Analysis of purely random forests

Sylvain Arlot^{1,2} (joint work with Robin Genuer³)

¹Université Paris-Saclay

²Inria Saclay, Celeste project-team

³ISPED, Université de Bordeaux

Colloquium, Department of Statistics and Actuarial Science, The University of Iowa March 18, 2021

References: arXiv:1407.3939 (v2 upcoming!) arXiv:1604.01515

Analysis of purely random forests

Purely random forest: 000000000 Toy forests

Hold-out random forest: 00000 Conclusion

Analysis of purely random forests

Purely random forest: 000000000 Toy forests

Hold-out random forests

Conclusion

Outline

2 Purely random forests

4 Hold-out random forests

 Random forests
 Purely random forests
 Toy forests
 Hold-out random forests
 Conclusion

 000000000
 000000000
 00000
 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000<

Goal: find the signal (denoising)

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
○00●○○○○○○		00000000000	00000	000000
Regression				

• Data
$$D_n$$
: $(X_1, Y_1), \dots, (X_n, Y_n) \in \mathbb{R}^p \times \mathbb{R}$ (i.i.d. $\sim P$)
 $Y_i = s^*(X_i) + \varepsilon_i$

with $s^{\star}(X) = \mathbb{E}[Y | X]$ (regression function).

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
○00●○○○○○○		00000000000	00000	000000
Regression				

• Data
$$D_n$$
: $(X_1, Y_1), \dots, (X_n, Y_n) \in \mathbb{R}^p \times \mathbb{R}$ (i.i.d. $\sim P$)
 $Y_i = s^*(X_i) + \varepsilon_i$

with $s^{\star}(X) = \mathbb{E}[Y | X]$ (regression function).

• Goal: learn f measurable function $\mathcal{X} \to \mathbb{R}$ s.t. the quadratic risk

$$\mathbb{E}_{(X,Y)\sim P}\left\lfloor \left(f(X)-s^{\star}(X)\right)^{2}\right\rfloor$$

is minimal.

Regression tree (Breiman et al, 1984)

Tree: piecewise-constant predictor, obtained by partitioning recursively \mathbb{R}^{p} .

Restriction: splits parallel to the axes.

Random forests Purely random forests Toy forests Hold-out random forests Conclusion 000000000 000000000 000000000 00000 00000 Regression tree (Breiman et al, 1984)

Tree: piecewise-constant predictor, obtained by partitioning recursively \mathbb{R}^{p} . Restriction: splits parallel to the axes.

Choice of the partition U (tree structure)
 Usually, at each step, one looks for the best split of the data into two groups (minimize sum of within-group variances) D_n.

Random forests Purely random forests Toy forests Hold-out random forests Conclusion 000000000 000000000 000000000 000000 00000 00000 Regression tree (Breiman et al, 1984) 1984) 1984 1984

Tree: piecewise-constant predictor, obtained by partitioning recursively \mathbb{R}^{p} . Restriction: splits parallel to the axes.

- Choice of the partition U (tree structure)
- Por each λ ∈ U (tree leaf), choice of the estimation β_λ of s*(x) when x ∈ λ. Here, β_λ = Y_λ average of the (Y_i)_{X_i∈λ}.

Purely random forest 000000000 Toy forests

Hold-out random forests

Conclusion 000000

Random forest (Breiman, 2001)

Definition (Random forest (Breiman, 2001))

 $\left\{\widehat{s}_{\Theta_j}, 1 \leq j \leq q\right\}$ collection of tree predictors, $(\Theta_j)_{1 \leq j \leq q}$ i.i.d. r.v. independent from D_n . Random forest predictor \widehat{s} obtained by aggregating the tree

collection.

$$\widehat{s}(x) = rac{1}{q} \sum_{j=1}^{q} \widehat{s}_{\Theta_j}(x)$$

- ensemble method (Dietterich, 1999, 2000)
- powerful statistical learning algorithm, for both classification and regression.

8/43 Sylvain Arlot

- Bootstrap (Efron, 1979): draw *n* i.i.d. r.v., uniform over $\{(X_i, Y_i) / i = 1, ..., n\}$ (sampling with replacement) \Rightarrow resample D_n^b
- Bootstrapping a tree: $\widehat{s}^{b}_{\text{tree}} = \widehat{s}_{\text{tree}}(D^{b}_{n})$
- Bagging: bootstrap (q independent resamples) then aggregation

$$\widehat{s}_{ ext{bagging}}(x) = rac{1}{q}\sum_{j=1}^{q}\widehat{s}_{ ext{tree}}^{b,j}(x)$$

Definition (RI tree)

In a RI tree, at each node, **mtry** variables are randomly chosen. Then, the best cut direction is chosen only among the chosen variables.

