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Abstract

For an industry producing a single homogeneous good, we define and characterize the

concept of oligopolistic equilibrium, allowing for a parameterized continuum of regimes with

varying competitive toughness. This parameterization will appear to be equivalent to the

one used in the empirical literature. The Cournot and the competitive outcomes coincide,

respectively, with the softest and the toughest oligopolistic equilibrium outcome. The con-

cept offers an alternative to the conjectural variations approach with better foundations. It

can be viewed as a canonical description of oligopolistic behavior which can receive different

theoretical justifications and provide a convenient tool for modeling purposes. Two illustra-

tive cases (linear and isoelastic demands) are developed and the possibility of endogenizing

(strategically) the choice of competitive toughness by the firms is examined.
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1 Introduction

A fundamental problem of oligopoly theory is equilibrium indeterminacy. This indeterminacy is

not only of the kind associated with a given equilibrium concept and the possibility of multiple

solutions. It is mainly related to the choice of the equilibrium concept itself. This is most simply

demonstrated in static models by the choice between quantity competition (usually assimilated

to the approach of Cournot, 1838) and price competition (linked to Bertrand’s 1883 critique

of Cournot). However, this second kind of indeterminacy only reflects the variety of observed

competition regimes varying in their degree of toughness and implying different firm conducts.

In order to formalize this variety of oligopoly regimes, we shall adopt an approach that

was pioneered by Shubik (1959), where firms do not privilege one strategic variable but behave

strategically in price-quantity pairs. This approach will lead us to a comprehensive and canonical

concept of oligopolistic equilibrium providing a unified formulation of the whole spectrum of

enforceable non-cooperative equilibria. The proposed concept remains Cournotian and considers

oligopolistic competition as a generalization of monopoly. Two types of competition are at stake:

the struggle of the whole industry for market size, and the struggle of each individual firm for

its market share. With each type of competition will be associated a constraint. The set

of solutions (corresponding to different competition regimes) can be parameterized according

to the relative values of the Lagrange multipliers associated with these two constraints. This

parameterization can be interpretd in terms of competitive toughness. At one extreme, one

finds the Cournot solution as the softest oligopolistic equilibrium, and, at the other extreme,

one finds the competitive equilibrium when competitive toughness is maximal. As mentioned

by Shubik (1959), the price equilibrium (corresponding to Bertrand competition) is a particular

price-quantity equilibrium, which coincides with the competitive equilibrium when all firms are

producing at equilibrium. All other enforceable outcomes are intermediate to these two extremes.

This parameterization will appear to be equivalent to the one used in the empirical litera-

ture, building econometric models that incorporate general equations where each firm conduct

in setting price or quantity is represented by a parameter, itself viewed as an index of competi-
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tiveness. This so-called “conduct parameter method” has been at the basis of the new empirical

industrial organization and has generated a large number of empirical studies (for a synthesis

see Bresnahan, 1989, and, for more recent references, Corts, 1999). It is related to the conjec-

tural variations approach since both methods encompass the same theories of oligopoly. But, as

stressed by Bresnahan, “the phrase ‘conjectural variations’ has to be understood in two ways: it

means something different in the theoretical literature than the object which has been estimated

in the empirical papers” (Bresnahan 1989, p. 1019). Moreover, in the theoretical literature, con-

jectural variations have been criticized for their lack of theoretical foundations, at least in static

models.1

The goal of the canonical representation of oligopolistic competition that we propose here

is to provide a convenient tool to the theorist (it amounts to use a generalization of Cournot

equilibrium), which is more game-theoretically founded than the conjectural variations theory,

and which, in parallel to the conduct parameter method used by the econometrician, still nests a

continuum of theories of oligopolies. This theoretical tool will be derived and justified from dif-

ferent approaches, such as the “supply-function,” the “facilitating practices” or the “min-pricing

scheme” approaches.2 Each of these approaches may be more relevant for specific industries. For

example, introducing meeting-the-competition clauses (as a facilitating practice) cane appropri-

ate for retail (e.g. Sears catalogue) and intermediate product markets, or using supply-function

models can be fruitful, for example, in studying the electric power generation market.3 Our

canonical representation is meant for all and readily amenable to empirical testing.

In Section 2 we define and characterize the concept of oligopolistic equilibrium for an industry

producing a single homogeneous good. The resulting parameterization is derived and compared

to the empirical conduct parameterization. In Section 3, we examine some alternative theoretical

justifications of the concept. In Section 4, we analyze the two standard cases of a linear and of

an isoelastic demand and, in Section 5, we examine the possibility of endogenizing (strategically)

the choice of competitive toughness by the firms. We briefly conclude in Section 6.
1For references and a discussion, see Martin (2002, pp. 50–51).
2See, respectively, Grossman (1981), Salop (1986), and d’Aspremont et al. (1991).
3See, for example, Green and Newbery (1992).
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2 Oligopolistic equilibrium

We take an industry consisting of n firms (n > 1), each firm i producing the same good with a

technology described by an increasing cost function Ci, which is continuously differentiable on

(0,∞) and such that Ci(0) = 0. The demand D for the good is a function of market price P ,

with a finite continuous derivative D′ (P ) < 0 over all the domain where it is positive and such

that limP→P D (P ) = 0, for some P ∈ (0,∞]. More assumptions on costs and demand will be

introduced along the way.

2.1 Definition and characterization

In our approach, neither the price nor the quantity will be privileged as a strategic variable.4

Each firm i is supposed to choose, simultaneously with its competitors, a price-quantity pair

(pi, qi) ∈ IR2
+. We introduce the concept of oligopolistic equilibrium by combining the Cournot

and the Bertrand approaches. The following firm conduct can be assumed. As in the standard

interpretation of Cournot competition, qi is the quantity of output that firm i decides to supply.

This means that the production in advance assumption used by Maskin (1986) holds. However,

we will not consider Bertrand-Edgeworth competition but pure Bertrand competition as defined,

for instance, in Vives (1999, p. 117): pi is the list price at which firm i is ready to supply all

demand, whenever this price is lowest. If more than one firm list the lowest price a sharing rule

has to be applied to allocate the excess demand. This is given by functions s1, s2, · · · , sn defined

on IR2n
+ such that:

si(p, q) > 0 if i ∈ arg min
j

and D

(
min
j
{pj}

)
>
∑
j

qj ,

si(p, q) = 0 otherwise, and
∑
i

si(p, q) = D

(
min
j
{pj}

)
−
∑
j

qj .
(1)

4See Shubik (1959) and Shubik and Levitan (1980). Friedman (1988), who investigates differentiated-products

oligopoly, mentions a homogeneous-goods duopoly model of Alger (1979). Closest to the following definition is

Maskin (1986).
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Because of each firm commitment to serve all demand, no consumer will accept to pay more

than the lowest price min{p1, · · · , pn}. Moreover, because of production in advance, any firm

is willing to sell all its output at the discount price P = min{p1, · · · , pn, D−1(q1 + · · · + qn)}.

Therefore firm i payoff can be defined as:

ΠCB
i (pi, p−i, qi, q−i) ≡ min

pi, p−i, D−1

qi +
∑
j 6=i

qj

 [qi + si(pi, p−i, qi, q−i)]

−Ci(qi + si(pi, p−i, qi, q−i)).

