Introduction 00000000 Estimation methods 00000000 Validation on simulated data

Application on real data 00000000

Resampling-based estimation of the accuracy of satellite ephemerides

joint work with J

Sylvain Arlot^{1,2,3} h J. Desmars^{4,5} J.-E. Arlot⁴ V. Lainey⁴ A. Vienne^{4,6}

¹CNRS

²École Normale Supérieure de Paris

³Sierra team, Inria Paris-Rocquencourt

⁴Institut de Mécanique Céleste et de Calcul des Éphémérides — Observatoire de Paris

⁵Université Pierre et Marie Curie

⁶Université de Lille

• Dynamical model + Observations \Rightarrow Ephemerides

• Dynamical model + Observations \Rightarrow Ephemerides

E rinc

• Problem: how accurate are the ephemerides, in particular far from the observation period?

Hyperion

lapetus

Phoebe

(to Titan)

Fring

(Prometheus

- Dynamical model + Observations ⇒ Ephemerides
- Problem: how accurate are the ephemerides, in particular far from the observation period?
- Two main examples: Mimas (revolution period: 0.942 days) and Titan (revolution period: 15.945 days)

2/52

Phoebe

Introduction Estimation methods Validation on simulated data Application on real data ocoocococo

TASS1.7 (Analytic Theory of Saturnian Satellites): TASS1.6 (Vienne & Duriez 1995) + Hyperion motion

- TASS1.7 (Analytic Theory of Saturnian Satellites): TASS1.6 (Vienne & Duriez 1995) + Hyperion motion theory (Duriez & Vienne, 1997)
 - $\Rightarrow \mathsf{Semi-analytic\ theory}$

The models: TASS & NUMINT

 TASS1.7 (Analytic Theory of Saturnian Satellites): TASS1.6 (Vienne & Duriez 1995) + Hyperion motion theory (Duriez & Vienne, 1997)
 ⇒ Semi-analytic theory

• Numerical integration (NUMINT)

 TASS1.7 (Analytic Theory of Saturnian Satellites): TASS1.6 (Vienne & Duriez 1995) + Hyperion motion theory (Duriez & Vienne, 1997)
 ⇒ Semi-analytic theory

• Numerical integration (NUMINT)

 $\begin{array}{l} \Rightarrow \mbox{ Model: } x(t) = \varphi(c,t) \in \mathcal{X} \mbox{, where } c \in \mathcal{C} \subset \mathbb{R}^{\rho} \mbox{ parameter} \\ \mbox{ space} \\ \mbox{ e.g., } x(t) = (\alpha(t), \delta(t)) \end{array}$

52

Internal error of the models

• True position $P(t) \neq \varphi(c, t)$ for every $c \in C$ \Rightarrow Internal error (or bias)

 $\inf_{c\in\mathcal{C}}\left\{d(P(t),\varphi(c,t))\right\}$

$$4/52$$

Sylvain Arlot

• True position $P(t) \neq \varphi(c, t)$ for every $c \in C$ \Rightarrow Internal error (or bias)

 $\inf_{c\in\mathcal{C}}\left\{d(P(t),\varphi(c,t))\right\}$

- Neglected terms in analytic formulas (TASS)
- $\Rightarrow\,$ can be evaluated by comparison with numerical integration ($\sim\,10\,$ milliarcsecond for Saturnian satellites, except Hyperion and Japet)

Introduction 0000000 Internal error of the models

- - True position $P(t) \neq \varphi(c, t)$ for every $c \in C$ \Rightarrow Internal error (or bias)

 $\inf_{c\in\mathcal{C}}\left\{d(P(t),\varphi(c,t))\right\}$

- Neglected terms in analytic formulas (TASS)
- \Rightarrow can be evaluated by comparison with numerical integration (~ 10 milliarcsecond for Saturnian satellites, except Hyperion and Japet)
 - Neglected (or unknown physical effects) in TASS and NUMINT

Introduction 0000000	Estimation methods	Validation on simulated data	Application on real data	Conclusion
	1. A.			

$$(t_1, X_1), \dots, (t_N, X_N) \in \mathbb{R} \times \mathcal{X}$$
$$X_i = P(t_i) + \varepsilon_i \qquad \mathbb{E}[\varepsilon_i] = 0$$