Definition (Random forest RI)

A random forest RI (RF-RI) is obtained by aggregating RI trees built on independent bootstrap resamples.

 $\mathsf{RF}\text{-}\mathsf{RI} \hspace{0.1in} \Leftrightarrow \hspace{0.1in} \mathsf{bagging} \hspace{0.1in} \mathsf{on} \hspace{0.1in} \mathsf{RI} \hspace{0.1in} \mathsf{trees}$

Random Forest-Random Inputs

11/43 Sylvain Arlot

occopy random forest

Toy forests

Hold-out random forest: 00000 Conclusion

Theoretical results on RF-RI

- Few theoretical results on Breiman's original RF-RI, despite their excellent numerical performance (eg, Fernández-Delgado et al, 2014)
- Most results:
 - focus on a specific part of the algorithm (resampling, split criterion),
 - modify the algorithm (eg, subsampling instead of resampling)
 - make strong assumptions on s^*
- References (see survey paper by Biau and Scornet, 2016): Scornet, Biau & Vert (2015), Mentch & Hooker (2016), Wager & Athey (2018), Genuer & Poggi (2019), ...

Theoretical results on RF-RI

- Few theoretical results on Breiman's original RF-RI, despite their excellent numerical performance (eg, Fernández-Delgado et al. 2014)
- Most results:
 - focus on a specific part of the algorithm (resampling, split criterion).
 - modify the algorithm (eg, subsampling instead of resampling)
 - make strong assumptions on s*
- References (see survey paper by Biau and Scornet, 2016): Scornet, Biau & Vert (2015), Mentch & Hooker (2016), Wager & Athey (2018), Genuer & Poggi (2019), ...
- \Rightarrow Here, we consider simplified RF models, for which a precise analysis is possible: purely random forests

Toy forests

Hold-out random forests

Conclusion 000000

Analysis of purely random forests

Purely random forests

Toy forests

Hold-out random forests

Conclusion 000000

Purely random forests

Definition (Purely random tree)

$$\widehat{s}_{\mathbb{U}}(x) = \sum_{\lambda \in \mathbb{U}} \overline{Y_{\lambda}}(D_n) \mathbb{1}_{x \in \lambda}$$

where $\overline{Y_{\lambda}}(D_n)$ is the average of $(Y_i)_{X_i \in \lambda, (X_i, Y_i) \in D_n}$ and the partition \mathbb{U} is independent from D_n .

Definition (Purely random forest)

$$\widehat{s}(x) = rac{1}{q} \sum_{j=1}^{q} \widehat{s}_{\mathbb{U}^j}(x)$$

with $\mathbb{U}^1, \ldots, \mathbb{U}^q$ i.i.d., independent from D_n .

Purely random forests

Toy forests

Hold-out random forests

Conclusion 000000

Purely random forests

Definition (Purely random forest)

$$\widehat{s}(x) = rac{1}{q}\sum_{j=1}^{q}\widehat{s}_{\mathbb{U}^{j}}(x) = rac{1}{q}\sum_{j=1}^{q}\sum_{\lambda\in\mathbb{U}^{j}}\overline{Y_{\lambda}}(D_{n})\mathbb{1}_{x\in\lambda}$$

with $\mathbb{U}^1, \ldots, \mathbb{U}^q$ i.i.d., independent from D_n .

Example ("hold-out RF" model): use some extra data D'_n for building the trees: $\mathbb{U}^j = \mathbb{U}_{\mathrm{RI}}(D_n^{\prime\star j})$ (can be done by splitting the sample into two subsamples D_n and D'_n).

Svlvain Arlot

Purely random forests

Toy forests

Hold-out random forests

Conclusion 000000

Purely random forests

Definition (Purely random forest)

$$\widehat{s}(x) = rac{1}{q}\sum_{j=1}^{q}\widehat{s}_{\mathbb{U}^{j}}(x) = rac{1}{q}\sum_{j=1}^{q}\sum_{\lambda\in\mathbb{U}^{j}}\overline{Y_{\lambda}}(D_{n})\mathbb{1}_{x\in\lambda}$$

with $\mathbb{U}^1, \ldots, \mathbb{U}^q$ i.i.d., independent from D_n .

Example ("hold-out RF" model): use some extra data D'_n for building the trees: $\mathbb{U}^j = \mathbb{U}_{\mathrm{RI}}(D_n^{\prime\star j})$ (can be done by splitting the sample into two subsamples D_n and D'_n).

From now on, D_n is the sample used for computing $(\overline{Y_{\lambda}}(D_n))_{\lambda \in \mathbb{U}}$, and we assume its size is n.

