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Abstract

For an industry producing a composite commodity, we propose a comprehensive concept

of oligopolistic equilibrium, allowing for a parameterized continuum of regimes varying in

competitive toughness. Each firm sets simultaneously its price and its quantity under two

constraints, relative to its market share and to market size. The price and the quantity

equilibrium outcomes always belong to the set of oligopolistic equilibria. When firms are

identical and we let their number increase, any sequence of symmetric oligopolistic equilib-

ria converges to the monopolistic competition outcome. Further results are derived in the

symmetric CES case, concerning in particular the collusive solution enforceability.

1 Introduction

The Cournot–Bertrand debate has been central to the static analysis of oligopolistic competition

since the origins of oligopoly theory. It is generally viewed as opposing quantities and prices

as the relevant strategic variables. But such a view bypasses another opposition, possibly more
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significant, between market size and market share as the relevant targets. An oligopolistic

firm faces in any case a price–quantity trade-off, with higher prices inducing lower sales and

higher sales requiring lower prices. But in the approach of Cournot (1838, ch. VII), a lower

price, which “is necessarily the same” for all firms, entails higher sales, given competitors’

supplies, through the resulting increase in market size, whereas in the approach of Bertrand

(1883), undercutting competitors’ prices is meant to secure a higher market share, maybe a

full appropriation of the market, independently of its size. Of course, market size and market

share considerations are not mutually exclusive and may well coexist in various degrees, either

orienting producers’ strategies mainly against competitors outside the industry or directing them

more aggressively against insiders, respectively, and leading to a large spectrum of possible

regimes of oligopolistic competition. This variety of regimes should not be reduced to the

dichotomous choice between Bertrand and Cournot or between price and quantity competition.

Many applications of oligopoly theory in the fields of industrial organization and international

trade, and also in macro-economic analysis of business cycles, innovation and growth, limit

themselves to this pairwise comparison. Our objective is to offer, for modeling purposes, a

unified formulation of the whole spectrum of enforceable noncooperative equilibria with varying

degree of competition, allowing for easy intertemporal or intersectoral comparisons within the

same model.

The proposed concept remains in the spirit of Cournot, and considers oligopolistic competi-

tion as a generalization of monopoly, by adding to the competitive pressure coming from outside

the industry the one due to the multiplicity of producers within the industry. Switching from

monopoly to oligopoly implies combining the struggle of the whole industry for market size with

the struggle of each individual firm for its market share. Accordingly, we suppose that each firm,

while maximizing its profit in both price and quantity, faces two constraints: one bounding the

size of the market as determined by the price level in the industry, the other bounding its share

of that market as determined by its relative price. We thus obtain a large set of solutions (i.e.,

of competition regimes) that can be parameterized using the values of the Lagrange multipliers

associated with each one of the two constraints, on market share and on market size. For each
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firm, this parameter is chosen to be the relative shadow cost of the market share constraint and

appears as a measure of the competitive toughness of the firm conduct.

An advantage of this parameterization is that it is isomorphic to the parameterization used

in the so-called conduct parameter method of the new empirical industrial organization and

its well-known econometric modeling of firm and industry behavior.1 Hence, it allows us to

test competitive toughness in our sense using standard empirical techniques. Conversely, our

approach proposes a theoretical foundation for this method, which, in the homogeneous good

case, is often apologetically associated with the conjectural variations approach.2 Moreover, this

approach is not current practice in the case of product-differentiated industries.

Competitive toughness is not the only dimension of competition intensity. This article will

make clear how the set of enforceable oligopolistic equilibria varies along other dimensions, such

as the degree of concentration as measured by the number of competitors (or more generally by

some concentration index) – less concentration entailing more intense competition – or such as

the degree of substitutability between differentiated products – greater substitutability resulting

in more intense competition.3

From a theoretical viewpoint, the market-share and the market-size constraints define the

two branches of a kinked feasibility frontier, expressing the price – quantity trade-off imposed

on the profit-maximizing firm. This frontier is of course reminiscent of the kinked demand curve

introduced by Hall and Hitch (1939) and Sweezy (1939), but with two major differences. The

first difference is that the kink obtained by these authors results from a fundamental asymmetry

in producers’ conjectures about the reaction of their competitors to any price deviation: price

matching if the deviation is downwards, inertia otherwise. By contrast, we resort to straight

Nash conjectures on competitors’ strategies, but admit that catalogue prices are automatically

adjusted before transactions. This may be interpreted according to some kind of “facilitating
1Clear and complete overviews are provided by Bresnahan (1989) and Martin (2002). See also Corts (1999),

for additional references.
2For a critique, see Corts (1999).
3Boone (2000, 2001) are attempts to axiomatize a general measure of intensity of competition, merging all

dimensions.
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practice” (Salop, 1986), such as the “best price guarantee” when the industry product is homo-

geneous. The second differ- ence is that Hall and Hitch, as well as Sweezy, refer strictly to price

competition, assuming that the market share is kept constant whenever a price cut is matched

by the competitors. We refer instead to price – quantity competition, so that the constraint on

market size generates a Cournotian residual demand.4

The concept of oligopolistic equilibrium is defined here for an industry supplying a group of

differentiated products aggregated into a composite commodity,5 in a similar but more general

framework than the popular one introduced by Dixit and Stiglitz (1977) and Spence (1976a,