Resampling-based estimation of ephemerides

Introduction ○○○●○○○○	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
Observa	tions			

$$(t_1, X_1), \dots, (t_N, X_N) \in \mathbb{R} \times \mathcal{X}$$

 $X_i = P(t_i) + \varepsilon_i \qquad \mathbb{E}[\varepsilon_i] = 0$

• observer, reading the measurement

Introduction 0000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
Ohserva	tions			

$$(t_1, X_1), \dots, (t_N, X_N) \in \mathbb{R} \times \mathcal{X}$$

 $X_i = P(t_i) + \varepsilon_i \qquad \mathbb{E}[\varepsilon_i] = 0$

- observer, reading the measurement
- instrument used

Introduction 0000000	Estimation methods	Validation on simulated data	Application on real data	Conclusion
Observa	tions			

$$(t_1, X_1), \dots, (t_N, X_N) \in \mathbb{R} \times \mathcal{X}$$

 $X_i = P(t_i) + \varepsilon_i \qquad \mathbb{E}[\varepsilon_i] = 0$

- observer, reading the measurement
- instrument used
- star catalogue used for reduction (bias depending on the position in the celestial sphere)

Introduction ○○○●○○○○	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
Observa	tions			

$$(t_1, X_1), \dots, (t_N, X_N) \in \mathbb{R} \times \mathcal{X}$$
$$X_i = P(t_i) + \varepsilon_i \qquad \mathbb{E}[\varepsilon_i] = 0$$

- observer, reading the measurement
- instrument used
- star catalogue used for reduction (bias depending on the position in the celestial sphere)
- corrections taken into account or not (refraction, aberration, etc.)

Introduction 0000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
Observa	tions			

$$(t_1, X_1), \dots, (t_N, X_N) \in \mathbb{R} \times \mathcal{X}$$

 $X_i = P(t_i) + \varepsilon_i \qquad \mathbb{E}[\varepsilon_i] = 0$

- observer, reading the measurement
- instrument used
- star catalogue used for reduction (bias depending on the position in the celestial sphere)
- corrections taken into account or not (refraction, aberration, etc.)
- mass center \neq photocenter (phase, albedo)

Introduction 0000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
Observa	tions			

$$(t_1, X_1), \dots, (t_N, X_N) \in \mathbb{R} \times \mathcal{X}$$

 $X_i = P(t_i) + \varepsilon_i \qquad \mathbb{E}[\varepsilon_i] = 0$

- observer, reading the measurement
- instrument used
- star catalogue used for reduction (bias depending on the position in the celestial sphere)
- corrections taken into account or not (refraction, aberration, etc.)
- mass center \neq photocenter (phase, albedo)
- uncertainty of observation time (especially for old observations)

 Introduction
 Estimation methods
 Validation on simulated data
 Application on real data

 0000000
 00000000
 00000000
 00000000

Time distribution of observations

Time distribution of observation nights

Resampling-based estimation of ephemerides

Introduction

Estimation methods 00000000 Validation on simulated data

Application on real data

Conclusion

Data fit: (weighted) least-squares

• Observations $(t_1, X_1), \dots, (t_N, X_N) \in \mathbb{R} imes \mathcal{X}$

- Observations $(t_1, X_1), \dots, (t_N, X_N) \in \mathbb{R} imes \mathcal{X}$
- Model: $x(t) = \varphi(c^{\star}, t)$ where $c^{\star} \in \mathcal{C} \subset \mathbb{R}^{p}$ parameter space

 Introduction
 Estimation methods
 Validation on simulated data
 Application on real data
 Occorrection
 Occorrect

- Observations $(t_1, X_1), \dots, (t_N, X_N) \in \mathbb{R} imes \mathcal{X}$
- Model: $x(t) = \varphi(c^{\star}, t)$ where $c^{\star} \in \mathcal{C} \subset \mathbb{R}^{p}$ parameter space
- c^{\star} estimated by

$$\widehat{c} \in rgmin_{c \in \mathcal{C}} \left\{ rac{1}{N} \sum_{i=1}^{N} w_i \left(arphi(c,t_i) - X_j
ight)^2
ight\}$$

where $w_i \approx \sigma_i^{-1}$ is roughly estimated from the name of the observer, the instrument and the observed satellite (Vienne & Duriez 1995)

 Introduction
 Estimation methods
 Validation on simulated data
 Application on real data
 Co

