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1-D signal (example)
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1-D signal (example): Find abrupt changes in the mean
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Estimation rather than identification

With a finite sample, it is
impossible to recover some
change-points in noisy regions.
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Purpose:

1 Estimate the regression function.

2 Use the quadratic loss `(u, v) = ‖u − v‖2.

Rk: Without too strong noise, recover all change-points.
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Detect abrupt changes. . .

General purposes:
1 Detect changes in the whole distribution (not only in the

mean)
Mean:

homoscedastic: Birgé & Massart (2001), Comte & Rozenholc
(2002, 2004), Baraud, Giraud & Huet (2010)...
heteroscedastic: A. & Celisse (2011)

Mean and variance: Picard et al. (2007)

2 High-dimensional data of different nature:

Vectorial: measures in Rd , curves (sound recordings,. . . )
Non vectorial: phenotypic data, graphs, DNA sequence,. . .
Both vectorial and non vectorial data.

3 Efficient algorithm allowing to deal with large data sets
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Kernel and Reproducing Kernel Hilbert Space (RKHS)

X : initial input space.

X1, . . . ,Xn: initial observations.

k(·, ·) : X × X → R: reproducing kernel (H: RKHS).

φ(·) : X → H s.t. φ(x) = k(x , ·): canonical feature map.

Asset:

Enables to work with high-dimensional heterogeneous data.

Rk:
Estimators depend on the Gram matrix K := {k(Xi ,Xj)}1≤i ,j≤n.
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Model

Mapping of the initial data

∀1 ≤ i ≤ n, Yi = φ(Xi ) ∈ H .

−→ (t1,Y1), . . . , (tn,Yn) ∈ [0, 1]×H : independent .
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Model

∀1 ≤ i ≤ n, Yi = s?i + εi ∈ H ,
where

s?i ∈ H: mean element of PXi
(distribution of Xi )

〈s?i , f 〉H = EXi
[〈φ(Xi ), f 〉H ] , ∀f ∈ H.

∀i , εi := Yi − s?i with E [εi ] = 0 and vi := E
[
‖εi‖2

H

]
.

Assumptions

1 maxi ‖Yi‖H ≤ M a.s. (Db) .

2 maxi vi ≤ vmax (Vmax) .

3 s? = (s?1 , . . . , s
?
n ) ∈ Hn: piecewise constant.

‖s? − µ‖2 :=
∑n

i=1 ‖s?i − µi‖
2
H .

Goal: −→ Estimate s? to recover change-points.
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Least-squares estimator

Empirical risk minimizer over Sm (= model):

ŝm ∈ arg min
u∈Sm

R̂n(u) where R̂n(u) =
1

n
‖u − Y ‖2 =

1

n

n∑
i=1

‖ui − Yi‖2
H .

Regressogram:

ŝm =
∑
λ∈m

β̂λ1λ β̂λ =
1

Card { ti ∈ λ}
∑
ti∈λ

Yi .

Kernel change-point detection Sylvain Arlot



8/23

Framework Which change-points? (D known) How many change-points? Empirical assessment

Model selection

Models:

Mn = {m, segmentation of {1, . . . , n}}, Dm = Card(m).

m ⇔
{

I1 = [0, tm1 ], I2 = (tm1 , tm2 ], . . . , IDm = (tmDm−1
, 1]
}

.

Sm = {µ : (t1, . . . , tn)→ H, piecewise const. on all λ ∈ m}
⇔ subspace of Hn .

Strategy:

(Sm)m∈Mn −→ (ŝm)m∈Mn −→ ŝm̂ ???

Oracle model: m? ∈ argminm∈Mn
‖s? − ŝm‖2.

Goal: Oracle inequality (in expectation, or with large probability):

‖s? − ŝm̂‖2 ≤ C inf
m∈Mn

{
‖s? − ŝm‖2 + R(m, n)

}

Kernel change-point detection Sylvain Arlot



8/23

Framework Which change-points? (D known) How many change-points? Empirical assessment

Model selection

Models:

Mn = {m, segmentation of {1, . . . , n}}, Dm = Card(m).

m ⇔
{

I1 = [0, tm1 ], I2 = (tm1 , tm2 ], . . . , IDm = (tmDm−1
, 1]
}

.

Sm = {µ : (t1, . . . , tn)→ H, piecewise const. on all λ ∈ m}
⇔ subspace of Hn .

Strategy:
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Choose (D − 1) change-points. . .

Assumption: (Harchaoui & Cappé (2007))

The number (D − 1) of change-points is known.

Question:

Find the locations of the (D − 1) change-points? (D is given).

Strategy:

The “best” segmentation in D pieces is obtained by applying the
ERM algorithm over

⋃
Dm=D Sm :

ERM algorithm:

m̂ERM(D) = argmin
m|Dm=D

R̂n ( ŝm ) .

Rk: Based on dynamic programming.
Kernel change-point detection Sylvain Arlot
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Quality of the segmentations
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Elementary calculations

Ideal criterion: (Πm: orthog. proj. operator onto Sm)

‖s? − ŝm‖2 = ‖s? − Πms?‖2 + ‖Πmε‖2 .

Empirical risk:

‖Y − ŝm‖2 = ‖s? − Πms?‖2 − ‖Πmε‖2 + 2 〈(I − Πm)s?, ε〉+ ‖ε‖2 .