1976b). The homogeneous product case is a limit case, when the degree of substitutability is

in finite.6 Then the set of oligopolistic equilibria includes the Cournot solution as the soft-

est enforceable competition regime at one extreme, as well as the competitive equilibrium at

the other extreme, when competitive toughness is maximal. All competition regimes that are

enforceable in the homogeneous case are intermediate to these two extremes. When products

are differentiated, the set of enforceable oligopolistic equilibria still includes the quantity and

price equilibrium outcomes (usually called Cournot and Bertrand equilibria). However, as sub-

stitutability decreases, softer competition regimes become also enforceable, since market shares

become less and less responsive to price cuts, which makes them less and less attractive for a

potential deviator. For a sufficiently low elasticity of substitution, even the collusive regime
4The same approach has already been adopted, although in a different setting (where market price is determined

by the so-called min-pricing scheme), by d’Aspremont et al. (1991). Kalai and Satterthwaite (1994) also refer

to facilitating practices, and obtain a kinked demand curve from a price matching policy. But, contrary to our

Cournotian approach, they adhere to strict price competition, in the line of the founders of the kinked demand

model.
5See Gorman (1959) and Green (1964, ch. 4).
6In the industry we consider, products are not necessarily substitutes, perfect complementarity being actu-

ally another limit case. This case corresponds to Cournot’ s complementary monopoly (Sonnenschein, 1968).

Sonnenschein uses the expression “complementary monopoly” for Cournotian (price) competition between firms

producing perfectly complementary goods. Cournot himself used the expression concours des producteurs (pro-

ducers’ concurrence, ch. IX), by contrast with concurrence des producteurs (producers’ competition, ch.VII) in

the homogeneous oligopoly case.
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may become enforceable as an oligopolistic equilibrium. But a reverse argument applies when

the degree of substitutability becomes too low, making upward price deviations profitable be-

cause of unresponsive market shares. Moreover, for any elasticity of substitution larger than

1, when indefinitely increasing the number of firms, and as market shares become negligible,

all oligopolistic equilibria converge to the monopolistic competition equilibrium as long as com-

petitive toughness is bounded away from 0. But, if we allow competitive toughness to become

itself negligible along with market shares, then indeterminacy persists and even the collusive

solution may remain enforceable. In Section 2, we define the concept of oligopolistic equilibrium

for an industry producing a composite commodity, and we characterize the set of oligopolistic

equilibria. We show in Section 3 that this set includes quantity and price equilibrium outcomes,

and in Section 4 that it may also include monopolistic competition and, at the other extreme,

collusive outcomes. In Section 5, we analyze in more detail the symmetric case, with a CES

aggregator. Finally, we conclude in Section 6.

2 Oligopolistic equilibrium

We consider an industry producing a composite commodity, and consisting of n firms (n > 1),

each firm i producing a single component of the composite good with a technology that is

described by a cost function Ci, which is continuously differentiable on (0,∞), and such that

Ci(0) = 0.

2.1 Demand to the industry and demand to the firm

We suppose that any basket x ∈ <n+ of industry products, viewed as elements of the composite

good, can be aggregated into a quantity Q(x) of this good, which could be interpreted as a

subutility function, identical for all consumers.7 The aggregator Q is assumed to be a twice
7We can alternatively suppose that the composite good is demanded by down streams firms, its quantity

appearing as an argument of the corresponding production functions.
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continuously differentiable, increasing, strongly quasi-concave8 function, which is homogeneous

of degree 1. A well-known example of this class is the CES aggregator, introduced by Dixit and

Stiglitz (1977) and Spence (1976a, 1976b).

Any household h minimizes at prices p = (p1, · · · , pn) the cost
∑

i pixhi of a basket xh =

(xh1, · · · , xhn) under the constraint Q(xh) ≥ Xh, where Xh is an argument of its utility function.

The expenditure function, associating with the price vector p and the quantity Xh, the minimal

attainable expenditure, can be written as P (p)Xh, where P is a price aggregator with the same

properties as Q. There are two important dual limit cases for the aggregators, which will not be

ignored in spite of being, strictly speaking, outside our framework (because of loss of regularity

and differentiability). The first one is the homogeneous commodity case, where the quantity and

price aggregators can be, respectively, defined as Q(xh) =
∑

i xhi and P (p) = mini{pi}. The

second one is the Leontief case of perfect complements, where the quantity and price aggregators

are, respectively, given by Q(xh) = mini{xhi} and P (p) =
∑

i pi.