 Data fit:
 (weighted)
 least-squares
 Co
 Co</

- Observations $(t_1, X_1), \dots, (t_N, X_N) \in \mathbb{R} imes \mathcal{X}$
- Model: $x(t) = \varphi(c^{\star}, t)$ where $c^{\star} \in \mathcal{C} \subset \mathbb{R}^{p}$ parameter space
- c* estimated by

$$\widehat{c} \in \arg\min_{c \in \mathcal{C}} \left\{ \frac{1}{N} \sum_{i=1}^{N} w_i \left(\varphi(c, t_i) - X_j \right)^2
ight\}$$

where $w_i \approx \sigma_i^{-1}$ is roughly estimated from the name of the observer, the instrument and the observed satellite (Vienne & Duriez 1995)

• Optimization method: start with $c = \overline{c} + \text{linearization}$ \Rightarrow iterate until convergence

52

Error sources for the ephemerides: summary

- Internal error
- Observation errors
- Optimization error
- Representation error when using the ephemerides

Error sources for the ephemerides: summary

- Internal error
- Observation errors
- Optimization error
- Representation error when using the ephemerides
- + take into account time repartition & heterogeneity

Introduction Estimation methods Validation on simulated data oooooooo Validation on simulated data ooooooooo Application on real data Conclusi ooooooooo Application on real data Conclusi ooooooooo Application on real data Conclusi ooooooooo

Monte-Carlo method on the Covariance Matrix (MCCM)

$$\widehat{c}^{(1)}, \dots, \widehat{c}^{(B)} \sim \mathcal{N}(\widehat{c}, \Lambda) \quad \text{where} \quad \Lambda = (P^{\top} W^{\top} W P)^{-1}$$

 $P = (\partial \varphi(\widehat{c}, t_i) / \partial c_k)_{(i,k)} \quad W = \text{diag}(w_1, \dots, w_N)$

$$\widehat{c}^{(1)}, \dots, \widehat{c}^{(B)} \sim \mathcal{N}(\widehat{c}, \Lambda) \quad \text{where} \quad \Lambda = (P^{\top}W^{\top}WP)^{-1}$$

 $P = (\partial \varphi(\widehat{c}, t_i) / \partial c_k)_{(i,k)} \quad W = \text{diag}(w_1, \dots, w_N)$

$$\Rightarrow \forall k \in \{1, \dots, B\}, \left(\varphi(\widehat{c}^{(k)}, t) \right)_{t \geq 0}$$

$$\widehat{c}^{(1)}, \dots, \widehat{c}^{(B)} \sim \mathcal{N}(\widehat{c}, \Lambda) \quad \text{where} \quad \Lambda = (P^{\top} W^{\top} W P)^{-1}$$

 $P = (\partial \varphi(\widehat{c}, t_i) / \partial c_k)_{(i,k)} \quad W = \text{diag}(w_1, \dots, w_N)$

$$\Rightarrow \ orall k \in \{1,\ldots,B\}$$
, $\left(arphi(\widehat{c}^{(k)},t)
ight)_{t\geq 0}$

 $\Rightarrow \forall t \geq 0$, region of possible positions: $(\varphi(\hat{c}^{(k)}, t))_{1 \leq k \leq B}$

11/52 Sylvain Arlot oduction Estima

Estimation methods

Validation on simulated data

Application on real data

Conclusion

Monte-Carlo method applied to the Observations (MCO)

Introduction Estimation methods Validation on simulated data Application on real data Conclusio cocococo Monoto Applied to the Observations (MCO)

$\forall k \in \{1, \dots, B\}, \qquad D_N^{(k)} = (t_1, X_1^{(k)}), \dots, (t_N, X_N^{(k)})$ where $\forall i \in \{1, \dots, N\}, \quad X_i^{(k)} - X_i = \varepsilon_{i,k} \sim \mathcal{N}(0, \widehat{\sigma^2})$

Introduction Estimation methods Validation on simulated data occorrection on real data Conclusion on concession occorrection on the Conclusion on the Conclusion occorrection of the the Concession occorrection occorrecti