(2)

We thus obtain a Cournot-Bertrand oligopoly game in quantities and prices. An oligopolistic

equilibrium is a 2n-tuple (p∗, q∗) which is a Nash equilibrium of this oligopoly game that satisfies

in addition a credibility condition: at equilibrium, no firm should be forced to sell more than it

would voluntarily sell, i.e. s(p∗, q∗) = 0 or, equivalently,∑
j

q∗j = D

(
min
j
{p∗j}

)
. (3)

This credibility condition eliminates equilibria where the commitment to serve all demand is

binding for some firm. Notice that this definition does not exclude the case where at equilibrium

a firm i chooses the quantity q∗i = 0, that is, to be inactive.

The following lemma delivers the main tool of this paper. It gives a formal and canonical

characterization of the concept of oligopolistic equilibrium which is more convenient to use for

modeling purposes and leads, as we will see, to the standard econometric parameterization of

the set of equilibria.

Lemma 1 A 2n-tuple (p∗, q∗) is an oligopolistic equilibrium if and only if, for each firm i,

(p∗i , q
∗
i ) is solution to the program,

max
(pi,qi)∈IR2

+

piqi − Ci(qi) : pi ≤ min
j 6=i
{p∗j} and pi ≤ D−1

qi +
∑
j 6=i

q∗j

 , (4)

and satisfies ∑
j

q∗j = D

(
min
j
{p∗j}

)
. (5)
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Proof: Let us start by proving sufficiency. Suppose, that, for each i, (p∗i , q
∗
i ) is solution to

(4), satisfying (5), but that, for some i, and some (pi, qi) ∈ IR2
+,

min

pi, p∗−i, D−1

qi +
∑
j 6=i

q∗j

 [qi + si(pi, p∗−i, qi, q
∗
−i)]− Ci(qi + si(pi, p∗−i, qi, q

∗
−i))

> min

p∗i , p∗−i, D−1

q∗i +
∑
j 6=i

q∗j

 q∗i − Ci(q∗i ).

If D−1(qi +
∑

j 6=i q
∗
j ) ≤ min{pi, p∗−i}, then si(pi, p∗−i, qi, q

∗
−i) = 0 and the pair (p′i, qi), with

p′i = D−1(qi+
∑

j 6=i q
∗
j ), satisfies the two constraints of (4), giving higher profit to firm i, which is

a contradiction. IfD−1(qi+
∑

j 6=i q
∗
j ) > min{pi, p∗−i}, then the pair (p′i, q

′
i), with p′i = min{pi, p∗−i}

and q′i = qi + si(pi, p∗−i, qi, q
∗
−i), again satisfies the two constraints of (4), with a higher profit

for firm i, leading to a contradiction. It remains to observe that the credibility condition (3) is

automatically satisfied since it coincides with (5).

To prove necessity, suppose that, for some i, and some (pi, qi) ∈ IR2
+, s.t. pi ≤ minj 6=i{p∗j}

and pi ≤ D−1(qi +
∑

j 6=i q
∗
j ), piqi −Ci(qi) > P ∗q∗i −Ci(q∗i ), with P ∗ = minj{p∗j} = D−1(

∑
j q
∗
j ),

and (p∗, q∗) an oligopolistic equilibrium. WLOG we may suppose that at least one of the two

constraints holds as an equality. If pi = D−1(qi+
∑

j 6=i q
∗
j ), demand is still served with the price-

quantity pair (pi, qi), thus generating a profitable deviation in the Cournot-Bertrand oligopoly

game. If pi = minj 6=i{p∗j} < D−1(qi +
∑

j 6=i q
∗
j ), any price-quantity pair (p′i, qi), with p′i > pi,

leads to the payoffpiqi − Ci(qi), since pi = minj 6=i{p∗j} < min{p′i, D−1(qi + /sumj 6=iq
∗
j )} and

s(p′i, p
∗
−i, qi, q

∗
−i) = 0, so that it is a profitable deviation in the oligopoly game. Finally, observe

that (5) coincides with the credibility condition (3).

From now on, on the basis of this lemma, we shall call oligopolistic equilibrium any 2n-tuple

(p∗, q∗) satisfying (5) and such that, for each i, (p∗i , q
∗
i ) is solution to (4). It has been derived as an

equilibrium of the Cournot-Bertrand oligopoly game, but will receive other justifications below.

In fact, it can also receive a direct interpretation. Indeed the profit maximization program (4)

includes the two types of competition in which a firm is involved: the one of the whole industry

for market size (represented by the aggregate demand constraint of the Cournot kind), and the
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one of each individual firm for its market share (represented by the constrained imposed by the

minimal price).

In order to further justify this characterization of an equilibrium, we start by comparing the

set of oligopolistic equilibria with standard oligopolistic outcomes. We let (PC , qC) denote a

Cournot outcome, that is, a quantity vector qC satisfying:

qCi ∈ arg max
qi∈[0,∞)

D−1

qi +
∑
j 6=i

qCj

 qi − Ci(qi)

 , i = 1, · · · , n, (6)

and a price PC = D−1(
∑

j q
C
j ). Alternatively, a competitive (Walrasian) outcome is denoted

(PW , qW ) and is such that

qWi ∈ arg max
qi∈[0,∞)

{PW qi − Ci(qi)}, i = 1, · · · , n, (7)

with PW satisfying
∑

j q
W
j = D(PW ). As far as Bertrand competition is concerned, we only

consider, for simplicity, the case where firms have constant marginal costs5: Ci(qi) = ciqi,

i = 1, · · · , n. Then, a Bertrand outcome (PB, qB) with PB = mini{pBi } is characterized by

pBi ∈ arg max
pi∈[0,∞)

(pi − ci)di(pi, pB−i) (8)

=
D(min{pi, pB−i})

# arg min{pi, pB−i}
, if pi = min{pi, pB−i}, with di(pi, pB−i)

= 0, otherwise. (9)

Finally, a collusive outcome (Pm, qm) corresponds to

(Pm, qm) ∈ arg max
(P,q)∈IRn+1

+

{
P
∑
i

qi −
∑
i

Ci(qi) :
∑
i

qi ≤ D (P )

}
. (10)

5We do not exclude the case where constant marginal costs differ from one firm to another. However, in that

case, to avoid non-existence, it can be assumed that profits are measured in (small) discrete units of account (e.g.

in cents). We then compute the corresponding equilibrium prices and take their limit as the size ε of the unit

of account tends to zero. In the duopoly case, for example, taking c ∈ (c1, c2] and a positive integer mε to be

such that c1 ≤ εmε ≤ c ≤ ε(mε + 1), the prices p1 = εmε and p2 = ε(mε + 1) form an equilibrium (where only

firm 1 produces), and varying c we get all “Bertrand equilibrium” outcomes. See, for example, Mas-Colell et

al. (1995), Exercise 12.C.4. Another way to get all Bertrand equilibria is to have firm 2 randomizing in a small

enough interval above firm 1 price (see Blume, 2003).
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We can now state the following:

Proposition 2 Any Cournot outcome (PC , qC), competitive outcome (PW , qW ) and (when

marginal costs are constant) any Bertrand outcome (PB, qB) is an oligopolistic equilibrium out-

come, but a collusive outcome (Pm, qm) is not (unless it is also a Cournot outcome).