We shall in the following use the first-order condition for expenditure minimization (denoting

by ∂f the gradient of f)

p = P (p) ∂Q(xh) (1)

and, by Shephard’s lemma, the dual condition

xh = Q(xh) ∂P (p) . (2)

By the latter condition,

∑
h

xh = ∂ P (p)
∑
h

Q(xh) and Q(∂ P (p)) = 1,

so that ∑
h

Q(xh) = Q

(∑
h

xh

)
.

8By strong quasi-concavity of a utility (production) function, we mean strict quasi-concavity, together with

regularity of its bordered Hessian. This property entails twice continuous differentiability of the expenditure

(cost) function, and continuous differentiability of the demand function (see Barten and Böhm, 1982).
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Thus, through aggregation over all h’s, we obtain multiplicative separability of the aggregate

demand to firm i, diP (p) = ∂i P (p)Q(
∑

h xh), allowing identification of two components: the

market share,
diP (p)
Q(
∑

h xh)
= ∂iP (p) , (3)

and the market size, as determined by the demand to the industry D,

Q

(∑
h

xh

)
= D(P (p)), (4)

where D is assumed to be a decreasing, continuously differentiable function.

2.2 Definition and characterization of the equilibrium

We can now define the concept of oligopolistic equilibrium, where each firm strategies are sup-

posed to be price-quantity pairs: each firm i announces a pair (pi, qi) ∈ IR2
+, where pi is a list

price and qi is a quantity produced in advance. For concreteness, we shall start from a particular

interpretation applying to markets (such as retail markets) where “price-making policies” are

common practice. But the concept that we will finally derive below (Lemma 1), with each firm

facing two constraints, one on market size as determined by the market price level, the other

on its market share as determined by its relative price, will appear to be more general and

applicable to a larger set of industries.

To define the profit function of each firm, let us start by the limit case where the composite

good is actually homogeneous, so that firms produce perfect substitutes. When establishing

sales contracts, firm i must be aware that consumers might want to look elsewhere for a lower

price. A standard way to trigger consumer decision immediately is for the firm to advertise

a clause guaranteeing the best price, that is, ensuring that any competitor’s lower price will

instantaneously be matched. Alternatively, in the case where consumers are well informed and

each firm commits to serve all demand, no consumer would accept paying more than the lowest

price. Formally, this means that the revenue of firm i will also depend on the prices listed

by the other firms and that the relevant price, or “market price,” is given by P (pi, p−i) =

min{pi,minj 6=i pj}, the profit of firm i being defined as Πi(p, q) = P (p) qi − Ci(qi). In a more
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abstract formulation in terms of “pricing schemes” (i.e., mechanisms associating a market price

to profiles of list prices9 the function P is simply the so-called min-pricing scheme. Our approach

here can be seen as a generalization of this notion to the composite good case.

In the composite good case, with general quantity index Q(q), the equivalent of the best

price guarantee should take into account product differentiation. In practice, this could take

the form of a detailed specification of the characteristics differentiating each product, together

with a list of prices, one for each characteristic. In our model, the formal representation of

product differences is given by the partial derivatives ∂iQ(q), i = 1, 2, · · · , n, measuring the

specific contribution of each good to the composite good (all equal to one in the homogeneous

case). The price actually paid should be adjusted to take into account these differences. Our

formulation follows from the first-order condition (1) leading to the contracted price P (p) ∂iQ(q),

where the price aggregator P (p) is weighted by ∂iQ(q) (leading to P (p) ∂iQ(q) = minj{pj} when

the goods are perfect substitutes). As the price paid by the consumers should in addition never

exceed the listed price pi, the profit of firm i is consequently defined as

πi(p, q) = min{pi, P (p) ∂iQ(q)}qi − Ci(qi).

Moreover, as usual in oligopoly theory since Cournot, the firms should integrate in their com-

putations the constraint imposed by total demand. Accordingly, the firm strategies should satisfy

the constraint Q(q) ≤ D(P (p)) (with Q(q) =
∑

j qj when the goods are perfect substitutes).

We do not constrain firm i to choose its price-quantity pair (pi, qi) such that Q(q) = D(P (p)),

which would allow us to reduce each firm strategy to a quantity, with market price given by the

inverse demand, as in the common understanding of Cournot. But the equality is still imposed

at equilibrium, so that consumers are not rationed.

Accordingly, we define an oligopolistic equilibrium to be a 2n-tuple (p∗, q∗) such that (p∗i , q
∗
i )

satisfies, for any i,

πi(p∗, q∗) ≥ πi(pi, p∗−i, qi, q∗−i)

for all (pi, qi) ≥ 0 such that Q(qi, q∗−i) ≤ D(P (pi, p∗−i)),

9Cf. d’Aspremont et al. (1991).
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and such that the additional restriction

Q(q∗) = D(P (p∗)) (5)

holds.10

The following result gives two alternative definitions of the oligopolistic equilibrium concept,

thus enlarging the set of possible interpretations and the class of industries for which it makes

sense. These two characterizations will generate two equivalent parameterizations of the set of

competition regimes and the associated potential oligopolistic equilibria.