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
0000000000		00000000000	00000	000000
Purely ra	ndom forests			

- Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)
- Rates of convergence: Breiman (2004), Biau (2012), Klusowski (2018), Duroux & Scornet (2018), Mourtada, Gaiffas & Scornet (2017 & 2020)
- Some adaptivity to dimension reduction (sparse framework): Biau (2012), Klusowski (2018)
- Forests decrease the estimation error (Biau, 2012; Genuer, 2012)

- Purely random forests: theory
 - Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)
 - Rates of convergence: Breiman (2004), Biau (2012), Klusowski (2018), Duroux & Scornet (2018), Mourtada, Gaiffas & Scornet (2017 & 2020)
 - Some adaptivity to dimension reduction (sparse framework): Biau (2012), Klusowski (2018)
 - Forests decrease the estimation error (Biau, 2012; Genuer, 2012)
 - ⇒ What about approximation error? Almost the same for a forest and a tree?

 Random forests
 Purely random forests
 Toy forests
 Hold-out random forests
 Conclusion

 000000000
 00000
 00000
 00000
 00000
 00000

 Dials of a size la turae (unamore superson)
 000000000
 00000
 00000

Risk of a single tree (regressogram)

Given the partition $\ensuremath{\mathbb{U}},$ regressogram estimator

$$\widehat{s}_{\mathbb{U}}(x) := \sum_{\lambda \in \mathbb{U}} \overline{Y_{\lambda}} \mathbb{1}_{x \in \lambda}$$

where $\overline{Y_{\lambda}}$ is the average of $(Y_i)_{X_i \in \lambda}$.

$$\widehat{s}_{\mathbb{U}} \in \underset{f \in S_{\mathbb{U}}}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i))^2 \right\}$$

where $S_{\mathbb{U}}$ is the vector space of functions which are constant over each $\lambda \in \mathbb{U}$.

Random forests Purely random forests Toy forests Hold-out random forests Conclusion

Risk of a single tree (regressogram)

Given the partition $\ensuremath{\mathbb{U}},$ regressogram estimator

$$\widehat{s}_{\mathbb{U}}(x) := \sum_{\lambda \in \mathbb{U}} \overline{Y_{\lambda}} \mathbb{1}_{x \in \lambda}$$

where $\overline{Y_{\lambda}}$ is the average of $(Y_i)_{X_i \in \lambda}$.

$$\widehat{s}_{\mathbb{U}} \in \underset{f \in S_{\mathbb{U}}}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i))^2 \right\}$$

where $S_{\mathbb{U}}$ is the vector space of functions which are constant over each $\lambda \in \mathbb{U}$.

Define:

$$\tilde{s}_{\mathbb{U}}(x) := \sum_{\lambda \in \mathbb{U}} \beta_{\lambda} \mathbb{1}_{x \in \lambda} \quad \text{where } \beta_{\lambda} := \mathbb{E}[s^{\star}(X) \,|\, X \in \lambda] \; .$$

$$\Rightarrow \tilde{s}_{\mathbb{U}} \in \operatorname{argmin}_{f \in S_{\mathbb{U}}} \mathbb{E} \Big[\left(f(X) - s^{\star}(X) \right)^2 \Big] \text{ and } \tilde{s}_{\mathbb{U}}(x) = \mathbb{E} \big[\widehat{s}_{\mathbb{U}}(x) \,|\, \mathbb{U} \big]_{17/43}$$

 Random forests
 Purely random forests
 Toy forests
 Hold-out random forests
 Conclusion

 0000000000
 0000000000
 0000000000
 00000
 000000
 000000

Risk decomposition: single tree

$$\mathbb{E}\left[\left(s^{\star}(X) - \widehat{s}_{\mathbb{U}}(X)\right)^{2}\right]$$

= $\mathbb{E}\left[\left(s^{\star}(X) - \widetilde{s}_{\mathbb{U}}(X)\right)^{2}\right] + \mathbb{E}\left[\left(\widetilde{s}_{\mathbb{U}}(X) - \widehat{s}_{\mathbb{U}}(X)\right)^{2}\right]$
= Approximation error + Estimation error

Analysis of purely random forests

 Purely random forests
 Purely random forests
 Toy forests
 Hold-out random forests
 Conclusion

 0000000000
 0000000000
 0000000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000<

Risk decomposition: single tree

$$\mathbb{E}\left[\left(s^{\star}(X) - \widehat{s}_{\mathbb{U}}(X)\right)^{2}\right]$$

= $\mathbb{E}\left[\left(s^{\star}(X) - \widetilde{s}_{\mathbb{U}}(X)\right)^{2}\right] + \mathbb{E}\left[\left(\widetilde{s}_{\mathbb{U}}(X) - \widehat{s}_{\mathbb{U}}(X)\right)^{2}\right]$
= Approximation error + Estimation error