Proof: If (P r, qr) (with r = C,W,B) were not an oligopolistic equilibrium outcome, some i

would be able by (4), through some choice (pi, qi) ∈ IR2
+ s.t. pi ≤ min{P r, D−1(qi+

∑
j 6=i q

r
j )}, to

get a profit piqi−Ci(qi) > P rqri −Ci(qri ). This implies PCqCi −Ci(qCi ) < D−1(qi+
∑

j 6=i q
C
j )qi−

Ci(qi) in the Cournot case, contradicting the assumption that qC is a Cournot equilibrium. In

the competitive case, we get PW qWi −Ci(qWi ) < PW qi−Ci(qi), resulting again in a contradiction.

An in the Bertrand case, the same argument holds directly if min{pi, PB} = PB. Otherwise,

with piwPB, the deviation (pi, qi) would a fortiori be feasible in the Bertrand game, where i

would be constrained by the aggregate demand (instead of the residual demand, according to the

second constraint in (4), that is qi ≤ D(pi)−
∑

j 6=i q
B
i ). Finally, if (Pm, qm) is a collusive but not

a Cournot outcome, it must be such that for some i, some qi ∈ IR+ and P = D−1(qi+
∑

j 6=i q
m
j ),

Pqi − Ci(qi) + P
∑
j 6=i

qmj −
∑
j 6=i

Cj(qmj )

≤ Pm
∑
j

qmj −
∑
j

Cj(qmj )wPqi − Ci(qi) + Pm
∑
j 6=i

qmj −
∑
j 6=i

Cj(qmj )

implying P < Pm. Therefore, (P, qi) is an admissible deviation for firm i in the oligopoly

game, which entails profit Pqi −Ci(qi), so that (Pm, qm) cannot be an oligopolistic equilibrium

outcome.

Notice that coincidence of Cournot and collusive outcomes, impossible under differentiability

of the cost and demand functions (except if there is only one active firm6, cannot be generally

excluded. If, for instance, demand is non-differentiable at price P ∗, one may have (under cost
6The “collusive outcome” involving several active firms should be distinguished from the “monopoly equilib-

rium” where one firm is producing the optimal monopoly output and all other firms do not produce. For an

analysis of the monopoly equilibrium see Amir and Lambson (2000).
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symmetry and n ≥ 2) the first order conditions:

1/n[−ε+D(P ∗)] < 1/[−ε+D(P ∗)] ≤ 1− C ′(D(P ∗)/n)/P ∗

≤ 1/n[−ε−D(P ∗)] < 1/[−ε−D(P ∗)]

with P ∗ = PC = Pm, and with ε−D(P ∗) and ε+D(P ∗) the left-hand and right-hand demand

elasticities at P ∗, respectively.

2.2 Parameterization of equilibria

We shall now investigate the first order condition of the oligopolist’s program defined by (4).

For each firm i, we have to distinguish the case where, at the solution, it is active (q∗i > 0)

and the case where it is not7 (q∗i = 0). All equilibrium prices, by contrast, should be strictly

positive. Introducing Kuhn-Tucker multipliers (λi, νi) ∈ IR2
+ \ {0} associated with the first and

second constraints in (4), respectively, general first order conditions require, by the positivity of

p∗i and the non-negativity of q∗i , that q∗i − λi − νi = 0, and p∗i − C ′i(q∗i ) + νi/D
′(minj{p∗j}) ≤ 0

with (p∗i − C ′i(q∗i ) + νi/D
′(minj{p∗j}))q∗i = 0. Therefore, if firm i is active, we get q∗i

p∗i − C ′i(q∗i )

 = λi

 1

0

+ νi

 1

−1/D′(minj{p∗j})

 , (11)

whereas, if firm i is inactive, we let λi = νi = 0.

The multiplier λi is associated with the min-pricing constraint and the multiplier νi with

the demand constraint. They can be interpreted as the shadow costs firm i would accept to

bear in order to ease the pressure coming from its competitors inside and outside the industry,

respectively. For an active firm, we define the normalized parameter θi ≡ λi/(λi+νi) ∈ [0, 1] (for

an inactive firm i, θi is undefined). This parameter may be viewed as an index of the competitive

toughness displayed by firm i within the industry, at equilibrium (p∗, q∗). The corresponding

degree of monopoly of each firm i in the set of the n∗ active firms (with p∗i = minj{p∗j} and

7Shubik (1959) suggests to call such a firm a “firm)in-being” (by analogy to the famous term “fleet in being,”

introduced by Lord Torrington and used by Kipling).
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q∗i > 0) can then be expressed as a function of θi:

p∗i − C ′i(q∗i )
p∗i

= (1− θi)
q∗i /
∑

j q
∗
j

−εD(minj{p∗j})
≡ µi

(
θi,min

j
{p∗j}, q∗

)
, (12)

where ε is the elasticity operator (i.e., εf(x) ≡ (df(x)/dx)(x/f(x)), for a differentiable function

f(x)).

Oligopolistic equilibria may hence be characterized by first order conditions (12), together

with equality (5), giving a system of n∗ + 1 equations

µi(θi, P ∗, q∗) =
P ∗ − C ′i(q∗i )

P ∗
(i = 1, · · · , n∗) and

∑
j

q∗j = D(P ∗) (13)

in n∗ + 1 unknowns (P ∗, q∗), parameterized by θ = (θ1, · · · , θn∗) in the set Θ∗ ⊂ [0, 1]n
∗

of the

parameter values which entail a solution to the system (13) and ensure sufficiency of the first

order conditions. We thus obtain endogenously a parameterization by θ of the set of oligopolistic

equilibria.

We shall not examine here the question of existence and the sufficiency of first order condi-

tions. Local curvature requirements should be somewhat softened by the presence of a kink in

the boundary of the admissible set. However it should be stressed that sufficient global condi-

tions for the existence of an oligopolistic equilibrium are necessarily weaker than those ensuring

existence of standard solutions, such as Cournot or competitive equilibria, since these solutions,

as we have seen above, are enforceable as particular instances of oligopolistic equilibria. In any

particular case the difficulty is to determine the set Θ∗. Illustrative examples are given below.

The following proposition shows that potential oligopolistic equilibria coincide at one ex-

treme, when competitive toughness is minimal (θ = (0, · · · , 0)), with the Cournot solution and,

at the other extreme, when competitive toughness is maximal (θ = (1, · · · , 1)), with the com-

petitive equilibrium. All other oligopolistic equilibria correspond to intermediate values of θ,

including (when marginal costs are constant) those associated with Bertrand competition.

We can now state the following

Proposition 3 Assuming that θ = (0, · · · , 0) (respectively θ = (1, · · · , 1)) belongs to Θ∗, and

that, for any i, D−1(qi +
∑

j 6=i qj)qi − Ci(qi) is quasi-concave (respectively Ci(qi) is convex) in
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qi, any oligopolistic equilibrium corresponding to θ = (0, · · · , 0) (respectively θ = (1, · · · , 1)) leads

to a Cournot (respectively a competitive) outcome.

Proof: Recall that in the case of Cournot equilibrium the first order conditions (which are

sufficient by assumption) are:

PC − C ′i(qCi )
PC

=
qCi /

∑
j q

C
j

−εD(PC)
≡ µi(0, PC , qC) for all i,

coinciding, by (12), with the first order conditions for an oligopolistic equilibrium with θ =

(0, · · · , 0) ∈ Θ∗. With θ = (1, · · · , 1) ∈ Θ∗, we see from (12) that each firm equalizes marginal

cost to price, so that we get the condition (assumed to be sufficient) for a competitive equilibrium.