Lemma 1 A 2n-tuple (p∗, q∗) is an oligopolistic equilibrium if and only if

Q(q∗) = D(P (p∗)) (6)

and, for each firm i, (p∗i , q
∗
i ) solves the program

max
(pi,qi)∈IR2

+

 piqi − Ci(qi) : pi ≤ P (pi, p∗−i)∂iQ(qi, q∗−i)

and P (pi, p∗−i) ≤ D−1(Q(qi, q∗−i))

 (7)

or, alternatively, for each firm i, (p∗i , q
∗
i ) solves the program

max
(pi,qi)∈IR2

+

 piqi − Ci(qi) : qi ≤ Q(qi, q∗−i)∂iP (pi, p∗−i)

and Q(qi, q∗−i) ≤ D(P (pi, p∗−i))

 . (8)

Condition (6) ensures, for each alternative program formulation, that both constraints hold as

equalities at equilibrium.

Proof: Clearly, hour our assumptions and using duality (see (1) and (2)), each constraint

in program (7) is equivalent to the corresponding constraint in program (8), so that the two

programs are equivalent.

Suppose now that for some oligopolistic equilibrium (p∗, q∗) and for some firm i, (p∗i , q
∗
i )

does not solve (7), so that there is (pi, qi) ∈ IR2
+ satisfying both program constraints and such

10In order for an oligopolistic equilibrium to be a Nash equilibrium of a game, one should specify the payoff

whenever Q(q) > D(P (p)). An easy way is to specify that, for each i, Πi(p, q) < 0 in such a case.
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that p∗i q
∗
i − Ci(q∗i ) < piqi − Ci(qi) ≤ min{pi, P (pi, p∗i )∂iQ(qi, q∗−i)}qi − Ci(qi). We thus obtain a

contradiction.

Conversely, take (p∗, q∗) satisfying (6) and such that, for each i, (p∗i , q
∗
i ) solves (7), and

suppose that it is not an oligopolistic equilibrium. Then, there must be (pi, qi) ∈ IR2
+ satis-

fying the total demand constraint (equivalent to the second constraint of (7)) and such that

min{pi, P (pi, p∗−i)∂iQ(qi, q∗−i)}qi − Ci(qi) > p∗i q
∗
i − Ci(q∗i ). If pi ≤ P (pi, p∗−i)∂iQ(qi, q∗−i), we

immediately obtain a contradiction. If not, the contradiction results from taking (p′i, qi), with

p′i = P (p′i, p
∗
−i)× ∂iQ(qi, q∗−i) < pi, satisfying both constraints of (7).

In this lemma, it is shown that an oligopolistic equilibrium can be characterized by having

each firm maximizing profit under two alternative pairs of constraints. In the first pair, we

have one constraint imposing that firm i does not set a relative price pi/P (p) higher than the

(common) marginal utility ∂iQ(q) of the ith good and another bounding the market price by

the inverse demand:

pi/∂iQ(qi, q∗−i) ≤ P (pi, p∗−i) ≤ D−1(Q(qi, q∗−i)). (9)

In the second, dual, pair of constraints

qi/∂iP (pi, p∗−i) ≤ Q(qi, q∗−i) ≤ D(P (pi, p∗−i)), (10)

the first inequality maybe viewed as a constraint imposed on market share qi/Q(q), and the

second one as a constraint imposed on market size Q(q).

As illustrated in Figure 1 (drawn in the (qi, pi) space, for an aggregator with constant

elasticity of substitution s and a demand function with constant Marshallian elasticity σ), the

individual firm outcome is generically corner solution at the kink of the feasibility frontier,

represented by the thick decreasing curve.11 This frontier has two branches, corresponding to

the two constraints, with elasticities at the kink equal to −1/s for the constraint on market share
11The data underlying this figure are those of a symmetric duopoly in which firms produce at zero-fixed cost

and constant marginal cost c = .75. We take σ = 2 and s = 25. The represented symmetric equilibrium is

(pi, qi) = (1, 1), for i = 1, 2.
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and −1/σ for the constraint on market size (so that the relative position of the two branches

depends on the relative values of s and σ).12

Figure 1: Profit maximization under the constraints on market share and market size

The thin isoprofit curve is tangent to neither of the two branches. But the gradient of the profit

function at the kink (the direction of which is represented by the thin line) belongs to the normal

cone (bounded by the two thick gray lines) generated at the same point by the two constraints.