Monte-Carlo method applied to the Observations (MCO)

$$\begin{aligned} \forall k \in \{1, \dots, B\}, \qquad D_N^{(k)} &= (t_1, X_1^{(k)}), \dots, (t_N, X_N^{(k)}) \\ \text{where} \quad \forall i \in \{1, \dots, N\}, \quad X_i^{(k)} - X_i &= \varepsilon_{i,k} \sim \mathcal{N}(0, \widehat{\sigma^2}) \end{aligned}$$

$$\Rightarrow \forall k \in \{1, \dots, B\}, \ \widehat{c}^{(k)} = \widehat{c}\left(D_N^{(k)}\right)$$
$$\Rightarrow \forall k \in \{1, \dots, B\}, \ \left(\varphi(\widehat{c}^{(k)}, t)\right)_{t \ge 0}$$

Introduction Estimation methods Validation on simulated data occosococo

Monte-Carlo method applied to the Observations (MCO)

$$\begin{aligned} \forall k \in \{1, \dots, B\}, \qquad D_N^{(k)} &= (t_1, X_1^{(k)}), \dots, (t_N, X_N^{(k)}) \\ \text{where} \quad \forall i \in \{1, \dots, N\}, \quad X_i^{(k)} - X_i &= \varepsilon_{i,k} \sim \mathcal{N}(0, \widehat{\sigma^2}) \end{aligned}$$

$$\Rightarrow \forall k \in \{1, \dots, B\}, \ \widehat{c}^{(k)} = \widehat{c}\left(D_N^{(k)}\right)$$
$$\Rightarrow \forall k \in \{1, \dots, B\}, \ \left(\varphi(\widehat{c}^{(k)}, t)\right)_{t \ge 0}$$

 $\Rightarrow \forall t \geq 0$, region of possible positions: $\left(\varphi(\widehat{c}^{(k)}, t) \right)_{1 \leq k \leq B}$

Sylvain Arlot

13/52

Introduction Estimation methods Validation on simulated data Application on real data Conclusion

Another method is needed

- MCCM: assumes that $\widehat{c} \sim \mathcal{N}(c^{\star}, \Lambda)$
 - \Rightarrow wrong results, especially on the long-term

Introduction Estimation methods Validation on simulated data Application on real data Conclusion

Another method is needed

- MCCM: assumes that $\widehat{c} \sim \mathcal{N}(c^\star, \Lambda)$
 - \Rightarrow wrong results, especially on the long-term
- MCO: assumes that X_i − P(t_i) = ε_i are i.i.d. Gaussian
 ⇒ errors are non-Gaussian, dependent, and not identically distributed

S

Introduction Estimation methods Validation on simulated data Application on real data Conclusion

Another method is needed

- MCCM: assumes that $\widehat{c} \sim \mathcal{N}(c^{\star}, \Lambda)$
 - \Rightarrow wrong results, especially on the long-term
- MCO: assumes that X_i − P(t_i) = ε_i are i.i.d. Gaussian
 ⇒ errors are non-Gaussian, dependent, and not identically distributed
- Asteroids with few observations: MCCM and MCO already can yield satisfactory results (Milani, 1999; Muinonen & Bowell, 1993; Virtanen *et al.*, 2001; ...), which can still be improved
Introduction Estimation methods Validation on simulated data Application on real data Conclusion

Another method is needed

- MCCM: assumes that $\widehat{c} \sim \mathcal{N}(c^{\star}, \Lambda)$
 - \Rightarrow wrong results, especially on the long-term
- MCO: assumes that X_i − P(t_i) = ε_i are i.i.d. Gaussian
 ⇒ errors are non-Gaussian, dependent, and not identically distributed
- Asteroids with few observations: MCCM and MCO already can yield satisfactory results (Milani, 1999; Muinonen & Bowell, 1993; Virtanen *et al.*, 2001; ...), which can still be improved
- Many observations \Rightarrow long-term ephemerides & complex models \Rightarrow new methods needed

Real world : $P \xrightarrow{\text{sampling}} P_n \Longrightarrow \widehat{c} = \widehat{c}(P_n)$

precision =
$$F_t(P, P_n) = (\varphi(c^*, t) - \varphi(\hat{c}, t))^2$$

Resampling-based estimation of ephemerides

precision = $F_t(P, P_n) = (\varphi(c^*, t) - \varphi(\hat{c}, t))^2$

Introduction Estimation methods Validation on simulated data Application on real data Co

The bootstrap for estimating the extrapolated error

$$\forall k \in \{1, \dots, B\}, \qquad D_N^{(k)} = (t_{I_1^{(k)}}, X_{I_1^{(k)}}), \dots, (t_{I_N^{(k)}}, X_{I_N^{(k)}})$$
where $\forall k, I_1^{(k)}, \dots, I_N^{(k)}$ i.i.d. $\sim \mathcal{U}(\{1, \dots, n\})$