The result follows.

In relation to this result, it is important to note that the degree of monopoly equations

(12) are in fact the rewriting of the behavioral equations used in the empirical literature to

estimate firm and industry conduct (how firms et prices and quantities). These equations are

typically parameterized, for each firm, by an “index of the competitiveness of oligopoly conduct”

(Bresnahan, 1989, p. 1016) which is the exact complement of our parameter θi (i.e. equal to

(1−θi)). This parameterization is used by econometricians to nest existing theories of oligopoly.

These parameters are also directly related to the conjectural variation approach (Bowley,

1924). They can be taken as continuous-valued and used to estimate conjectural derivatives.

In spite of its lack of theoretical foundations,8 the conjectural variation approach is meant to

fill the gap left open by the theory. In this approach, each firm i when choosing its quantity is

supposed to make a specified type of conjecture concerning the reaction of the other firms to any

of its deviations. These conjectures are introduced directly into the first order conditions. They

are not part of the description of the oligopoly game. Following the presentation in Dixit (1986),

a sufficient specification9 consists in introducing conjectural derivatives ri =
∑

j 6=i ∂qj/∂qi for

each i. The corresponding first order conditions are:

P ∗ − C ′i(q∗i )
P ∗

= (1 + ri)
q∗i /
∑

j q
∗
j

−εD(P ∗)
, (14)

8It has also been criticized as leading to a mismeasurement of market power (Corts, 1999).
9Dixit considers the more general case where ri is a function of both qi and

P
j 6=i qj .
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giving the same characterization as (12) with ri = −θi. In other words, comparing first order

conditions, the set of oligopolistic equilibrium outcomes appears as the selected subset of out-

comes obtained by conjectural variations restricted to the compensating (non-collusive), i.e. ri

to be in the interval10 [−1, 0], for every i. The concept of oligopolistic equilibrium thus provides

some game-theoretic foundation to the concept of conjectural variations, since the conjectural

variation terms (within the relevant class) can be identified with the parameterization of the

equilibria of a fully specified game.

3 Other game-theoretic approaches

The formal concept of oligopolistic equilibrium has been defined as the characterization of the

Nash equilibrium of a Cournot-Bertrand oligopoly game. However, we shall now see that there

are other theoretical ways (and these are illustrative of many others) to arrive at the same

formal characterization. Each of these different theories might be more adapted to some specific

industries and some particular situations. This is why the concept of oligopolistic equilibrium

as defined by Lemma 1 has to be seen as a canonical representation and a convenient theoretical

tool.

3.1 The min-pricing scheme approach

One can define an alternative oligopoly game where firms are not committed to serve all de-

mand. We suppose instead that each firm includes a meeting competition clause (or price-match

guarantee) in its sales contracts, guaranteeing its customers that they are not paying more than

what they would to a competitor, so that each customer acts as if facing the single market price

Pmin (p) = minj{pj}, where Pmin is the min-pricing scheme (d’Aspremont eat al., 1991). Com-

bining this guarantee with the assumption that each firm i brings qi to the market, we again have

that it is willing to sell its output at the discount price P = min{Pmin (p) , D−1(q1 + · · ·+ qn)}.
10Matching variations (ri > 0) are excluded, and in particular those leading to the collusive solution.
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We thus get payoff functions given, for firm i, by

Πpm
i (pi, p−i, qi, q−i) ≡ min

Pmin(pi, p−i, D−1

qi +
∑
j 6=i

qj

 qi − Ci(qi). (15)

We thus get an alternative game, a price-matching oligopoly game in prices and quantities, using

these payoffs. The corresponding oligopolistic equilibrium (p∗, q∗), a Pmin-equilibrium, is a Nash

equilibrium satisfying in addition the no-rationing restriction

∑
j

q∗j = D(Pmin(p∗)), (16)

eliminating equilibria where customers would be willing to buy more at the equilibrium price

Pmin(p∗).

Proposition 4 A 2n-tuple (p∗, q∗) is a Pmin-equilibrium if and only if it is an oligopolistic

equilibrium, i.e. for each firm i, (p∗i , q
∗
i ) is solution to the program (4) and the market balance

restriction (5) holds.

Proof: Suppose first that (p∗, q∗) is a Pmin-equilibrium (so that
∑

j q
∗
j = D(minj{p∗j})), but

that, for some i, and some (pi, qi) ∈ IR2
+, piqi−Ci(qi) > p∗i q

∗
i −Ci(q∗i ), with pi ≤ min{p∗−iD−1(qi+∑

j 6=i q
∗
j )}. The pair (p′i, qi), with p′i = min{pi, p∗−i, D−1(qi+

∑
j 6=i q

∗
j )}, is then a deviation w.r.t.

the Pmin-equilibrium, a contradiction.

To prove the other direction, suppose now (p∗, q∗) is an oligopolistic equilibrium (so that

again)
∑

j q
∗
j = D(minj{p∗j})), but that, for some i, some (pi, qi) ∈ IR2

+, and p′i ≡ min{pi, p∗−i, D−1(qi+∑
j 6=i q

∗
j )}, we have p′iqi − Ci(qi) > p∗i q

∗
i − Ci(q∗i ) ≥ 0. Then (p′i, qi) satisfies the two constraints

in the program (4) and gives higher profit to firm i, again a contradiction.

Hence, the min-pricing scheme approach is another way to get oligopolistic equilibria and

a relevant one to investigate the large number of markets where the price-match guarantee is

offered.
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3.2 The supply function approach

Another approach assumes that firms strategies are supply functions (Grossman, 1981, and

Hart, 1982).11 A supply function equilibrium is a Nash equilibrium of a game where each firm i

strategies are functions Si associating with every price pi in [0,∞) a quantity qi = Si(pi). The

functions Si may be restricted to some admissible set S. For any n-tuple S of supply functions

in Sn, the price P̂ (S) is said to be well defined if it is non-negative and uniquely solves the

equation
n∑
j=1

Sj (P ) = D (P ) . (17)

The corresponding payoffs are defined by:

ΠS
i (Si, S−i = P̂ (Si, S−i)Si(P̂ (Si, S−i))− Ci(Si(P̂ (Si, S−i))), if P̂ is well defined,

ΠS
i (Si, S−i = 0, otherwise.

(18)

Observe that at an equilibrium S∗, for any firm i, maximizing ΠS
i (Si, S∗−i) amounts to select P ∗

in

arg max
P∈IR+

{P D∗i (P, S∗−i)− Ci(D∗i (P, S∗−i))}, (19)

with D∗i (P, S
∗
−i) = max{D (P ) −

∑
j 6=i S

∗
j (P ) , 0} the residual demand function. Indeed, firm

i could as well choose any supply function Si for which Si (P ) = D∗i (P, S
∗
−i) has the unique

solution P ∗.

The multiplicity of supply function equilibria is well known. In order to compare this concept

with our own, we shall restrict strategies to the set S+ of non-decreasing supply functions.12 We

then have the following characterization:

Proposition 5 For any supply function equilibrium S∗ ∈ Sn+, there is an oligopolistic equi-

librium (p∗, q∗) such that q∗ = S∗(P̂ (S∗)) and, for any j, p∗j = P̂ (S∗). Conversely, for any

oligopolistic equilibrium (p∗, q∗), there is a supply function equilibrium S∗ ∈ Sn+ such that

S∗(minj{p∗j}) = q∗.

