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Abstract
The notion of stability in the sense of Lyapunov is applied to economic dynamic processes of the

Champsaur-Drèze-Henry type.

Our purpose in this note is to fill a small gap in the literature concerning dynamic processes
in economic theory, of the type presented by Champsaur et al. (1977). Indeed, these authors do
not discuss stability in the sense1 of Lyapunov (1907). However, a recent result of Maschler and
Peleg (1976) on this kind of stability (presented in a discrete model) can easily be applied to both
continuous and discrete processes used in economics. We shall present this result for a very general
class of such processes and conclude with references to a few economic applications.

For our purpose a (set valued) dynamic system is simply a pair 〈X,φ〉, where X is a compact
subset of Rm and φ a correspondence from X to its nonempty subsets. Let T be a subset of
[0,∞) containing 0 and x0 an element of X . Then a φ-process starting at x0 is a pair of functions:
x(·) : T → X, ẋ(·) : T → Rm, such that: x(0) = x0 and, ∀ t ∈ T , ẋ(t) ∈ φ(x(t)). If
T = {0, 1, 2, . . . , } and ẋ(t) = x(t+1) then the process 〈x(·), ẋ(·)〉 is called discrete. If T = [0,∞),
if x(·) is absolutely continuous on any interval [0, τ ] in T , and ẋ(t) = dx(t)/dt for almost every
t in T , then the process 〈x(·), ẋ(·)〉 is called continuous.2 In the first case the dynamic system is
said to be discrete and in the second case to be continuous. In both cases, for any x0 ∈ X , the pair
〈x(·), x0〉 is called a φ-trajectory starting at x0.

Given a dynamic system 〈X,φ〉, a nonempty subset Q of X is said to be stable (in the sense of
Lyapunov) with respect to φ, if the following condition holds: For every neighborhood W of Q there
exists a neighborhood V of Q such that if x0 ∈ V and 〈x(·), x0〉 is a φ-trajectory starting at x0, then
x(t) ∈W for every t ∈ T . It is clear that any closed stable set Q is invariant in the sense that every
trajectory starting in Q remains in Q.

Let u : Rm → Rn be a continuous vector-valued function u = (u1, . . . , un). The dynamic
system 〈X,φ〉 is:

Monotone in u if ∀x0 ∈ X , ∀ 〈x(·), x0〉, a φ-trajectory starting at x0, ∀ {t, t′} ⊂ T , if t′ > t,
then u(x(t′)) ≥ u(x(t)).

Neutral in u if ∀x0 ∈ X , ∀ i ∈ {1, . . . , n}, ∃〈x(·), x0〉, a φ-trajectory starting at x0, such that
∀ j 6= i, j ∈ {1, . . . , n}, ∀ t ∈ T , uj(x(t)) = uj(x0).

∗. Econometrica, 47(3), 733-737, 1979.
1. As pointed out by Negishi (1962), this is the same as Samuelson’s stability of the second kind Samuelson (1947). The

term “stability in the sense of Lyapunov” is used by Arrow and Hahn (1971). Heal (1968) and Hori (1975) also use
this concept of stability.

2. See Champsaur et al. (1977, Section 5).
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Efficient in u if ∀x0 ∈ X , ∀〈x(·), x0〉, a φ-trajectory starting at x0, limt→∞ x(t) 6= ∅ and,
∀x ∈ limt→∞ x(t), @ y ∈ X such that u(y) � u(x).3

A result similar to the following was proved by Maschler and Peleg (1976) for discrete processes.
The argument in their proof is easily adapted to continuous processes and is reproduced in the
Appendix.