The bootstrap for estimating the extrapolated error

$$\forall k \in \{1, \dots, B\}, \qquad D_N^{(k)} = (t_{I_1^{(k)}}, X_{I_1^{(k)}}), \dots, (t_{I_N^{(k)}}, X_{I_N^{(k)}})$$
where $\forall k, I_1^{(k)}, \dots, I_N^{(k)}$ i.i.d. $\sim \mathcal{U}(\{1, \dots, n\})$

$$\Rightarrow \forall k \in \{1, \dots, B\}, \ \widehat{c}^{(k)} = \widehat{c}\left(D_N^{(k)}\right)$$
$$\Rightarrow \forall k \in \{1, \dots, B\}, \ \left(\varphi(\widehat{c}^{(k)}, t)\right)_{t \ge 0}$$

The bootstrap for estimating the extrapolated error

$$\begin{aligned} \forall k \in \{1, \dots, B\}, \qquad D_N^{(k)} = (t_{I_1^{(k)}}, X_{I_1^{(k)}}), \dots, (t_{I_N^{(k)}}, X_{I_N^{(k)}}) \end{aligned}$$
where $\forall k, I_1^{(k)}, \dots, I_N^{(k)}$ i.i.d. $\sim \mathcal{U}(\{1, \dots, n\})$

$$\Rightarrow \forall k \in \{1, \dots, B\}, \ \widehat{c}^{(k)} = \widehat{c}\left(D_N^{(k)}\right)$$
$$\Rightarrow \forall k \in \{1, \dots, B\}, \ \left(\varphi(\widehat{c}^{(k)}, t)\right)_{t \ge 0}$$

$$\Rightarrow \ orall t \geq$$
 0, region of possible positions: $ig(arphi(\widehat{m{c}}^{(k)},t)ig)_{1\leq k\leq B}$

Resampling-based estimation of ephemerides

ntroduction	Estimation methods	Validation on simulated data	Application on real data	Conclusion
The bloc	k bootstrap			

• Implicit assumption of the bootstrap: i.i.d. data

Introduction 00000000	Estimation methods ○○○○○○○●	Validation on simulated data	Application on real data	Conclusion
The blo	ock hootstran			

- Implicit assumption of the bootstrap: i.i.d. data
- \Rightarrow How to deal with dependence (between the t_i and between the errors)?

Introduction 00000000	Estimation methods ○○○○○○●	Validation on simulated data	Application on real data	Conclusion
The blo	ock hootstran			

- Implicit assumption of the bootstrap: i.i.d. data
- ⇒ How to deal with dependence (between the t_i and between the errors)?
 - Solution: the Block Bootstrap (e.g., Politis, 2003): First, group data into blocks: $(t_i, X_i)_{i \in B_\ell}$ for $1 \le \ell \le N_b$ Then, resample the blocks

Introduction 00000000	Estimation methods ○○○○○○●	Validation on simulated data	Application on real data	Conclusion
The blo	ck hootstran			

- Implicit assumption of the bootstrap: i.i.d. data
- ⇒ How to deal with dependence (between the t_i and between the errors)?
 - Solution: the Block Bootstrap (e.g., Politis, 2003): First, group data into blocks: $(t_i, X_i)_{i \in B_\ell}$ for $1 \le \ell \le N_b$ Then, resample the blocks
- ⇒ dependences inside the blocks are caught by the block bootstrap

Introduction 00000000	Estimation methods ○○○○○○●	Validation on simulated data	Application on real data	Conclusion
The blo	ck hootstran			

- Implicit assumption of the bootstrap: i.i.d. data
- ⇒ How to deal with dependence (between the t_i and between the errors)?
 - Solution: the Block Bootstrap (e.g., Politis, 2003): First, group data into blocks: $(t_i, X_i)_{i \in B_\ell}$ for $1 \le \ell \le N_b$ Then, resample the blocks
- ⇒ dependences inside the blocks are caught by the block bootstrap
 - Assumption: blocks are (almost) independent

Introduction 00000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion	
D .					