11See also Singh and Vives (1984).
12As Delgado and Moreno (2004) do. However they assume in addition that firms are identical.
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Proof: Let S∗ ∈ Sn+ be a supply function equilibrium. We show that (p∗, q∗) with q∗ =

S∗(P̂ (S∗)) and, for any j, p∗j = P̂ (S∗), is an oligopolistic equilibrium. Using, for any i, the

fact that the residual demand D∗i (P, S
∗
−i) is decreasing in P and that the profit piqi − Ci(qi) is

increasing in pi we get, by (19), that (p∗i , q
∗
i ) maximizes piqi − Ci(qi) on

∆i ≡ {(pi, qi) ∈ IR2
+ | qi ≤ D∗i (pi, S∗−i}.

By Lemma 1, for (∗, q∗) to be an oligopolistic equilibrium, (p∗i , q
∗
i ) should maximize piqi−Ci(qi)

on

∆̂i ≡

(pi, qi) ∈ IR2
+ | pi ≤ min

j 6=i
(p∗j ), qi ≤ max

D(pi)−
∑
j 6=i

q∗j , 0


 ,

for every i. Since, by construction, (p∗, q∗) ∈ ∆̂i and ∆̂i ⊂ ∆i, this is clearly true.

To prove the converse, let us suppose that (p∗, q∗) is an oligopolistic equilibrium. We may

construct an associated supply function equilibrium by imposing to every firm i an admissible

supply function Si simply characterized by a price-quantity pair (pi, qi), and such that Si (P ) = qi

if P ≤ pi, and Si (P ) = ∞ otherwise. Clearly, the solution to (19) cannot be larger than

minj 6=i{p∗j}, hence any profitable deviation by some firm i from S∗i must involve a price below

minj 6=i{p∗j} and a quantity below D(pi)−
∑

j 6=i q
∗
j , and thus constitute a deviation with respect

to the oligopolistic equilibrium. The result follows.

We see that, with the restrictions imposed on the admissible class of supply functions, the

outcomes corresponding to the two sets of equilibrium outcomes coincide, including the Cournot

and the competitive outcomes.

To establish more clearly the relation between the two concepts, we may consider the first

order condition to firm i program (19) at equilibrium, while restricting to differentiable supply

function in SS+. Denoting q∗i = D∗i (P
∗, S∗−i), we get:

q∗i +

D′(P ∗)−∑
j 6=i

S∗
′
j (P ∗)

 (P ∗ − C ′i(q∗i )) = 0, (20)

which is equivalent to

P ∗ − C ′i(q∗i )
P ∗

=
q∗i /
∑

k q
∗
k

−εD(P ∗) +
∑

j 6=i(q
∗
j /
∑

k q
∗
k) ∈ S∗j (P ∗)

= µi(θi, P ∗, q∗), (21)
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with µi as defined in (12), taking

θi = 1− −εD(P ∗)
−εD(P ∗) +

∑
j 6=i(q

∗
j /
∑

k q
∗
k) ∈ S∗j (P ∗)

. (22)

Not surprisingly, the Cournot solution corresponds to an elasticity εS∗j (P ∗) of the supply func-

tions equal to 0 for all j, and the competitive solution to εS∗j (P ∗) = ∞ for at least two j’s.

Notice also that varying the elasticities of the supply functions in the relevant class allows us

to cover the whole range of admissible values of the θi. The competitive toughness of firm i, as

measured by θi at the oligopolistic equilibrium, is seen to correspond positively to a measure

of the “reactivity of the other firms” (with respect to prices) as anticipated by firm i at the

supply function equilibrium. Although the elasticity of a supply function chosen by any firm

is indifferent from the point of view of the firm itself (for which only the price-quantity pair

actually implemented matters), it is crucial in shaping the anticipations of its competitors.

4 Two illustrative cases

In order to illustrate the concept of oligopolistic equilibrium, and visualize the set of equilibrium

outcomes as parameterized by θ ∈ Θ∗, we refer to two standard cases of homogeneous duopoly,

the cases of linear and isoelastic demand with linear cost functions. Since technological lead

is an important feature in many applied models (for example those analyzing the relationship

between innovation and competition), he will admit asymmetric costs and assume that each firm

i has a constant marginal cost ci (by convention, c1 ≤ c2).

4.1 Linear demand

In the first case, we suppose demand D (P ) to be linear, equal to a − P , so that Marshallian

elasticity is P/D (P ). We assume ac2 > c2−c1, so that the monopoly price PM = (a+c1)/2 that

would be set by firm 1 is larger than the cost c2 of firm 2. The case where only the efficient firm

is active at equilibrium is simple. The set of equilibria is then described by all prices between

the competitive price PW = c1 and the highest Bertrand price13 PB = c2. When both firms
13See footnote 6.
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are active, from condition (12), equilibrium (p∗, q∗) with p∗1 = p∗2 = P ∗ is seen to verify for each

firm i
P ∗ − ci
P ∗

= (1− θi)
q∗i

q∗1 + q∗2

D(P ∗)
P ∗

= (1− θi)
q∗i
P ∗

, (23)

giving a market share for firm 1

q∗1
q∗1 + q∗2

=
1

1− θ1
P ∗ − c1
a− P ∗

= 1− 1
1− θ2

P ∗ − c2a− P ∗, (24)

with

P ∗ =
(1− θ1)(1− θ2)a+ (1− θ2)c1 + (1− θ1)c2

(1− θ1)(1− θ2) + (1− θ2) + (1− θ1)
(25)

The equilibrium price P ∗ is lower bounded by the highest Bertrand price PB = c2, and upper

bounded by the Cournot price PC = (a+c1 +c2)/3, corresponding to θ2 = 1 and to θ1 = θ2 = 0,

respectively. These expressions are valid only for values of θ in [0, 1− (c2− c1)/(a− c2)]× [0, 1].

Indeed, for values of θ1 > 1− (c2− c1)/(a− c2), firm 2 becomes inactive and we are back to the

first case.

To illustrate, we can take the values for the costs c1 = 2/3 and c2 = 1 and, choosing a = 10/3,

so that P ∗ ∈ [1, 5/3], we obtain the following representation of the set of equilibrium outcomes

with the two firms active, in the market price-market share space (P ∗, q∗1/(q
∗
1 + q∗2)). This set

is given by the region bounded by the vertical axis and the two thick curves, the lower one

corresponding to θ1 = 0, the upper one to θ2 = 0. The increasing curves (including the thick

one) are three elements of the family of curves stemming from firm 1 first order condition (with

θ1 = 1/3, 1/6, 0, respectively, from left to right). Similarly, the decreasing concave curves are

three elements, corresponding to the same values of θ2, of the family of curves stemming from

firm 2 first order condition.

The decreasing convex gray curve in Figure 1 corresponds to the uniform case θ1 = θ2 = θ.