If s^{\star} is smooth, $X\sim \mathcal{U}([0,1]^p)$ and $\mathbb U$ regular partition into D pieces, then

$$\mathbb{E}\Big[\left(s^{\star}(X) - \tilde{s}_{\mathbb{U}}(X)\right)^2\Big] \propto \frac{1}{D^{2/p}}$$

 Pandom forests
 Purely random forests
 Toy forests
 Hold-out random forests
 Conclusion

 0000000000
 0000000000
 0000000000
 000000
 000000
 000000

Risk decomposition: single tree

$$\mathbb{E}\left[\left(s^{\star}(X) - \widehat{s}_{\mathbb{U}}(X)\right)^{2}\right]$$

= $\mathbb{E}\left[\left(s^{\star}(X) - \widetilde{s}_{\mathbb{U}}(X)\right)^{2}\right] + \mathbb{E}\left[\left(\widetilde{s}_{\mathbb{U}}(X) - \widehat{s}_{\mathbb{U}}(X)\right)^{2}\right]$
= Approximation error + Estimation error

If s^{\star} is smooth, $X \sim \mathcal{U}([0,1]^p)$ and $\mathbb U$ regular partition into D pieces, then

$$\mathbb{E}\Big[\left(s^{\star}(X) - \tilde{s}_{\mathbb{U}}(X)\right)^2\Big] \propto \frac{1}{D^{2/p}}$$

If $var(Y | X) = \sigma^2$ does not depend on X, then

$$\mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U}}(X) - \widehat{s}_{\mathbb{U}}(X)\big)^2\Big] \approx \frac{\sigma^2 D}{n}$$

Random forests Purely random forests Toy forests Hold-out random forests Conclusion occore Pick docomposition: purely random forest

Risk decomposition: purely random forest

$$\begin{split} (\mathbb{U}^{j})_{1\leqslant j\leqslant q} & \text{finite partitions, i.i.d.} ~\sim \mathcal{U} \\ \text{Estimator (forest):} & \widehat{s}_{\mathbb{U}^{1\cdots q}}(x) := \frac{1}{q}\sum_{j=1}^{q}\widehat{s}_{\mathbb{U}^{j}}(x) \\ \text{Ideal forest:} & \widetilde{s}_{\mathbb{U}^{1\cdots q}}(x) := \frac{1}{q}\sum_{j=1}^{q}\widetilde{s}_{\mathbb{U}^{j}}(x) = \mathbb{E}\big[\widehat{s}_{\mathbb{U}^{1\cdots q}}(x) \,|\, \mathbb{U}^{1\cdots q}\big] \end{split}$$

$$\begin{split} (\mathbb{U}^{j})_{1\leqslant j\leqslant q} & \text{finite partitions, i.i.d.} ~\sim \mathcal{U} \\ \text{Estimator (forest):} & \widehat{s}_{\mathbb{U}^{1\cdots q}}(x) := \frac{1}{q}\sum_{j=1}^{q}\widehat{s}_{\mathbb{U}^{j}}(x) \\ \text{Ideal forest:} & \widetilde{s}_{\mathbb{U}^{1\cdots q}}(x) := \frac{1}{q}\sum_{j=1}^{q}\widetilde{s}_{\mathbb{U}^{j}}(x) = \mathbb{E}\big[\widehat{s}_{\mathbb{U}^{1\cdots q}}(x) \,|\, \mathbb{U}^{1\cdots q}\big] \end{split}$$

Quadratic risk decomposition (given X = x) $\mathbb{E}\left[\left(s^{\star}(x) - \hat{s}_{\mathbb{U}^{1\cdots q}}(x)\right)^{2}\right] = \mathbb{E}\left[\left(s^{\star}(x) - \tilde{s}_{\mathbb{U}^{1\cdots q}}(x)\right)^{2}\right]$ $+ \mathbb{E}\left[\left(\tilde{s}_{\mathbb{U}^{1\cdots q}}(x) - \hat{s}_{\mathbb{U}^{1\cdots q}}(x)\right)^{2}\right] + \delta_{\mathbb{U}^{1\cdots q}}(x)$

Approximation error: $\mathcal{B}_{\mathcal{U},q}(x) := \mathbb{E}\left[\left(s^{\star}(x) - \tilde{s}_{\mathbb{U}^{1\cdots q}}(x)\right)^{2}\right]$

$$egin{aligned} \mathcal{B}_{\mathcal{U},q}(x) &= \mathcal{B}_{\mathcal{U},\infty}(x) + rac{\mathcal{V}_{\mathcal{U}}(x)}{q} \ \end{aligned}$$
 where $\mathcal{B}_{\mathcal{U},\infty}(x) &:= \left(\mathbb{E}igsin{smallmatrix} s^{\star}(x) - ilde{s}_{\mathbb{U}}(x) iggin{smallmatrix} \end{pmatrix}^2 \ & ext{ and } \mathcal{V}_{\mathcal{U}}(x) &:= ext{var}(ilde{s}_{\mathbb{U}}(x)) \end{aligned}$