• N = 3650 observation dates $(t_i)_{1 \le i \le N}$, $t_{i+1} - t_i = 4$ days, from 1960 to 2000

Introduction 00000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
<u> </u>				

- N = 3650 observation dates $(t_i)_{1 \le i \le N}$, $t_{i+1} t_i = 4$ days, from 1960 to 2000
- Initial orbit: $\forall i, X_i^{(0)} = x^{(0)}(t_i) = \varphi(\widehat{c}, t_i)$ where \widehat{c} estimated from real data

Introduction 00000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
_				

- N = 3650 observation dates $(t_i)_{1 \le i \le N}$, $t_{i+1} t_i = 4$ days, from 1960 to 2000
- Initial orbit: ∀i, X_i⁽⁰⁾ = x⁽⁰⁾(t_i) = φ(c
 , t_i) where c
 estimated from real data
- Simulated k-th observation set: $X_i^{(k)} = X_i^{(0)} + \sigma_{M(i)}\xi_i$ where ξ_1, \ldots, ξ_N are i.i.d. $\mathcal{N}(0, 1)$, M(i) is the month to which t_i belongs, $\sigma_1, \ldots, \sigma_{M(N)}$ are i.i.d. $\mathcal{N}(\mu, \tau^2)$ with $\mu = 0.15''$ and $\tau = 0.05''$.

Introduction 00000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
_				

- N = 3650 observation dates $(t_i)_{1 \le i \le N}$, $t_{i+1} t_i = 4$ days, from 1960 to 2000
- Initial orbit: ∀i, X_i⁽⁰⁾ = x⁽⁰⁾(t_i) = φ(c
 , t_i) where c
 estimated from real data
- Simulated *k*-th observation set: $X_i^{(k)} = X_i^{(0)} + \sigma_{M(i)}\xi_i$ where ξ_1, \ldots, ξ_N are i.i.d. $\mathcal{N}(0, 1)$, M(i) is the month to which t_i belongs, $\sigma_1, \ldots, \sigma_{M(N)}$ are i.i.d. $\mathcal{N}(\mu, \tau^2)$ with $\mu = 0.15''$ and $\tau = 0.05''$.
- \Rightarrow estimate $\widehat{c}^{(k)}$ by least-squares $\Rightarrow x^{(k)}(t) = \varphi(\widehat{c}^{(k)}, t)$

Introduction 00000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion

- N = 3650 observation dates $(t_i)_{1 \le i \le N}$, $t_{i+1} t_i = 4$ days, from 1960 to 2000
- Initial orbit: ∀i, X_i⁽⁰⁾ = x⁽⁰⁾(t_i) = φ(c
 , t_i) where c
 estimated from real data
- Simulated *k*-th observation set: $X_i^{(k)} = X_i^{(0)} + \sigma_{M(i)}\xi_i$ where ξ_1, \ldots, ξ_N are i.i.d. $\mathcal{N}(0, 1)$, M(i) is the month to which t_i belongs, $\sigma_1, \ldots, \sigma_{M(N)}$ are i.i.d. $\mathcal{N}(\mu, \tau^2)$ with $\mu = 0.15''$ and $\tau = 0.05''$.
- \Rightarrow estimate $\widehat{c}^{(k)}$ by least-squares $\Rightarrow x^{(k)}(t) = \varphi(\widehat{c}^{(k)}, t)$
- $\Rightarrow \text{ angular separation at time } t: s_k(t) = \sqrt{\left(\left(\alpha^{(k)}(t) \alpha^{(0)}(t)\right)\cos\left(\delta^{(0)}(t)\right)\right)^2 + \left(\delta^{(k)}(t) \delta^{(0)}(t)\right)^2}$

Introduction 00000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion

- N = 3650 observation dates $(t_i)_{1 \le i \le N}$, $t_{i+1} t_i = 4$ days, from 1960 to 2000
- Initial orbit: ∀i, X_i⁽⁰⁾ = x⁽⁰⁾(t_i) = φ(c
 , t_i) where c
 estimated from real data
- Simulated k-th observation set: $X_i^{(k)} = X_i^{(0)} + \sigma_{M(i)}\xi_i$ where ξ_1, \ldots, ξ_N are i.i.d. $\mathcal{N}(0, 1)$, M(i) is the month to which t_i belongs, $\sigma_1, \ldots, \sigma_{M(N)}$ are i.i.d. $\mathcal{N}(\mu, \tau^2)$ with $\mu = 0.15''$ and $\tau = 0.05''$.
- \Rightarrow estimate $\widehat{c}^{(k)}$ by least-squares $\Rightarrow x^{(k)}(t) = \varphi(\widehat{c}^{(k)}, t)$
- $\Rightarrow \text{ angular separation at time } t: s_k(t) = \sqrt{\left(\left(\alpha^{(k)}(t) \alpha^{(0)}(t)\right)\cos\left(\delta^{(0)}(t)\right)\right)^2 + \left(\delta^{(k)}(t) \delta^{(0)}(t)\right)^2}$