It links the Cournot outcome (determined at the point of intersection of the two thick curves,

with θ = 0) to the Bertrand outcome (associated with the highest possible market share for the

efficient firm and the highest value of θ, 1 − (c2 − c1)/(a − c2) = 6/7). We observe that, as θ

increases, the market expands and splits more and more asymmetrically in favor of the efficient

firm.
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Figure 1

4.2 Isoelastic demand

The demand function is now taken to be D (P ) = P−σ, with 1/σ ∈ (1 − c1/c2, 2), so that

existence of a Cournot equilibrium is ensured, and firm 1 monopoly price PM = c1/(1− 1/σ) is

larger than the cost c2 of firm 2. From condition (12) we see that, at equilibrium (p∗, q∗) with

p∗1 = p∗2 = P ∗, the degree of monopoly of firm i is

P ∗ − ci
P ∗

=
1− θi
σ

q∗i
q∗1 + q∗2

, (26)

giving the market share form firm 1

q∗1
q∗1 + q∗2

=
σ

1− θ1
P ∗ − c1
P ∗

= 1− σ

1− θ2
P ∗ − c2
P ∗

, (27)

with

P ∗ =
(1− θ2)c1 + (1− θ1)c2

1− θ2) + (1− θ1)− (1− θ1)(1− θ2)/σ
. (28)

The equilibrium price P ∗ is lower bounded by the highest Bertrand price PB = c2, and upper

bounded by the Cournot price PC = (c1 + c2)/(2 − 1/σ). It is decreasing in each θi. These

expressions are valid only for values of θ in [0, 1 − σ(1 − c1/c2)] × [0, 1]. For values of θ1 in

[1− σ(1− c1/c2), 1], firm 2 becomes inactive.
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Figure 2 shows, for parameter values σ = 1, c1 = 2/3 and c2 = 1, the set of equilibrium

outcomes with both firms active, in the market price-market share space (P ∗, q∗1/(q
∗
1 + q∗2)) as

the region bounded by the vertical axis and the two thick curves. The solid curves are associated

with constant values of competitive toughness, corresponding to the same values of θi above:

1/3, 1/6, 0, respectively, from left to right. These curves are increasing for firm 1 and decreasing

for firm 2. The gray curve is associated with varying equal degrees of competitive toughness for

both firms. Figure 2 is strikingly similar to Figure 1, and leads to the same comments.

Figure 2

Some significant properties concerning the effects of competitive toughness on profits can be

deduced from both examples. In the uniform case (θ1 = θ2 = θ):14

• the inefficient firm looses as competitive toughness increases (both its market share and

the price decrease);

• if the cost advantage of the efficient firm is large enough, its profit increases as competitive

toughness increases (a higher market share more than compensates a lower price);
14These properties correspond to properties (b), (c) and (d) in Definition 2.2 of Boone (2001), where the

“intensity of competition” parameter is supposed to be the same for all firms. Cournot and Bertrand regimes, but

no the intermediate cases, are considered in an example. In Boone (2000), the parameter measuring “competitive

pressure” is differentiated but his examples concentrate on comparative statics when the fundamentals vary.
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• if costs are equal for both firms (implying equal market shares), profits decrease as com-

petitive toughness increases.

In the case where competitive toughness is asymmetric, effects are more intricate. If the value

of θi is ket unchanged and θj , j 6= i, increases, the price as well as firm i market share fall,

implying a lower profit for firm i. However, an increase in the value of θi while keeping θj , j 6= i,

constant, is associated with a larger market share for firm i but with a lower price, so that an

increase in its profit is not guaranteed.

5 Competitive toughness under firm control

In the three justifications of an oligopolistic equilibrium, which have been given and are based

respectively on the Cournot-Bertrand, the min-pricing and the supply-function oligopoly games,

the parameters measuring the competitive toughness of firms were part of the characterization

(through first order conditions) of the set of potential equilibria. For these theories, competitive

toughness is an endogenous parameter out of the direct control of individual firms. Apart

from an empirical estimation, and in order to get a theoretical specification of these parameters,

either a more complete description of the context or an equilibrium selection argument is needed.

Examples of such possibilities are respectively given by Kreps and Scheinkman (1983) two-stage

game, with capacity recommitment followed by price competition in a symmetric duopoly, and

Delgado and Moreno (2004), who look for a coalition-proof supply function equilibrium. In both

cases the Cournot outcome is obtained, corresponding to θ ≡ 0 in the present canonical model.

But one cannot exclude the possibility of oligopoly games where the toughness parameters can

be exogenously fixed and could even be under firm control. In support of this claim, we give

two different illustrations.

5.1 Exogenous competitive parameters

Let us consider two very different interpretations of the competitive toughness parameters, taken

as exogenous. In one interpretation more competition results from a more socially-oriented
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attitude, in the other it results from a more aggressive conduct.

5.1.1 Game 1

The first interpretation is based on a modified oligopoly game where each firm i, simply choosing

a quantity as in the Cournot model, has a modified objective function where the parameter θi ∈

[0, 1] explicitly appears and can be interpreted as a coefficient of collective concern giving some

positive weight to the total surplus. This coefficient is similar to the “coefficient of cooperation”

used in the literature (e.g. Cyert and De Groot, 1973, Martin, 2002) and inspired by Edgeworth’s

“coefficient of effective sympathy.” But here it applies not only to the sum of the other firms

profits but also to the consumers’ surplus. The profit of firm i is defined as

Πcc
i (qi, q−i, θi) = (1− θi)

qiD−1

qi +
∑
j 6=i

qj

− Ci(qi)


+ θi

∫ qi+
P

j 6=i qj

0
D−1(Q)dQ−

∑
j

Cj(qj)

 .
When θi = 0,Πcc

i (qi, q−i, 0) reduces to the Cournot profit function. When every θi = 1,

Πcc
i (qi, q−i, 1) amounts to the total surplus (total profit plus consumer surplus). Considering

an equilibrium q∗ of this modified game, the first order conditions can be computed for n∗ active

firms i = 1, 2, · · · , n∗:

0 =
∂Πcc

i (q∗, θi)
∂qi

= D−1

∑
j

q∗j

[1−
(1− θi)q∗i /

∑
j q
∗
j

−εD(D−1(
∑

j q
∗
j ))

]
− C ′i(q∗ − i),

and are equivalent to the system defined by (12) and (13), leading to the same set of potential

solutions.

5.1.2 Game 2

To introduce the second interpretation, we define a game of “tempered” Bertrand-Edgeworth

competition. To simplify, we suppose two firms with linear costs, Ci(qi) = ciqi, with ci > 0

(i ∈ {1, 2}). The parameter θi ∈ [0, 1), fixed in advance, is interpreted as the probability that
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firm i will have an aggressive rather than a compromising conduct. We suppose that the game

has two stages and we look for a sub game perfect equilibrium. At the first stage, each firm i

quotes the maximum price pi ∈ (0, P ) at which it commits to sell up to quantity qi ∈ [0,∞), to

be produced in advance. At the second stage, the conduct of each firm i is decided according to

the probability θi. Under a compromising conduct, adopted with positive probability 1−θi, firm

i supplies at quoted price pi a quantity xi ∈ [0, qi] which should not exceed the residual demand,

namely max[D(pi)− qj , 0]. By contrast, under an aggressive conduct, adopted with probability

θi, it undercuts its rival by an arbitrarily low amount ε > 0 (which is taken as an exogenous

parameter), and supplies at price ψi = min{pi, pj−ε} a quantity xi ∈ [0, qi] no larger than what

it can actually sell: D(ψi) with a compromising competitor (or with an aggressive competitor

if ψi < ψj and max[D(ψi − qj , 0] otherwise. Clearly, since supplying xi entails no cost, one of

these bounds will always be binding at second stage equilibrium. Also, we assume that, in case

of indifference, a firm always chooses to produce the maximal quantity it can sell. However, an

equilibrium may require the consumers tone rationed and we assume “efficient rationing.”