 $\mathcal{B}_{\mathcal{U},\infty}(x)$ is the approx. error of the infinite forest: $\tilde{s}_{\mathbb{U},\infty}(x) := \mathbb{E}[\tilde{s}_{\mathbb{U}}(x)]$

to be compared with the approximation error of a single tree

$$\mathcal{B}_{\mathcal{U},1}(x) = \mathcal{B}_{\mathcal{U},\infty}(x) + \mathcal{V}_{\mathcal{U}}(x)$$

Purely random forest: 00000000 Toy forests

Hold-out random forests

Conclusion 000000

2 Purely random forests

Analysis of purely random forests

Sylvain Arlot

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
0000000000	00000000	○●000000000	00000	
Toy forest	te			

Assume: $\mathcal{X} = [0,1)^p$ and X uniform over $[0,1)^p$

If p = 1, $\mathbb{U} \sim \mathcal{U}_k^{toy}$ defined by:

$$\mathbb{U} = \left\{ \left[0, \frac{1-T}{k}\right), \left[\frac{1-T}{k}, \frac{2-T}{k}\right), \dots, \left[\frac{k-T}{k}, 1\right) \right\}$$

where T has uniform distribution over [0, 1].

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
0000000000	00000000	○●000000000	00000	000000
Toy forest	te			

Assume: $\mathcal{X} = [0,1)^p$ and X uniform over $[0,1)^p$

If p = 1, $\mathbb{U} \sim \mathcal{U}_k^{toy}$ defined by:

$$\mathbb{U} = \left\{ \left[0, \frac{1-T}{k}\right), \left[\frac{1-T}{k}, \frac{2-T}{k}\right), \dots, \left[\frac{k-T}{k}, 1\right) \right\}$$

where T has uniform distribution over [0, 1].

If p > 1, T_j for each coordinate j = 1, ..., p, independent

Purely random fores

Toy forests

Hold-out random forests

Conclusion 000000

Toy forest, p = 2: example

 $I_{\mathbb{U}}(x) :=$ the interval of \mathbb{U} to which x belongs

$$ilde{s}_{\mathbb{U}}(x) = rac{1}{|I_{\mathbb{U}}(x)|} \int_{I_{\mathbb{U}}(x)} s^{\star}(t) \, \mathrm{d}t$$

If
$$x \in \left[\frac{1}{k}, 1 - \frac{1}{k}\right]$$
, $I_{\mathbb{U}}(x) = \left[x + \frac{V_x - 1}{k}, x + \frac{V_x}{k}\right]$

where V_x has uniform distribution over [0, 1].

S

 $I_{\mathbb{U}}(x) :=$ the interval of \mathbb{U} to which x belongs

$$ilde{s}_{\mathbb{U}}(x) = rac{1}{|I_{\mathbb{U}}(x)|} \int_{I_{\mathbb{U}}(x)} s^{\star}(t) \,\mathrm{d}t$$

If
$$x \in \left[\frac{1}{k}, 1 - \frac{1}{k}\right]$$
, $I_{\mathbb{U}}(x) = \left[x + \frac{V_x - 1}{k}, x + \frac{V_x}{k}\right]$

where V_x has uniform distribution over [0, 1].

$$\begin{split} \tilde{\mathbf{s}}_{\mathbb{U},\infty}(x) &= \mathbb{E}_{\mathbb{U}}[\tilde{\mathbf{s}}_{\mathbb{U}}(x)] \\ &= k \int_{0}^{1} s^{\star}(t) \, \mathbb{P}\left(x + \frac{V_{x} - 1}{k} \leqslant t < x + \frac{V_{x}}{k}\right) \mathrm{d}t \\ &= k \int_{0}^{1} s^{\star}(t) \underbrace{\mathbb{P}(k(t-x) < V_{x} \leqslant k(t-x) + 1)}_{=h_{k}(x-t) \text{ if } 1/k \leqslant x \leqslant 1 - 1/k} \, \mathrm{d}t \end{split}$$

43

(H2) s^* twice differentiable over (0, 1) and $s^{*''}$ bounded

Taylor-Lagrange formula: for every $t \in (0,1)$, some $c_{t,x} \in (0,1)$ exists such that

$$s^{\star}(t) - s^{\star}(x) = s^{\star\prime}(x)(t-x) + \frac{1}{2}s^{\star\prime\prime}(c_{t,x})(t-x)^2$$

(H2) s^* twice differentiable over (0, 1) and $s^{*''}$ bounded

Taylor-Lagrange formula: for every $t \in (0,1)$, some $c_{t,x} \in (0,1)$ exists such that

$$s^{\star}(t) - s^{\star}(x) = s^{\star\prime}(x)(t-x) + \frac{1}{2}s^{\star\prime\prime}(c_{t,x})(t-x)^2$$