 \Rightarrow Dependent observations, of rather good quality

18/52

Resampling-based estimation of ephemerides

Sylvain Arlot

Region of possible motions: Mimas (TASS)

Resampling-based estimation of ephemerides

Resampling-based estimation of ephemerides

Sylvain Arlot

Introduction 00000000 Estimation methods

Validation on simulated data

Application on real data

Conclusion

Average size of the region of possible motions

$$\sigma_{S}(t) = \sqrt{\frac{1}{K} \sum_{k=1}^{K} (s_{k}(t))^{2}}$$

where

$$s_k(t) = \sqrt{\left(\left(lpha^{(k)}(t) - lpha^{(0)}(t)
ight)\cos\left(\delta^{(0)}(t)
ight)
ight)^2 + \left(\delta^{(k)}(t) - \delta^{(0)}(t)
ight)^2}$$

is the (angular) separation between the k-th orbit and the initial orbit at time t

Introduction Estimation methods Validation on simulated data Application on real data Condocococo

Size of the region of possible motions: Mimas (TASS)

Resampling-based estimation of ephemerides

24/52Sylvain Arlot

Introduction 00000000 Estimation methods

Validation on simulated data

Application on real data

Principle of simulations

Resampling-based estimation of ephemerides

Sylvain Arlot

Introduction Estimation methods Validation on simulated data 00000000 Application on real data 00000000

Performance of MCCM: Mimas (B = 200), TASS

Performance of MCO: Mimas (B = 200), TASS

Resampling-based estimation of ephemerides

Sylvain Arlot

28/52

Resampling-based estimation of ephemerides

29/52

Introduction 00000000 Estimation methods

Validation on simulated data

Application on real data 00000000

Conclusion

Correlation coefficient and multiplying factor (TASS)

correlation coefficient multiplying factor

$$\rho_{S} = \operatorname{corr}(\sigma_{S}^{\operatorname{sim}}(t), \sigma_{S}^{\operatorname{estim}}(t))$$
 κ_{S}

	Mi	mas	Tit	an
Method	ρ_S	κ_{S}	ρ_S	κs
МССМ	0.511	1.876	0.955	0.790
MCO	0.999	1.001	0.994	0.966
Bootstrap	1.000	1.458	0.999	1.456
Block Bootstrap	0.999	1.484	0.999	1.441

(B = 200; only for one simulated reference orbit)

Introduction 00000000	Estimation methods 00000000	Validation on simulated data ○○○○○○○○○○○○●○○	Application on real data	Conclusion
Commen	its			

Introduction 00000000	Estimation methods 00000000	Validation on simulated data ○○○○○○○○○○○○●○○	Application on real data	Conclusion
Commo	ntc			

• Data generation clearly in favour of MCO in the simulations (noise really Gaussian, constant variance)

Introduction 00000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
Comments				

- Data generation clearly in favour of MCO in the simulations (noise really Gaussian, constant variance)
- Unknown noise-level(s), difficult to estimate precisely

00000000	00000000			Conclusion	

- Data generation clearly in favour of MCO in the simulations (noise really Gaussian, constant variance)
- Unknown noise-level(s), difficult to estimate precisely
- Inhomogeneity of real observations (different coordinates, different kinds of observations) ⇒ can't easily "add" noise

Johnments

0000000	0000000	000000000000 0000	0000000			

- Data generation clearly in favour of MCO in the simulations (noise really Gaussian, constant variance)
- Unknown noise-level(s), difficult to estimate precisely
- Inhomogeneity of real observations (different coordinates, different kinds of observations) ⇒ can't easily "add" noise
- Problem of choosing the blocks:

.omments
00000000	00000000			Conclusion	

- Data generation clearly in favour of MCO in the simulations (noise really Gaussian, constant variance)
- Unknown noise-level(s), difficult to estimate precisely
- Inhomogeneity of real observations (different coordinates, different kinds of observations) ⇒ can't easily "add" noise
- Problem of choosing the blocks:
 - $\bullet~$ Dependent blocks \Rightarrow slight overestimation of the error