Now consider the expected profit of firm i at the first stage, anticipating the second-stage

equilibria, and involving the four states of the world (with two aggressive or two compromising

firms, or with one aggressive and the other compromising) and their corresponding probabilities.

Take, as a first case, the expected profit ΠBE
i of firm i as a function of (p, q, θ) ∈ (0, P )2×[0,∞)2×

[0, 1)2 when pi ≤ pj ,

ΠBE
i (p, q, θ) = (1− θi)pi min{qi,max[D(pi)− qj , 0]}

+ θi(1− θj)ψi min{qi, D(ψi)}

+ θiθjψi min{qi,max[D(ψi)− qj , 0]} − ciqi.

(29)

Notice that the first term in this expression, corresponding to the case i is compromising, involves

only the probability (1−θi) since i’s payoff is the same whether j is aggressive or compromising.

When pi > pj (implying ψi = pj − ε < ψj) the expression for the expected profit of firm i

becomes independent of probability θj :

ΠBE
i (p, q, θ) = (1− θi)pi min{qi,max[D(pi)− qj , 0]}

+ θi(pj − ε) min{qi, D(pj − ε)} − ciqi.
(30)
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Observe that, for θ1 = θ2 = 0, the program of each firm becomes:

max
(pi,qi)

piqi − ciqi s.t. pi ≤ D−1(qi + qj),

so that we get again the Cournot solution. For other values of θ we have the following fact:

Proposition 6 At an equilibrium (p∗, q∗) ∈ (0, P )2×(0,∞)2 of the tempered Bertrand-Edgeworth

duopoly, with θ ∈ [0, 1)2 and positive supplies of both firms in all states occurring with positive

probabilities, the following conditions necessarily hold:

(i) p∗1 = p∗2 = D−1(q∗1 + q∗2) and, for i = 1, 2,

(ii) q∗i ∈ arg maxqi∈[0,D(p∗j−ε)−q∗j ] π(qi, θi), with

πi(qi, θi) ≡ [(1− θi)D−1(qi + q∗j ) + θi(p∗j − ε)− ci]qi.

Proof: Under condition (i), necessity of condition (ii) is easily proved. Suppose that πi(qi, θi) >

π(q∗i , θi) for some qi ∈ [0, D(p∗j − ε) − q∗j ]. Then the pair (pi, qi) with pi = D1(qi + q∗j ) ∈

[p∗j −ε, P ) is a profitable deviation for firm i, since ΠBE
i (pi, p∗j , qi, q

∗
j , θ) = πi(qi, θi) > πi(q∗i , θi) =

ΠBE
i (p∗, q∗, θ) by Eqs. (29) and (30).

It remains to establish necessity of condition (i). Let us begin by considering the case of an

equilibrium (p∗, q∗) such that p∗1 = p∗2 = P ∗, and show that q∗1 = q∗2 = D(P ∗) in this case. If

q∗1 + q∗2 < D(P ∗), then by Eq. (29),

ΠBE
i (p∗, q∗, θ) = [(1− θi)P ∗ + θi(P ∗ − ε)− ci]q∗i , i = 1, 2,

and we see from Eq. (30) that some firm i would increase its profit by (slightly) increasing its

price. If q∗1 +q∗2 > D(P ∗) then, again by Eq. (29), θi(P ∗−ε) ≥ ci and P ∗ ∈ arg maxpi{pi[D(pi)−

q∗j ]} for i = 1, 2. An increase by firm i of its price to pi larger than but arbitrarily close

to P ∗ would only have a second order effect on the revenue component pi[D(pi) − q∗j ] at its

maximum p∗i = P ∗, but would determine a discontinuous positive increase on the complementary

revenue component (due to the shift from (29) to (30)), through a jump from (P ∗ − ε)[(1 −
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θj) min{q∗i , D(P ∗ − ε)} + θj min{q∗i , D(P ∗ − ε) − q∗j }] to (P ∗ − ε) min{q∗i , D(P ∗ − ε)}. Thus,

q∗1 + q∗2 = D(P ∗) if p∗1 = p∗ − 2 = P ∗.

Now consider an equilibrium (p∗, q∗) such that, say, p∗i < p∗j . The are two possible cases.

Case 1. If θj(p∗i − ε) < cj , then q∗j = D(p∗j ) − q∗i by Eq. (30), since q∗j < D(p∗j ) − q∗i would

trigger an upward price deviation by firm j, and q∗j < D(p∗j )−q∗i a downward quantity deviation

by the same firm. But then p∗i < p∗j = D−1(q∗i + q∗j ) implies q∗i < D(p∗i )− q∗j and (by Eq. (29))

firm i would gain by increasing its price. Case 1 is thus excluded.

Case 2. If θj(p∗i − ε) ≥ cj , firm j optimal choice should satisfy q∗j = D(p∗i − ε) > D(ψ∗i ).
15

Thus D(p∗i ) − q∗j ≤ D(ψ∗i ) − q∗j < 0 and, by Eq. (29), firm i supplies x∗i = 0 in at least one

state with positive probability (both firms compromising with probability (1− θi)(1− θj) > 0),

contradicting the assumption of the proposition and leading to exclusion of case 2.

Therefore, in both cases we get a contradiction, and condition (i) follows.

By computing the first order condition for maximization of πi(qi, θi) at an equilibrium (p∗, q∗)

with θ ∈ [0, 1)2 and positive supplies of both firms in all states that occur with positive prob-

abilities, we obtain, using p∗1 = p∗2 = P ∗ = D−1(q∗1 + q∗2) and q∗i ∈ (0, D(P ∗ − ε) − q∗j ), for

i = 1, 2,
P ∗ − ci
P ∗

= (1− θi)
q∗i /(q

∗
1 + q∗2)

−εD(P ∗)
+ θi

ε

P ∗
. (31)

As ε tends to zero, this condition eventually coincides with condition(12), implying the same

set of (potential) equilibria. The case where θi = 1 for some i can be treated as limit cases.

5.2 Choosing θ strategically

Although the interpretation of θ is very different in the two examples, it is exogenously fixed

in both and the set of resulting potential equilibrium (with both firms active) are the same.

Moreover, in both examples, one can consider the situation where each firm i would choose its

θi strategically in a preliminary stage. We shall not investigate extensively this question here,
15In case θj(p∗i − ε) = cj , firm j is indifferent between any qj ı[D(p∗j )− q∗i , D(p∗i − ε)], but is supposed to choose

D(p∗i − ε).
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but we may at least show what answer we get in the two illustrative cases of linear and isoelastic

demands.