Therefore,

$$\begin{split} \tilde{s}_{U}(x) - s^{\star}(x) &= k \int_{x + \frac{V_{x}}{k}}^{x + \frac{V_{x}}{k}} (s^{\star}(t) - s^{\star}(x)) \, \mathrm{d}t \\ &= k \, s^{\star\prime}(x) \int_{x + \frac{V_{x} - 1}{k}}^{x + \frac{V_{x}}{k}} (t - x) \, \mathrm{d}t + R_{1}(x) \\ &= \frac{s^{\star\prime}(x)}{k} \left(V_{x} - \frac{1}{2} \right) + R_{1}(x) \end{split}$$

where
$$R_1(x) = \frac{k}{2} \int_{x+\frac{V_x}{k}}^{x+\frac{V_x}{k}} s^{\star \prime \prime}(c_{t,x})(t-x)^2 dt$$
.

43

(H2) s^* twice differentiable over (0,1) and $s^{*''}$ bounded $\tilde{s}_{\mathbb{U}}(x) - s^*(x) = \frac{s^{*'}(x)}{k} \left(V_x - \frac{1}{2}\right) + R_1(x)$

where
$$R_1(x) = \frac{k}{2} \int_{x+\frac{V_x}{k}}^{x+\frac{V_x}{k}} s^{\star \prime \prime}(c_{t,x})(t-x)^2 dt.$$

Hence,

$$\mathcal{B}_{\mathcal{U}_k^{\mathrm{toy}},\infty}(x) = \left(\mathbb{E}_{\mathbb{U}}[s^{\star}(x) - \tilde{s}_{\mathbb{U}}(x)]\right)^2 = \left(\mathbb{E}_{\mathbb{U}}[R_1(x)]\right)^2 \leqslant \frac{\Box}{k^4}$$

and

$$\mathcal{V}_{\mathcal{U}_k^{ ext{toy}}}(x) = ext{var}igg(rac{s^{\star\prime}(x)}{k}igg(V_x - rac{1}{2}igg) + R_1(x)igg) \mathop{\sim}\limits_{k
ightarrow +\infty} rac{s^{\star\prime}(x)^2 ext{var}(V_x)}{k^2}$$

28/43

.

$$\begin{array}{l} (\mathsf{H}\theta) \ s^{\star} \in \mathcal{C}^{1,(\theta-1)}(\mathcal{X}) \ \mathsf{H\"{o}lder space}, \ \theta \in [1,2] \\ \\ \mathcal{B}_{\mathcal{U}_{k}^{\mathrm{toy}},\infty}(x) = \left(\mathbb{E}_{\mathbb{U}}[s^{\star}(x) - \tilde{s}_{\mathbb{U}}(x)]\right)^{2} \leqslant \frac{\Box}{k^{2\theta/p}} \qquad \mathcal{V}_{\mathcal{U}_{k}^{\mathrm{toy}}}(x) \underset{k \to +\infty}{\sim} \frac{\Box}{k^{2/p}} \end{array}$$

Assuming (Hheta), $heta \in [1,2]$, $orall x \in \left[rac{1}{k}, 1-rac{1}{k}
ight]^{
ho}$,

$$\mathcal{B}_{\mathcal{U}_{k}^{\mathrm{toy}},1}(x) \underset{k \to +\infty}{\sim} \frac{\Box}{k^{2/p}} \qquad \mathcal{B}_{\mathcal{U}_{k}^{\mathrm{toy}},\infty}(x) \leqslant \frac{\Box}{k^{2\theta/p}}$$
$$\int_{\left[\frac{1}{k},1-\frac{1}{k}\right]^{p}} \mathcal{B}_{\mathcal{U}_{k}^{\mathrm{toy}},1}(x) \, \mathrm{d}x \underset{k \to +\infty}{\sim} \frac{\Box}{k^{2/p}} \qquad \int_{\left[\frac{1}{k},1-\frac{1}{k}\right]^{p}} \mathcal{B}_{\mathcal{U}_{k}^{\mathrm{toy}},\infty}(x) \, \mathrm{d}x \leqslant \frac{\Box}{k^{2\theta/p}}$$

Rate $k^{-4/p}$ is tight assuming θ -Hölder smoothness, $\theta > 2$.