.Оппп

ienis

Introduction 00000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
Commen	ts			

- Data generation clearly in favour of MCO in the simulations (noise really Gaussian, constant variance)
- Unknown noise-level(s), difficult to estimate precisely
- Inhomogeneity of real observations (different coordinates, different kinds of observations) ⇒ can't easily "add" noise
- Problem of choosing the blocks:
 - $\bullet~$ Dependent blocks \Rightarrow slight overestimation of the error
 - Too large blocks \Rightarrow more variable estimation

Introduction 00000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
Commen	ts			

- Data generation clearly in favour of MCO in the simulations (noise really Gaussian, constant variance)
- Unknown noise-level(s), difficult to estimate precisely
- Inhomogeneity of real observations (different coordinates, different kinds of observations) ⇒ can't easily "add" noise
- Problem of choosing the blocks:
 - $\bullet~$ Dependent blocks \Rightarrow slight overestimation of the error
 - Too large blocks \Rightarrow more variable estimation
 - Question: when are two observations independent?

Introduction 00000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion
Commen	ts			

- Data generation clearly in favour of MCO in the simulations (noise really Gaussian, constant variance)
- Unknown noise-level(s), difficult to estimate precisely
- Inhomogeneity of real observations (different coordinates, different kinds of observations) ⇒ can't easily "add" noise
- Problem of choosing the blocks:
 - $\bullet~$ Dependent blocks \Rightarrow slight overestimation of the error
 - Too large blocks \Rightarrow more variable estimation
 - Question: when are two observations independent?
- Multiplying factor for the bootstrap ∈ [1.4; 1.5]: why? how general is this?
 - κ_S seems much closer to 1 for NUMINT

How many resamples do we need? ρ_S (TASS)

How many resamples do we need? m_S (TASS)

33/52

Application: old vs. recent observations

34/52 Sylvain Arlot

Precision of old observations: Mimas (TASS)

Resampling-based estimation of ephemerides

Sylvain Arlot

Sylvain Arlot

Introduction Estimation methods Validation on simulated data Application on real data Conclusion

Astronomical conclusions

- qualitative differences between satellites: fast motion (Mimas) / slow motion (Titan) main term of the mean longitude
- accurate observations on a short period can be less useful than noisy observations on a long period
 ⇒ old observations indeed are useful
- Other applications (Desmars' Ph.D., 2009):
 - expected improvement of reducing errors: Gaia mission (a few observations very accurate + improvement of the accuracy of past observations)
 - asteroids: Toutatis (time-space accuracy of close approaches to Earth)

Toutatis: will December, 12th be the end of the world?

Resampling-based estimation of ephemerides

Sylvain Arlot

Mathematical conclusions

- Bootstrap: versatile and robust method for estimating the extrapolated error
- Building blocks \Rightarrow handling dependence between observations

Open problems:

- Multiplying factor κ_s
- Formal proofs: known results in simpler statistical frameworks only
- Theoretical link between sensitivity to initial conditions and resampling-based estimators of extrapolated error
- What about other resampling methods (e.g., subsampling)?

Introduction 00000000	Estimation methods 00000000	Validation on simulated data	Application on real data	Conclusion

Mimas (BR)

Resampling-based estimation of ephemerides

Sylvain Arlot

46/52

Encelade (BR)

date

47/52

		Validation on simulated data	Application on real data	Conclusion
0000000	0000000	000000000000000	0000000	

Toutatis orbit

Resampling-based estimation of ephemerides

Sylvain Arlot

Introduction Estimation methods Validation on simulated data Application on real data Conclusion occosed occos

Resampling-based estimation of ephemerides

Resampling-based estimation of ephemerides

Sylvain Arlot

52

Results with NUMINT instead of TASS (B = 30 samples)

Introduction 00000000 Estimation methods

Validation on simulated data

Application on real data

Conclusion

Results with NUMINT instead of TASS (B = 30 samples)

	Mimas		Titan	
Method	ρ_S	κ_{S}	ρ_S	κ_{S}
МСО	0.989	0.848	0.997	0.723
Bootstrap	0.999	1.041	0.997	0.832
Block Bootstrap	0.981	0.999	0.997	0.842