Proposition 1 If the dynamic process 〈X,φ〉 is monotone in a continuous function u = (u1, . . . , un)
from X to Rn, then, for every subset Y of X , the set Q(Y ) = {x ∈ X | ∃ y ∈ Y such that
u(x) ≥ u(y)} is stable.4

The condition Y = Q(Y ) is sufficient but not necessary for the stability of Y . To see this,
consider the continuous dynamic system 〈X,φ〉 where X = [0, 1] ⊂ R1 and φ(x) = 1− 2x. This
system is monotone in the function u(x) = x− x2 on [0, 1]. Then for any y ∈ [0, 12 ], the set [y, 12 ] is
stable, but Q(y) = [y, 1− y]. Note however that the range of u is the same over the set [y, 12 ] and
over the set [y, 1− y]; see Figure 1.
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This last property has some degree of generality. Indeed, as proved in the Appendix, we have:

Proposition 2 If the continuous dynamic system 〈X,φ〉 is monotone, neutral and efficient in the
continuous function u, then every closed invariant set Y verifies,5,6 u(Y ) = u(Q(Y )).

For discrete dynamic systems, this result does not hold in general as the following example
demonstrates. Let X and u = (u1, u2) be such that u(X) can be represented as in Figure 2. Let,
for any x ∈ X , φ(x) = {y ∈ X | u1(y) = u1(x) or u2(y) = u2(x) and @ z ∈ X such that
u(z) > u(y)}. The conditions of Proposition 2 are met, but, for any x0 ∈ X , Y = {x0} ∪ φ(x0) is

3. limt→∞ x(t) =def {y ∈ R
m | ∃ t1, . . . , tν . . . , limν→∞ x(tν) = y}. ∀u, v ∈ Rn, u � v means, ∀ i ∈ {1, . . . , n},

ui ≥ vi with strict inequality for at least one i.
4. In other terms, any Q such that, ∀ y ∈ Q, {x ∈ X | u(x) ≥ u(y)} ⊂ Q is stable.
5. For any function u on x and any set Z ⊂ X,u(Z) is the image of Z under u, i.e., u(Z) = {u(x) | x ∈ Z}.
6. A simple example of a continuous dynamic system which is monotone, neutral and efficient but where some closed

invariant subset is not stable, is the following. LetX = [0, 4] ⊂ R1 and φ(x) = −2[(x−1)(x−3)2+(x−3)(x−1)2].
This system is monotone and efficient in the function u(x) = min{(3/4), x− (x2/4)}. Indeed u(x) is maximal for
any x in the interval [1, 3]; also φ(x) > 0 for x < 1 and φ(x) < 0 for x > 3. Finally it is easy to see that the set {2}
is invariant and not stable since: φ(x) = 0 for x = 2, φ(x) < 0 for 1 < x < 2, and φ(x) > 0 for 2 < x < 3.
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closed invariant and clearly u(Y ) 6= u(Q(Y )); see Figure 2 where u(Y ) = {u(x0), a, b}, u(Q(Y ))
is the shaded area.
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Figure 2

Note however that the conclusion of the proposition holds true for discrete dynamic systems
with the same characteristics, if Y is required to be a closed invariant subset of X such that u(Y ) is
convex.7

These propositions apply to several dynamic processes in economic theory. For example, MDP-
processes, as introduced in Drèze and de la Vallée Poussin (1971), and Malinvaud (1970–1971), and
studied in Champsaur et al. (1977), are monotone and efficient in the utilities ui of the participating
agents. When the sharing rule for distributing the surplus is regarded as part of the process itself, they
are also neutral. (Note that if we consider only constant sharing rules, our definition of neutrality is
weaker than the one used in Champsaur, 1976). In this context, Proposition 1 implies in particular
that if x is Pareto optimal, then Q(x) = {x ∈ X | u(x) = u(x)} is stable. Under additional
assumptions – like strict quasi-concavity of the ui’s and convexity of X–Q(x) is a singleton and any
subset of Pareto optima is stable. Other examples are Edgeworth’s process as formulated by Uzawa
(see Negishi, 1962) which is monotone in individual utilities and Heal’s process (see the references
in footnote 1) which is monotone in the objective function of the planning authority.

