equilibrium

solution for any pair of locations (a, b) obtains if, in place of considering linear transportation

costs we assume that these costs are quadratic with respect to the distance, i.e., for any distance

x, transportation costs are given by cx2. Under this assumption, an easy computation leads to

the following expressions for the demand and profit functions:

q1(p1, p2) = a+
p2 − p1

2c(`− a− b)
+
`− a− b

2
, if 0 ≤ a+

p2 − p1

2c(`− a− b)
+
`− a− b

2
≤ `;

= `, if a+
p2 − p1

2c(`− a− b)
+
`− a− b

2
> `;

= 0, if a+
p2 − p1

2c(`− a− b)
+
`− a− b

2
< 0;

q1(p1, p2) = b+
p1 − p2

2c(`− a− b)
+
`− a− b

2
, if 0 ≤ b+

p1 − p2

2c(`− a− b)
+
`− a− b

2
≤ `;

= `, if b+
p1 − p2

2c(`− a− b)
+
`− a− b

2
> `;

= 0, if b+
p1 − p2

2c(`− a− b)
+
`− a− b

2
< 0;

π1(p1, p2) = p1 · q1(p1, p2) and π2(p1, p2) = p2 · q2(p1, p2). These profit functions ensure the

existence of a price equilibrium, whatever the locations a and b may be. It is indeed easily

checked that the pair of prices (p∗1, p
∗
2) defined by

p∗1 = c(`− a− b)
(
`+

a− b
3

)
, (5)

p∗2 = c(`− a− b)
(
`+

b− a
3

)
, (6)

2Here we only consider equilibrium with price strategies. However, it is easily verified that if each seller’s

strategy is a price location pair, which has to be chosen simultaneously, then again no Nash equilibrium exists.
3This example is particularly illustrative in regard to footnote (9) of Hotelling’s paper.
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is the unique Nash-Cournot equilibrium point for fixed a and b, and that this is true without

any condition on these location parameters. We verify however that, if we substitute these

equilibrium prices in the profit functions of both players, both ∂π1(p∗1, p
∗
2)∂a and ∂π2(p∗1, p

∗
2)/∂b

are negative! Consequently, at any given pair of locations, each merchant gains an advantage

from moving away as far as possible from the other.4

The preceding example, far from confirming the minimal differentiation principle, suggests

that this principle cannot be based on spatial competition. Certainly many comments derived

from Hotelling’s contribution should be carefully reexamined before taking them as granted.

The outcome of this note should not however be considered as too negative. Indeed, although

Hotelling’s example suggested the contrary, one should expect intuitively that product differ-

entiation must be an important component of oligopolistic competition. It seems to be clear

that oligopolists should gain an advantage by dividing the market into submarkets in each of

which some degree of monopoly would reappear.5 But this important subject would need more

imagination.

4In other terms, for the game where the strategies are the locations and the payoff functions the profits

π1(p∗1(a, b), p∗2(a, b)) and π2(p∗1(a, b), p∗2(a, b)) – which can be viewed as a sequential game where first locations,

and then prices, are chosen – the equilibrium locations are the two extremes. As a referee pointed out to us, Hay

[2] and Prescott and Visscher [5] use a similar sequential approach. In particular, Prescott and Visscher analyze

the existence problem by numerical methods in a revised Hotelling problem and find equilibrium locations “far

apart.” We should stress however that the existence is not restored simply because the discontinuities of the

demand functions are eliminated as, for example, by introducing the assumption of strictly convex transportation

costs. We have indeed worked out an example which verifies the latter assumption and does not possess any

equilibrium prices.
5An example of this advantage is studied in Jaskold Gabszewicz and Thisse [4] and Salop [6].

6



References
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