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
0000000000		○○○○○○○○	00000	000000
Estimation	error			

General fact (Jensen's inequality):

$$\mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U},\,\infty}(X) - \widehat{s}_{\mathbb{U},\,\infty}(X)\big)^2\Big] \leqslant \mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U}}(X) - \widehat{s}_{\mathbb{U}}(X)\big)^2\Big]$$

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
0000000000		○○○○○○○○●○○	00000	000000
Estimation	error			

General fact (Jensen's inequality):

$$\mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U},\infty}(X) - \widehat{s}_{\mathbb{U},\infty}(X)\big)^2\Big] \leqslant \mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U}}(X) - \widehat{s}_{\mathbb{U}}(X)\big)^2\Big]$$

For the toy forest, without any resampling for computing labels and assuming that $var(Y|X) = \sigma^2$:

$$\mathbb{E}\left[\left(\tilde{s}_{\mathbb{U}}(X) - \hat{s}_{\mathbb{U}}(X)\right)^{2}\right] \approx \frac{\sigma^{2}k}{n}$$
$$\mathbb{E}\left[\left(\tilde{s}_{\mathbb{U},\infty}(X) - \hat{s}_{\mathbb{U},\infty}(X)\right)^{2}\right] \approx \frac{2}{3}\frac{\sigma^{2}k}{n}$$

(A. & Genuer, 2016)

Random forests Purely random forests Toy forests Hold-out random forests Conclusion Summary: risk analysis

$$\begin{split} & \underset{(q = 1)}{\text{Single tree}} \quad \begin{array}{l} \text{Infinite forest} \\ & (q = 1) \\ & (q = \infty) \\ \\ \mathbb{E}\Big[\left(s^{\star}(x) - \widehat{s}_{\mathbb{U}^{1 \cdots q}}(x)\right)^2 \Big] \quad \approx \frac{c_1(s^{\star}, x)}{k^{2/p}} + \frac{\sigma^2 k}{n} \quad \leqslant \frac{c_{\theta}'(s^{\star}, x)}{k^{2\theta/p}} + \frac{2\sigma^2 k}{3n} \\ \\ & \text{where} \quad c_1(s^{\star}, x) = \frac{s^{\star'}(x)^2}{12} \end{split}$$

Assumptions:

- $x \in (0,1)^p$ far from boundary
- (Hheta) $s^{\star} \in \mathcal{C}^{1,(heta-1)}(\mathcal{X})$, $heta \in [1,2]$
- X uniform over $[0,1)^p$
- $\operatorname{var}(Y|X) = \sigma^2$
- no resampling for computing labels

Corollary: risk convergence rates (far from boundaries, with $k = k_n^*$ optimal), under (H θ), $\theta \in [1, 2]$:

Tree risk $\geq \Box n^{-2/(2+p)}$ if s^* not constant, $\theta > 1$ Infinite forest risk $\leq \Box n^{-2\theta/(2\theta+p)} \Rightarrow \min \mathcal{C}^{\theta}, \theta \in [1,2]$

Corollary: risk convergence rates (far from boundaries, with $k = k_n^*$ optimal), under (H θ), $\theta \in [1, 2]$:

Tree risk $\geq \Box n^{-2/(2+p)}$ if s^* not constant, $\theta > 1$ Infinite forest risk $\leq \Box n^{-2\theta/(2\theta+p)} \Rightarrow \text{minimax } C^{\theta}, \theta \in [1,2]$

Remarks:

- $q \ge \Box (k_n^*)^2$ is sufficient to get an "infinite" forest
- with subsampling *a* out of *n* for computing labels: estimation error of a single tree $\frac{\sigma^2 k}{a}$ instead of $\frac{\sigma^2 k}{n}$; no change for infinite forest

Purely random forests 000000000 Toy forests

Hold-out random forests

Conclusion

Outline

2 Purely random forests

. . .

 $\widehat{\textit{s}}_{\rm HO-RF}$

Using D_{n_2} , no resampling here

 \Rightarrow purely random forest closely related to double-sample trees (Wager & Athey, 2018) 34/43

 \widehat{S}_{II}

 $\widehat{S}_{\mathbb{T}^2}$

Aggregation

 $\widehat{S}_{\mathbb{T}^{1}}$

Numerical experiments: framework

• Data generation:

$$X_i \sim \mathcal{U}([0, 1]^p)$$
 $Y_i = s^*(X_i) + \varepsilon_i$
 $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ $\sigma^2 = 1/16$

$$s^{\star}: \mathbf{x} \in [0,1]^{p} \mapsto rac{1}{10} imes \left[10 \sin(\pi x_{1}x_{2}) + 20(x_{3}-0.5)^{2} + 10x_{4} + 5x_{5}
ight] \, .$$

- Data split: $n_1 = 1\,280$ $n_2 = 25\,600$
- Forests definition:

 $\begin{array}{l} \texttt{nodesize} = 1 \\ k \in \{2^5, 2^6, 2^7, 2^8, 2^9\} \\ \texttt{``Large'' forests are made of } q = k \text{ trees.} \end{array}$