2.3 Parameterization of the set of equilibria

The first-order necessary conditions for the maximization of piqi − Ci(qi) under the two alter-

native pairs of constraints, (9) and (10), are, respectively, q∗i

p∗−i − C ′i(q∗i )

 =
λi

∂iQ(q∗)

 1− ∂iQ(q∗)∂iP (p∗)

− p∗i ∂2
iiQ(q∗)/∂Q(q∗)

+ νi

 ∂iP (p∗)

− ∂iQ(q∗)/D′(P (p∗))

 (11)

12The two branches of the kinked feasibility fonder are local approximations (at the kink) of Chamberlin’s

(1933) depend curves dd′ (with other prices kept constant when varying pi) and DD′ (with other prices in the

industry varying proportionally with pi). Chamberlin’s curves are the branches of the kinked demand curve in

Hall and Hitch (1939).
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and q∗i

p∗i − C ′i(q∗i )

 =
λ′i

∂iP (p∗)

 −q∗i ∂2
iiP (p∗)/∂iP (p∗)

1− ∂iP (p∗)∂iQ(q∗)

+ ν ′i

 −D′(P (p∗))∂iP (p∗)

∂iQ(q∗)

 (12)

for some pairs of Kuhn and Tucker multipliers (λi, νi), (λ′i, ν
′
i) in IR2

+ \ {0}. The normalized

parameter θi = λi/(λi + νi) (resp. θ′i = λ′i/(λ
′
i + ν ′i)), representing the relative shadow cost

associated with the market share constraint of firm i, can be taken to measure the competitive

toughness of firm i within the industry, at equilibrium (p∗, q∗).

Denote by s(pi/P (p)) the elasticity of substitution of good i for the composite commodity,

which is the absolute value of the elasticity of qi/Q(q) with respect to pi/P (p). Using the

elasticity operator ε,13 the elasticity of ∂IP (p) with respect to its ith argument can then be

written εi∂iP (p) = −s(pi/P (p))[1− εiP (p)]. Using the simplifying notations s∗i ≡ s(p∗i /P (p∗))

for the elasticity of substitution relative to good i, σ∗ ≡ −εD(P (p∗)) for the Marshallian elasticity

of demand, and α∗i ≡ εiP (p∗) = εiQ(q∗) = p∗i q
∗
i /
∑

j p
∗
j/q
∗
j for the budget share of good i, all

determined at equilibrium, conditions (11) and (12) can now be expressed in terms of Lerner’s

index of degree of monopoly (p∗i − C ′i(q∗i ))/p∗i ≡ µ∗i ,14 giving respectively

µ∗i = µi(θ, p∗) ≡
1

θi(1− α∗i ) + (1− θi)α∗i

(
θi(1− α∗i )

s∗i
+

(1− θi)α∗i
σ∗

)
(13)

and

µ∗i = µ′i(θ
′, p∗) ≡ θ′i(1− α∗i ) + (1− θ′i)α∗i

θ′i(1− α∗i )s∗i + (1− θ′i)α∗i σ∗
(14)

for every i. We observe that the equilibrium degree of monopoly µ∗i is a mean of two terms,

1/s∗i and 1/σ∗. It is the arithmetic mean in (13), and the harmonic mean in (14).

From these equations a one-to-one relationship between the two indices of competitive tough-

ness of firm i can be derived for s∗i /∈ {0, σ∗,∞}:

1/θi − 1
σ∗

=
1/θ′i − 1
s∗i

. (15)

13The elasticity operator ε, applied to a differentiable function F (·) at x ∈ IRn, is defined by εiF (x) ≡

∂iF (x)xi/F (x). The subscript is omitted when n = 1.
14Notice that the elasticity of the isoprofit curve at the point of intersection of the three curves in Figure 2 is

equal to −µ∗i .
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These two parameterizations can also be put into a one-to-one relationship with the parameters

indexing the competitiveness of oligopoly conduct and appearing in the supply relations of econo-

metric models of an industry such as those used by the “new empirical industrial organization.”

It can be viewed as a way to reconcile the two approaches to estimate the conduct parame-

ters, one restricting estimation to those specific values associated with well-known theories (e.g.,

the competitive theory vs. the Cournot theory), the other treating the conduct parameters as

continuous-valued. Our (static) framework indeed provides a continuum of theories.15

The theoretical justification we propose for these parameterizations is better founded than

the one based on conjectural variations. Consider, for example, the model presented (and ques-

tioned) in Nevo (1998) for a differentiated oligopoly. In the duopoly case (each firm producing

one good), the first-order conditions16 are perturbed by the conjectural derivative parameters

ζi,j , i = 1, 2, j = 1, 2, and cane written (in our notation) as: p∗ − c1

p∗2 − c2

 = A

 −ζ22∂2d2(p∗) ζ21∂2d1(p∗)

ζ12∂1d2(p∗) −ζ11∂1d1(p∗)

 d1(p∗)

d2(p∗)

 ,
with A = (ζ11ζ22∂2d2(p∗)∂1d1(p∗) − ζ12ζ21∂1d2(p∗)∂2d1(p∗))−1. Using our specification di (p) ≡

∂i P (p)D(P (p)), these first-order conditions canbe simplified to

µ∗i =
1

ζ11ζ12− ζ12ζ21

(
ζij

(1− α∗i )s∗i + α∗i σ
−

(α∗j/α
∗
i )ζji

(1− α∗j )s∗j + α∗jσ

)
(16)

for i, j = 1, 2, i 6= j, an expression which is easy to compare to our conditions (13) or (14).