In both case, with linear costs, the profit of firm i is equal to the product of the degree of

monopoly, the market share and the aggregate expenditure level. When increasing its compet-

itive toughness, a firm increases its market share and may or may not increase the aggregate

expenditure, but anyway must endure a loss in its degree of monopoly. In the linear demand

case, using (23) and (24), the equilibrium profit of firm i combines these three components as

follows:

Πi(P ∗, P ∗, q∗i , q
∗
j ) = (1− θi)

(
q∗i

q∗1 + q∗2

)2

(a− P ∗)2 =
(P ∗ − ci)2

1− θi
. (32)

The equilibrium profit of firm i is thus an increasing function of θi directly, and a decreasing

function of θi through the price P ∗. From (25), it can be computed to be

Π∗i (θ) = (1− θi)
(

(cj − ci) + (1− θj)(a− ci)
(1− θi) + (1− θj) + (1− θi)(1− θj)

)2

, (33)

for θ ∈ [0, 1 − (c2 − c1)/(a − c2)] × [0, 1] (with c2 − c1 < a − c2). Thus, at the first stage, the

payoffs are given by (Π∗1(θ),Π∗2(θ)) and the strategy spaces are [0, 1 − (c2 − c1)/(a − c2)] and

[0, 1] respectively for firm 1 and firm 2. In order to determine the best reply of firm i in θi, it is

useful to derive the sign of the partial derivative of Π∗i (θi, θj) with respect to θi:

sign{θiΠ∗i (θ)} = sign{1− (2− θj)θi}. (34)

From this formula, the quasi-concavity of Π∗i (θi, θj) in θi is straightforwardly established since the

sign can only switch from positive (at θi = 0) to negative. Also, when the two firms have equal

unit costs, the sign can only be zero for both firms if θi = θj = 1, which leads to the Bertrand

equilibrium at the second stage. Otherwise, the efficient firm 1 will choose at equilibrium the

lowest competitive toughness that eliminates its rival, namely θ1 = 1− (c2−c1)/(a−c2), leading

to the price PB = c2. Therefore, in the linear demand case, the only oligopolistic equilibrium

outcome, resulting from the sub-game perfect equilibrium of the two-stage game, is the Bertrand

outcome with the highest possible equilibrium price.16

16If individual competitive toughness is interpreted as a degree of aggressively, then this conclusion is similar
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In the isoelastic demand case, combining the degree of monopoly (26), the market share (27)

and the aggregate expenditure P 1−σ gives the following expression for the profit function at

equilibrium:

Πi(P ∗, P ∗, q∗i , q
∗
j ) =

1− θi
σ

(
q∗i

q∗1 + q∗2

)2

P ∗1−σ =
σ

1− θi

(
P ∗ − ci
P ∗

)2

P ∗1−σ. (35)

From (28), the equilibrium profit of firm i can be written as a function of θ:

Π∗i (θ = σ(1− θi)
(
cj − ci + (1− θj)ci/σ
(1− θi)cj + (1− θj)ci

)2

×
(

(1− θi)cj + (1− θj)ci
(1− θi) + (1− θj)− (1− θi)(1− θj)/σ

)1−σ
,

(36)

for θ ∈ [0, 1−σ(1−c1/c2)]× [0, 1] (with c1 ≤ c2 and 1/σ ∈ (1−c1/c2, 2)). This again determines

both the payoffs and the strategy spaces of both firms. As above, in order to analyze the best

reply of firm i in θi, it is useful to evaluate the sign of the partial derivative of Π∗i (θi, θj) with

respect to θi, sign{∂iΠ∗i (θ)}, which can be reduced to the sign of the following expression

(σ − 1)(1− θi)(1− θj)[cj − (1− (1− θj)/σ)ci]

+ [(1− θi) + (1− θj)− (1− θi)(1− θj)/σ][(1− θi)cj − (1− θj)ci].
(37)

This sign is clearly positive for any θi ∈ [0, 1) if θj = 1. So taking θ = (1 − σ(1 − c1/c2), 1)

together with the Bertrand equilibrium outcome (with price PB = c2 and firm 2 inactive when

c1 < c2) describes a sub-game perfect equilibrium of the two-stage game for any σ (with 1/σ ∈

(1− c1/c2, 2)).

But other sub-game perfect equilibria exist for some values of the parameters. If σ = 1,

there exists a sub-game perfect equilibrium, with both firms active in the associated sub-game,

and with equilibrium strategies θ ∈ [0, c1/c2)× [0, ] such that (1− θ1)/(1− θ2) = c1/c2, so that

∂iΠ∗i (θ) = 0, for i = 1, 2 (because of the upper bound imposed on θ1, c1/c2 > 1/2 is required).

In the symmetric case (i.e. c1/c2 = 1) for instance, θ = 0 together with the Cournot equilibrium

outcome is a sub-game perfect equilibrium of the two stage game.

to the one obtained by Boone (2004) showing that a more aggressive outcome (here, the elimination of the less

efficient firm) should be expected when firms differ in their efficiency levels.
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If σ 6= 1, from the two first order conditions for an interior maximum ∂1Π∗1(θ) = ∂2Π∗2(θ) = 0,

we get

cj − (1− (1− θj)/σ)ci = −ci + (1− (1− θi)/σ)cj ,

Leading to

(1− θj)ci = −(1− θi)cj ,

which is only possible for θ = (1, 1). But θ1 = 1 is outside firm 1 admissible strategy space

except when the two firms have identical costs (a case already treated). This excludes equilibria

with interior θ. Taking θ∗ = (0, 0) we can however easily check that ∂iΠ∗i (θ
∗) ≤ 0, for i = 1, 2,

under the condition that c1/c2 ≥ (1 + σ − 1/σ)/σ, hence leading to the Cournot equilibrium

outcome. The condition is satisfied for any cost configuration if 1 + σ − 1/σ ≤ 0 (that is,

σ ≤ (
√

5 − 1)/2 = 0.618). Otherwise, the condition forbids a too large efficiency gap between

the two firms, and the more so the closer σ becomes to one.

The existence of a subgame perfect equilibrium leading to the Cournot outcome under enough

complementarity ( a low enough σ) is easily explained by the fact that, in that case, among the

three terms in the firm payoff – the market share, the degree of monopoly and the aggregate

expenditure level – the last two are now decreasing in the firm competitive toughness (and the

more so the higher the level of complementarity).

6 Conclusion

In this paper we have seen that a great variety of oligopolistic regimes can be analyzed in a single

static model where all regimes that are potentially enforceable as non-cooperative equilibria can

be parameterized in terms of individual competitive toughness. Oligopolistic situations can

vary in many respects: their sectoral characteristics, the efficiency distribution of firms, the

norms of conduct in the industry, the timing of decisions, the consumer rationing scheme, the

contracting possibilities, etc. The specification of all these features may generate a complex

model in which the competition regime is well determined. An example already mentioned

is Kreps and Scheinkman (1983). But our claim is that, in many oligopolistic situations, the
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equilibrium analysis can be performed in a single reduced canonical model. This canonical model

then provides a convenient tool to investigate some relevant issues for competition and economic

policy.17 Moreover it is ready-made for empirical testing, since its parameterization happens to

be isomorphic to the one used in econometric models adopting the “conduct parameter method.”

Of course, many issues remain to be treated. The extension of the concept to differentiated

good industries has already been undertaken (d’Aspremont and Dos Santos Ferreira, 2005, and

d’Aspremont et al, 2007). Furthermore, the existence problem requires more development,

in particular to explore the role of the kink in the producer’s feasibility frontier in relieving

curvature conditions. In studying the existence problem though, there is now a crucial change

in focus, since the main question is not the existence of equilibrium in a particular regime but

the determination of the set of enforceable competition regimes, a set that changes with the

oligopolistic situation. The study of the variation of this set in relation to the context is a new

and important issue on the agenda.
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