Appendix

Proof of Proposition 1 Choose x ∈ X and let Q = Q({x}). Let W be a neighborhood of Q,
W 0 an open subset of W such that W 0 ⊃ Q; denote the complement of W 0 by −W 0. For every
y ∈ −W 0, the continuity of u allows us to construct, for some i ∈ {1, . . . , n} and some natural
number r, the open set

Wi,r =

{
x ∈ X | ui(x) < ui(x)−

1

r

}
,

such that y ∈ Wi,r. Since −W 0 is compact, it has a finite covering Wi1r1 ,Wi2r2 . . .Wik,rk . Also,
by the continuity of u, the following set V is a neighborhood of Q (since −Wikrk is a neighborhood
of Q),

V =

K⋂
k=1

(−Wikrk) = −

(
K⋃
k=1

Wikrk

)
⊂W 0 ⊂W.

But the monotonicity of 〈X,φ〉 implies: ∀x0 ∈ V , ∀〈x(·), x0〉, a φ-trajectory starting at x0,

∀ {t, t′} ⊂ T, t′ > t, uik(x(t
′)) ≥ uik(x(t)) ≥ uik(x)−

1

rk
, 1 ≤ k ≤ K.

7. Indeed one can use an argument very similar to the proof of Proposition 2.

3



Therefore, for every t ∈ T , x(t) ∈ V ⊂W . Hence Q is stable. The result follows from noticing that
for any Y ⊆ X , Q(Y ) = ∪y∈YQ({y}), and from the fact that any union of stable sets is stable.
Proof of Proposition 2 Let P = {x ∈ X | @y ∈ X such that u(y) � u(x)}. Take any closed
invariant subset Y of X . Let Q = Q(Y ) and assume u(Q) \ u(Y ) 6= ∅. Choose û ∈ u(Q) \ u(Y )
and suppose first that û /∈ u(P ). Since by definition of Q, there is y0 ∈ Y such that û � u(y0) we
may take i ∈ {1, . . . , n} such that ûi > ui(y0). By assumption there is a φ-trajectory 〈x1(·), y0〉
starting at y0, converging to P and such that: ∀ j 6= i, ∀ t ∈ [0,∞), uj(x1(t)) = uj(y0). Also, for
any x ∈ limt→∞ x1(t) ⊂ P , ui(x) > ûi. Hence by the continuity of ui ◦ x on [0,∞), there is some
t1 ∈ (0,∞) such that ui(x1(t1)) = ûi. In addition, ∀ t ∈ [0, t1], x1(t) ∈ Y . Indeed if, a contrario,
there was some t′ ∈ (0, t1] such that x1(t′) /∈ Y , then it would contradict the assumption that Y
is invariant. Now, let y1 = x1(t1). If û � u(y1) we may repeat the procedure by choosing some
other i ∈ {1, . . . , n} such that ûi > ui(y1) and denoting 〈x2(·), y1〉 the φ-trajectory starting at y1
such that uj(x2(t)) = uj(y1), ∀ j 6= i, and such that, for some t2 ∈ (0,∞), we get ui(x2(t2)) = ûi.
Again it is clear that ∀ t ∈ [0, t2], x2(t) ∈ Y . Letting y2 = x2(t2) we may start again. Eventually
at some stage k, we shall get û = u(yk) with yk ∈ Y , a contradiction to the assumption that
û ∈ u(Q) \ u(Y ).

So suppose now that û ∈ u(P ). By the preceding argument we know that there is y ∈ Y and
i ∈ {1, . . . , n} such that, ∀ j 6= i, uj(y) = ûj and ûi > ui(y). Again there is a φ-trajectory 〈x(·)y〉
starting at y and covering to P such that ∀ t ∈ [0,∞), ∀ j 6= i, uj(x(t)) = uj(y) and x(t) ∈ Y .
Hence for any x ∈ limt→∞ x(t), u(x) = û and u(x) ∈ u(Y ), since u(Y ) is closed.
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