Clearly our conditions are not equivalent to this new one. First, from an estimation point of

view, this conjectural variations approach introduces more parameters to be identified (four

instead of two, more generally n2 instead of n). Second, from a theoretical point of view, our

conditions, giving µ∗i as a mean of 1/s∗i and 1/σ∗, are easier to interpret. Also, in the limit case

15Anyway, Bresnahan (1989) is not really worried about the free parameter approach. “It risks the possibility

that values of θ which are ‘in between’ existing theories will be estimated, but that is hardly a disaster. . . The

researcher who has estimated θ from a continuum will test theories by nested methods. The other researcher will

use non-nested tests to distinguish among the few theories entertained.” This can continue with better foundations.
16Corresponding to equation (6) in Nevo (1998).
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of perfect substitutability (s∗1 = s∗2 = ∞), the µ∗i s are equal to zero, so that all solutions (in

particular the Cournot equilibrium) are excluded except the competitive one, a fact that is not

implied by our model, as we will see now.

3 Quantity and price equilibria

To investigate the set of oligopolistic equilibria, let us first consider the standard, and often used,

quantity and price equilibrium concepts, usually referred to as Cournot and Bertrand equilib-

rium, respectively. We will show that both are included in the set of oligopolistic equilibria.

These concepts result from restricting the strategy space of each firm to one decision variable

only. This amounts to reducing to a single equality the constraints in (9), for the quantity

equilibrium, and in (10), for the price equilibrium.

More precisely, a quantity equilibrium is a quantity vector q∗ such that, for every firm i, q∗i

belongs to the solution set

arg max
qi∈IR+

{∂iQ(qi, q∗−i)D
−1(Q(qi, q∗−i))qi − Ci(qi)}. (17)

A simple calculation yields the first-order condition:

p∗i − C ′i(q∗i )
p∗i

=
1− α∗i
s∗i

+
α∗i
σ∗

(18)

with p∗i = ∂iQ(q∗)D−1(Q(q∗)) and α∗i = εiQ(q∗) = εiP (p∗), for every i. Looking at (13), we ob-

serve that it coincides17 with the first-order condition for profit maximization in an oligopolistic

equilibrium when θi = 1/2. This amounts to giving the same weight to the two constraints as

expressed in (9). In particular, whenever the elasticity of intraindustry substitution tends to

infinity, the degree of monopoly of any firm tends to its Cournot value.

Similarly, a price equilibrium is a price vector p∗ such that, for every firm i, p∗i belongs to

17Both in this case and in the case of a price equilibrium, the coincidence of the first-order conditions does

not imply that the conditions for existence of an equilibrium coincide. These will generally be weaker for the

corresponding oligopolistic equilibrium.
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the solution set

arg max
pi∈IR+

{pi∂iP (pi, p∗−i)D(P (pi, p∗−i))− Ci(∂iP (pi, p∗−i)D(P (pi, p∗−i)))}. (19)

A straightforward calculation leads to the first-order condition

p ∗i −C ′i(q∗i )
p∗i

=
1

(1− α∗i )s∗i + α∗i σ
∗ , (20)

with q∗i = ∂iP (p∗)D(P (p∗)). By referring to (14), we see that it coincides with the first-order

condition for profit maximization in an oligopolistic equilibrium when θ′i = 1/2, which amounts

to giving the same weight to each of the two constraints as expressed in (10). Observe that

whenever the elasticity of intraindustry substation tends to infinity the degree of monopoly

tends to zero, and thus, the price equilibrium tends to the corresponding Bertrand homogeneous

product equilibrium (in the symmetric linear cost case). Also, if the elasticity of intraindustry

substitution tends to zero (the Leontief case of perfect complementarity), the degree of monopoly

tends to its Cournot value for complementary monopoly.18

The following simple proposition confirms that quantity and price equilibrium outcomes

belong to the set of oligopolistic equilibria.

Proposition 1 To every quantity equilibrium q∗ corresponds an oligopolistic equilibrium (p∗, q∗)

with p∗ = ∂Q(q∗)D−1(Q (q)). Also, with constant marginal costs ci ≥ 0, to every price equilib-

rium p∗ corresponds an oligopolistic equilibrium (p∗, q∗) with q∗ = ∂P (p∗)D(P (p∗)).