Expectations (vλ = 1
Card(λ)

∑
i∈λ vi )

E
[
‖s? − ŝm‖2

]
= ‖s? − Πms?‖2 +

∑
λ∈m

vλ ,

E
[
‖Y − ŝm‖2

]
= ‖s? − Πms?‖2 −

∑
λ∈m

vλ + Cst ,

Conclusion:

−→ ERM prefers models with large
∑

λ∈m vλ (overfitting).
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Choose the number of change-points

From
{

ŝm̂D

}
D

, choose D amounts to choose the “best model”.
Ideal penalty:

m? ∈ argmin
m∈M

‖s? − ŝm‖2

= argmin
m∈M

{
‖Y − ŝm‖2 + penid(m)

}
,

with penid(m) =: 2 ‖Πmε‖2 − 2 〈(I − Πm)s?, ε〉.
Strategy

1 Concentration inequalities for linear and quadratic terms.

2 Derive a tight upper bound pen ≥ penid with high probability.

Previous work:
Birgé & Massart (2001): Gaussian assumption + real valued
functions.
−→ cannot be extended to Hilbert framework.
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Concentration of the linear term

Theorem (Linear term)

Assume (Db)–(Vmax) hold true.
Then, for every segmentation m ∈Mn, for every x > 0 with
probability at least 1− 2e−x ,

|〈Πms? − s?, ε〉| ≤ θ ‖Πms? − s?‖2 +

(
vmax

θ
+

4M2

3

)
x ,

for every θ > 0.
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Concentration of the quadratic term

Theorem (Quadratic term)

Assume (Db)–(Vmax), and

∃κ ≥ 1, 0 <
M2

κ
≤ min

i
vi (Vmin) .

Then, for every m ∈Mn, x > 0, and θ ∈ (0, 1],∣∣∣‖Πmε‖2 − E
[
‖Πmε‖2

]∣∣∣ ≤ θE [‖Πms? − ŝm‖2
]

+ θ−1L(κ)vmaxx ,

with probability at least 1− 2e−x , where L(κ) is a constant.

Idea of the proof:

Pinelis-Sakhanenko’s inequality (
∥∥∑

i∈λ εi
∥∥
H).

Bernstein’s inequality (upper bounding moments)
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Oracle inequality

Theorem

Assume (Db)-(Vmin)-(Vmax) and define

m̂ ∈ argmin
m

{
1

n
‖Y − ŝm‖2 + pen(m)

}
,

where pen(m) = vmaxDm
n

[
C1 ln

(
n
Dm

)
+ C2

]
for constants

C1,C2 > 0. Then, for every x ≥ 1, with probability at least
1− 2e−x ,

1

n
‖s? − ŝm̂‖2 ≤ ∆1 inf

m

{
1

n
‖s? − ŝm‖2 + pen(m)

}
+

∆2vmaxx

n
,

where ∆1 ≥ 1 and ∆2 > 0 are absolute constants.

In Birgé & Massart (2001), pen(m) = σ2Dm
n

[
c1 ln

(
n
Dm

)
+ c2

]
.
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Model selection procedure

pen(m) =
vmaxDm

n

[
C1 ln

(
n

Dm

)
+ C2

]
= pen(Dm) .

Algorithm
1 For every 1 ≤ D ≤ Dmax,

m̂D ∈ argmin
m, Dm=D

{
‖Y − ŝm‖2

}
,

2 Define

D̂ = argmin
D

{
1

n

∥∥Y − ŝm̂D

∥∥2
+

vmaxD

n

[
C1 ln

( n

D

)
+ C2

]}
.

where C1,C2: computed by simulation experiments.
3 Final estimator:

ŝm̂ =: ŝm̂
D̂

.
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Changes in the distribution (synthetic data)

Description:

1 n = 1 000, D∗ − 1 = 9, Nrep = 100.

2 In each segment, observations generated according to one
distribution within a pool of 10 distributions with same mean
and variance.

3 Kernel-based approach enables to distinguish them (higher
order moments)

4 Gaussian kernel: kh(x , y) = exp
[
−‖x − y‖2

/(2h2)
]
.
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Changes in the distribution (synthetic data), cont.

Results

0 5 10 15 20 25 30 35 40

0.4

0.45

0.5

0.55

 

 

Emp. risk
Crit.
True risk

0 200 400 600 800 1000
0

0.005

0.01

0.015

0.02

0.025

Hausdorff distance: 0.053± 0.006
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Changes in the distribution (synthetic data), cont.

Results: estimated number of change-points
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“Le grand échiquier”, 70s-80s French talk show

Audio and video recordings.

Audio: different situations can be distinguished from sound
recordings (music, applause, speech,. . . ).

Video: different video scenes can be distinguished by their
backgrounds or specific actions of people (clapping hands,
discussing,. . . ).
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Audio signal

Description:

n = 500, D∗ − 1 = 4.

At each ti , one observes a multivariate vector of dimension 12.

Gaussian kernel: kh(x , y) = exp
[
−‖x − y‖2

/(2h2)
]
.

Results: Hausdorff distance 0.079± 0.006
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Video sequence

Description:

n = 10 000, D∗ − 1 = 4.

Each image summarized by a histogram with 1 024 bins.

χ2 kernel: kd(x , y) =
∑d

i=1
(xi−yi )2

xi+yi
·

Results: Hausdorff distance 0.093± 0.007
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Conclusion

Take-home message:

Change-point detection algorithm for possibly
high-dimensional or complex data

Data-driven choice of the number of change-points

Non-asymptotic oracle inequality (guarantee on the risk)

Experiments: changes in less usual properties of the
distribution, audio or video data

Open questions:

1 Influence of the choice of kernel

2 Data-driven choice of the kernel

3 Relax the assumption on the variance

4 Extend our model selection theorem to other regression
settings
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