• Compute integrated approximation/estimation errors

35/43 Sylvain Arlot

Random forests
cococococoPurely random forests
cocococococoToy forests
cocococococoHold-out random forests
cocococococoConclusion
cocococococoNumerical experiments:results (p = 5)

	Sing	gle tree	Larg	e forest
No bootstrap	0.13	$1.04\sigma^2 k$	0.13	$1.04\sigma^2 k$
mtry = p	$k^{0.17}$	n ₂	$k^{0.17}$	n ₂
Bootstrap	0.14	$1.06\sigma^2 k$	0.15	$0.08\sigma^2k$
mtry = p	k ^{0.17}	n_2	k ^{0.29}	n_2
No bootstrap	0.23	$1.01\sigma^2 k$	0.06	$0.06\sigma^2 k$
$mtry = \lfloor p/3 \rfloor$	k ^{0.19}	n_2	k ^{0.31}	n_2
Bootstrap	0.25	$1.02\sigma^2 k$	0.06	$0.05\sigma^2 k$
$\texttt{mtry} = \lfloor p/3 \rfloor$	k ^{0.20}	n ₂	k ^{0.34}	n ₂
$\frac{2}{2+p} \approx 0.286 \qquad \qquad \frac{4}{4+p} \approx 0.444$				

Random forests
000000000Purely random forests
0000000000Toy forests
00000000000Hold-out random forests
00000Conclusion
000000Numerical experiments: results (p = 10)

	Sing	le tree	Larg	e forest
No bootstrap	0.11	$1.03\sigma^2 k$	0.11	$1.03\sigma^2 k$
mtry = p	$k^{0.12}$ +	n	$\overline{k^{0.12}}$	n
Bootstrap	0.11	$1.05\sigma^2k$	0.10	$0.04\sigma^2 k$
mtry = p	$k^{0.11}$ +		$k^{0.19}$	<i>n</i> ₂
No bootstrap	0.21	$1.08\sigma^2k$	0.08	$0.04\sigma^2 k$
$mtry = \lfloor p/3 \rfloor$	$k^{0.18}$ +	n	$k^{0.25}$	n
Bootstrap	0.20	$1.05\sigma^2 k$	0.07	$0.03\sigma^2k$
$\texttt{mtry} = \lfloor p/3 \rfloor$	$k^{0.16}$ +		$k^{0.26}$	n
2		2	1	
$\frac{-}{2+p} \approx$	0.167	4 -	$\frac{1}{p} \approx 0.$	286

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
0000000000		0000000000	00000	●00000
Conclusion				

- Forests improve the order of magnitude of the approximation error, compared to a single tree
- Estimation error seems to change only by a constant factor (at least for toy forests); not contradictory with literature: here, we fix k; different picture if nodesize is fixed (+subsampling)

Random forests	Purely random forests	Toy forests	Hold-out random forests	Conclusion
0000000000		0000000000	00000	●00000
Conclusion				

- Forests improve the order of magnitude of the approximation error, compared to a single tree
- Estimation error seems to change only by a constant factor (at least for toy forests); not contradictory with literature: here, we fix k; different picture if nodesize is fixed (+subsampling)
- Randomization:

randomization of labels seems to have no impact; strong impact of randomization of partitions (hold-out RF: both bootstrap and mtry)

Purely uniformly random forests:

split a random cell, chosen with probability equal to its volume

 \Rightarrow in dimension p = 1, rates similar to toy forests

43

Balanced purely random forests in dimension p: full binary tree, uniform splits $\Rightarrow k^{-\alpha}$ (tree) vs. $k^{-2\alpha}$ (forest) where $\alpha = -\log_2\left(1 - \frac{1}{2p}\right) \Rightarrow$ not minimax rates!

 Random forests
 Purely random forests
 Toy forests
 Hold-out random forests
 Conclusion

 000000000
 000000000
 00000000
 00000
 0000000

Approximation error: 4 PRFs, different rates

BPRF

PURF

TOY

Approximation error: generalization

General result on the approximation error under (Hθ):
 e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error $\propto \mathcal{M}_2$ infinite forest approx. error $\propto \mathcal{M}_2^2$

where $M_2 \approx$ average square distance from x to the boundary of its cell ($\propto k^{-2/p}$ for toy forests)

• other PRF studied in the literature: Mondrian forests (Mourtada, Gaïffas & Scornet 2017 & 2020), centered random forests (Biau, 2012; Klusowski, 2018), ...

Open problems / future work

- Theory on approximation error of hold-out RF?
 ⇒ understand the typical shape of the cell that contains x, for a RI tree
 (x centered on average? square distance to boundary?)
- Theory on estimation error of other PRF (beyond toy and PURF), with lower bounds? of hold-out RF?
- Extensive numerical experiments? (other functions s^* , ...)