Proof: Suppose that q∗ is a quantity equilibrium, but that (p∗, q∗), with p∗i = ∂iQ(q∗)D−1(Q(q∗))

for all i, is not an oligopolistic equilibrium. Then piqi − Ci(qi) > p∗i q
∗
i − Ci(q∗i ), for some i and

some (pi, qi) such that pi ≤ ∂iQ(qi, q∗−i)P (pi, p∗−i) and P (pi, p∗−i) ≤ D−1(Q(qi, q∗−i)). This implies

pi ≤ ∂iQ(qi, q∗−i)D
−1(Q(qi, q∗−i) , so that we get

∂iQ(qi, q∗−i)D
−1(Q(qi, q∗−i))qi − Ci(qi) > ∂iQ(q∗)D−1(Q(q∗))q∗i − Ci(q∗i ),

a contradiction.
18See Cournot (1838, ch. IX), and Sonnenschein (1968).
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With constant marginal costs ci ≥ 0, a similar argument shows that (p∗, q∗) with q∗i =

∂iP (p∗)D(P (p∗)) for all i, is an oligopolistic equilibrium whenever p∗ is a price equilibrium.

Indeed, (pi−ci)qi > (p∗i−ci)q∗i for some i and some (pi, qi) such that qi ≤ ∂iP (pi, p∗−i)Q(qi, q∗−i) ≤

∂iP (pi, p∗−i)D(P (pi, p∗−i)) implies

(P − i− ci)∂iP (pi, p∗−i)D(P (pi, p∗−i)) > (p∗i − ci)q∗i ,

a contradiction.

However, the inclusion of price (or Bertrand) equilibrium outcomes in the set of oligopolistic

equilibria is not generally true for any cost structure. Indeed, the Bertrand equilibrium requires

that the price-setting producers always satisfy demand (even when deviating),whereas this is

only an equilibrium requirement for the oligopolistic equilibrium.

4 Monopolistic competition and tacit collusion

To further explore the set of oligopolistic equilibria, let us come back to Equations (13) and

(14). We see that the degree of monopoly µi varies with θi (or µ′i with θ′i) between

µi(1, p∗) =
1
s∗i
, (21)

the reciprocal of the elasticity of substitution, when the competitive toughness of firm i is

maximal (θi = θ′i = 1), and

µi(0, p∗) =
1
σ∗
, (22)

the reciprocal of the elasticity of demand to the industry, when the competitive toughness of

firm i is minimal (θi = θ′i = 0). The former extreme value 1/s∗i is also the degree of monopoly

prevailing when firm i budget share α∗i becomes negligible, that is, in monopolistic competition (in

Chamberlin’s “large group”). The latter extreme value 1/σ∗ is the collusive degree of monopoly,

corresponding to joint profit maximization.19

19Joint profit is equal to
Pn

i=1(piqi−Ci(qi)) = P (p))Q (q)−
Pn

i=1 Ci(qi), and can be maximized in two stages,

first in terms of P and q, under the constraint Q (q) = D (P ), and then in terms of p, using demander’s optimizing
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We have seen that the equilibrium degree of monopoly is a mean of these two extreme values.

When calculating such a mean, the (monopolistically) competitive value 1/s∗i is weighted by the

product of the competitive toughness of firm i and of the budget share of its competitors, so

that it can alternatively be approached either by increasing competitive toughness of firm i or

by reducing its budget share. In particular, in the limit homogeneous case (s∗i = ∞), a zero

degree of monopoly may result either from extreme competitive toughness à la Bertrand, or

from the vanishing market share of every element of a continuum of perfectly competitive firms.

These comments lead to the result for symmetric oligopolistic equilibrate stated in the following

proposition.

Proposition 2 Any sequence of symmetric oligopolistic equilibria (pn, qn)n corresponding to an

increasing number of identical firms (n = 2, 3, · · ·), each having competitive toughness θn (resp

θ
n) bounded away from 0, converges to the monopolistic competition equilibrium (corresponding

θ = θ
′ = 1).

Proof: The proposition is an immediate consequence of the fact that, along a sequence

of symmetric oligopolistic equilibria with an increasing number of firms, the budget share

αni = pni q
n
i /[P (pn)Q(qn)] = 1/[P (1, · · · , 1)Q(1, · · · , 1)] of each firm i is decreasing and even-

tually becomes negligible. Applying this fact to the first-order conditions (13) or (14), with

competitive toughness bounded away from 0, leads to µi(1, p∗) = 1/s∗i , for every i.

5 The CES case with identical linear costs

To illustrate the different kinds of oligopolistic equilibria and make our analysis more precise,

we now examine the standard case of the (symmetric) CES aggregators

Q (q) =

∑
j

q
(s−1)/s
j

s/(s−1)

and P (p) =

∑
j

p1−s
j

1/(1−s)

, (23)

conditions. In the first stage, we obtain as first-order conditions that, for any i, (1− 1/σ)P∂iQ (q) = C′i(qi). At

the second stage, we use ∂iQ (q) = pi/P (p), and finally get (pi − C′i(qi))/pi = 1/σ.
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with s > 0, and such that Q (q) and P (p) tend to Q (q) =
∑

j qj and P (p) = minj{pj} (resp. to

Q(q) = minj{qj} and P (p) =
∑

j pj) as s tends to infinity (resp. zero). Assuming for simplicity

an isoelastic demand aP−σ to the industry (with a > 0 and σ > 0), the demand addressed to

firm i takes the explicit form:

di (p) = a∂iP (p) (P (p))−σ, with ∂iP (p) = (pi/P (p))−s. (24)

We also assume the same positive constant marginal cost c for all firms, and restrict our analysis

to symmetric equilibria.

5.1 Bounds on competitive toughness

The set of values of competitive toughness (measured by θ or θ′ for all i) that parameterize

actual (as opposed to merely potential) symmetric oligopolistic equilibria does not coincide with

the whole interval [0, 1] for any elasticity of substitution s. Take for instance the case θ = θ
′ = 1,

and notice that it is excluded as soon as s ≤ 1, the least upper bound of θ (or θ′) being then

the value,20 smaller than 1, which implies a degree of monopoly equal to 1. Taking θ = θ
′ = 1

with s > 1, we get an equilibrium degree of monopoly equal to 1/s, which corresponds exactly,

not just approximately, to the one obtained by Dixit and Stiglitz.21

Looking at the Dixit-Stiglitz outcome as an approximation, acceptable for large enough n,

is of course in the line of Chamberlin’s “large group,” but one can also take it as a precise result

and relate the underlying type of competition to Bertrand. Indeed, in Bertrand’s argument (for

s = ∞), the market size is immaterial: No price higher than marginal cost can be sustained,

since any firm would otherwise have the possibility of slightly undercutting such price to catch
20The least upper bound of admissible θ tends to 0 as s tends to 0, making it more and more inconvenient

(impossible in the limit) to use this measure of competitive toughness to parameterize oligopolistic equilibria. In

the case of strong complementarity, it is preferable to use θ
′
, the least upper bound of which tends to (σ−1)/(σ+

n− 2) as s tends to 0.
21This well illustrates that the Dixit-Stiglitz monopolistic competition equilibrium is not a price equilibrium.

Both coincide only in the limit situation of an infinite number of firms (see Yang and Heijdra, 1993; d’Aspremont

et al., 1996).
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the whole demand, whatever its level. In the original Dixit-Stiglitz approach (for s ∈ (1,∞)),

market size also remains immaterial for the price outcome because each firm is assumed to take

the aggregate price P (hence market size) as independent of its own decision. Finally, in our

approach the same is still true because of a zero relative shadow cost of the constraint on market

size (θ = θ
′ = 1).

The other extreme case θ = θ
′ = 0 leads to an equilibrium degree of monopoly equal to the

collusive value 1/σ (if σ > 1), but necessary second-order conditions for local profit maximization

may not be verified, contrary to the former extreme case. As shown in the following proposition,

the symmetric collusive solution (in fact any symmetric profile satisfying first-order conditions,

whatever the common competitive toughness) is enforceable as an oligopolistic equilibrium if s

belongs to some interval [s(σ, n), s(σ, n)] ⊃ [1, σ]. When σ tends to 1, this interval degenerates

into {1}. When n increases, this sufficient condition becomes stricter, the interval eventually

shrinking to [1, σ +
√
σ(σ − 1)], this limit interval being however non degenerate for σ > 1.

This means that, if intraindustry substitutability is moderate, the symmetric collusive solu-

tion is enforceable as an oligopolistic equilibrium even for an arbitrarily large number of firms.

The reason why such enforceability is lost when the elasticity of substitution reaches a high

level is that, as market shares strongly respond to the corresponding relative price changes, it

becomes profitable for any individual firm to deviate by decreasing its price and accordingly

increasing its quantity. The reverse holds when the elasticity of substitution is low, market

shares becoming insensitive, which makes price increases appealing.

Formally, as s becomes large or small, one must move from the collusive value 1/σ of the

degree of monopoly toward 1/s in order to obtain existence of an oligopolistic equilibrium.

Denote by µC(s) the degree of monopoly that, for the elasticity of substitution s, is enforceable

and closest to its collusive value, the one that results from the minimum competitive toughness

θ
C(s) (or θ′C(s)) compatible with an oligopolistic equilibrium. For intermediate values of s, in

any case for s ∈ [1, σ +
√
σ(σ − 1), µC(s) = 1/σ, but, as s tends to infinity or to zero, µC(s)

tends to the values calculated by Cournot, µC(∞) = 1/nσ for the homogeneous oligopoly case,
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and µC(0) = n/σ for the complementary monopoly case.22

22Sonnenschein (1968) rightly stress the unity of the two Cournot theories, of homogeneous oligopoly and

complementary monopoly, through the duality of the relevant strategies, quantities, and prices, respectively. Here,

we see that the unity also stems from another source, the closeness to the collusive solution while maintaining

enforceability.

20


