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Precision of ephemerides of natural satellites of Saturn

Dynamical model + Observations ⇒ Ephemerides

Problem: how accurate are the ephemerides, in particular far
from the observation period?

Two main examples: Mimas (revolution period: 0.942 days)
and Titan (revolution period: 15.945 days)
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The models: TASS & NUMINT

TASS1.7 (Analytic Theory of Saturnian Satellites):
TASS1.6 (Vienne & Duriez 1995) + Hyperion motion theory
(Duriez & Vienne, 1997)
⇒ Semi-analytic theory

Numerical integration (NUMINT)

⇒ Model: x(t) = ϕ(c, t) ∈ X , where c ∈ C ⊂ Rp parameter
space
e.g., x(t) = (α(t), δ(t))
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Internal error of the models

True position P(t) 6= ϕ(c , t) for every c ∈ C
⇒ Internal error (or bias)

inf
c∈C
{d(P(t), ϕ(c , t))}

Neglected terms in analytic formulas (TASS)

⇒ can be evaluated by comparison with numerical integration
(∼ 10 milliarcsecond for Saturnian satellites, except Hyperion
and Japet)

Neglected (or unknown physical effects) in TASS and
NUMINT
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Observations

(t1,X1), . . . , (tN ,XN) ∈ R×X
Xi = P(ti ) + εi E [εi ] = 0

Multiple error sources:

observer, reading the measurement

instrument used

star catalogue used for reduction (bias depending on the
position in the celestial sphere)

corrections taken into account or not (refraction, aberration,
etc.)

mass center 6= photocenter (phase, albedo)

uncertainty of observation time (especially for old
observations)
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Time distribution of observations

Resampling-based estimation of ephemerides Sylvain Arlot



7/52

Introduction Estimation methods Validation on simulated data Application on real data Conclusion

Time distribution of observation nights
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Data fit: (weighted) least-squares

Observations (t1,X1), . . . , (tN ,XN) ∈ R×X

Model: x(t) = ϕ(c?, t) where c? ∈ C ⊂ Rp parameter space

c? estimated by

ĉ ∈ arg min
c∈C

{
1

N

N∑
i=1

wi (ϕ(c , ti )− Xj )2

}

where wi ≈ σ−1
i is roughly estimated from the name of the

observer, the instrument and the observed satellite (Vienne &
Duriez 1995)

Optimization method: start with c = c + linearization
⇒ iterate until convergence
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Error sources for the ephemerides: summary

Internal error

Observation errors

Optimization error

Representation error when using the ephemerides

+ take into account time repartition & heterogeneity
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Monte-Carlo method on the Covariance Matrix (MCCM)
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Monte-Carlo method on the Covariance Matrix (MCCM)

ĉ(1), . . . , ĉ(B) ∼ N (ĉ ,Λ) where Λ = (P>W>WP)−1

P = (∂ϕ(ĉ , ti )/∂ck)(i ,k) W = diag(w1, . . . ,wN)

⇒ ∀k ∈ {1, . . . ,B },
(
ϕ(ĉ(k), t)

)
t≥0

⇒ ∀t ≥ 0, region of possible positions:
(
ϕ(ĉ(k), t)

)
1≤k≤B
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(
D

(k)
N

)
⇒ ∀k ∈ {1, . . . ,B },

(
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ϕ(ĉ(k), t)

)
1≤k≤B

Resampling-based estimation of ephemerides Sylvain Arlot



13/52

Introduction Estimation methods Validation on simulated data Application on real data Conclusion

Monte-Carlo method applied to the Observations (MCO)

∀k ∈ {1, . . . ,B } , D
(k)
N = (t1,X

(k)
1 ), . . . , (tN ,X

(k)
N )

where ∀i ∈ {1, . . . ,N } , X
(k)
i − Xi = εi ,k ∼ N (0, σ̂2)

⇒ ∀k ∈ {1, . . . ,B }, ĉ(k) = ĉ
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Another method is needed

MCCM: assumes that ĉ ∼ N (c?,Λ)
⇒ wrong results, especially on the long-term

MCO: assumes that Xi − P(ti ) = εi are i.i.d. Gaussian
⇒ errors are non-Gaussian, dependent, and not identically
distributed

Asteroids with few observations: MCCM and MCO already
can yield satisfactory results (Milani, 1999; Muinonen &
Bowell, 1993; Virtanen et al., 2001; ...), which can still be
improved

Many observations ⇒ long-term ephemerides & complex
models ⇒ new methods needed
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Resampling heuristics (bootstrap, Efron 1979)

Real world : P
sampling // Pn

+3 ĉ = ĉ(Pn)

precision = Ft(P,Pn) = (ϕ(c?, t)− ϕ(ĉ , t))2
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Real world :

�� �O
�O
�O
�O
�O
�O
�O
�O

P
sampling // Pn

+3 ĉ = ĉ(Pn)

Bootstrap world : Pn
resampling // PW

n
+3 ĉW = ĉ(PW

n )

Ft(P,Pn) ///o/o/o Ft(Pn,P
W
n ) =

(
ϕ(ĉ , t)− ϕ(ĉW , t)

)2

resampling PW
n =

1

n

n∑
i=1

Wiδ(Xi ,Yi ) with W ∼M(n; n−1, . . . , n−1)
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Resampling heuristics (bootstrap, Efron 1979)

Real world :

�� �O
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�O
�O
�O
�O
�O
�O

P
sampling // Pn

+3 ĉ = ĉ(Pn)

Bootstrap world : Pn
subsampling // PW

n
+3 ĉW = ĉ(PW

n )

Ft(P,Pn) ///o/o/o Ft(Pn,P
W
n ) =

(
ϕ(ĉ , t)− ϕ(ĉW , t)

)2

subsampling PW
n =

1

Card(I )

∑
i∈I

δ(Xi ,Yi ) with I ⊂ {1, . . . , n} random
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The bootstrap for estimating the extrapolated error
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The block bootstrap

Implicit assumption of the bootstrap: i.i.d. data

⇒ How to deal with dependence (between the ti and between
the errors)?

Solution: the Block Bootstrap (e.g., Politis, 2003):
First, group data into blocks: (ti ,Xi )i∈B`

for 1 ≤ ` ≤ Nb

Then, resample the blocks

⇒ dependences inside the blocks are caught by the block
bootstrap

Assumption: blocks are (almost) independent

Resampling-based estimation of ephemerides Sylvain Arlot



17/52

Introduction Estimation methods Validation on simulated data Application on real data Conclusion

The block bootstrap

Implicit assumption of the bootstrap: i.i.d. data

⇒ How to deal with dependence (between the ti and between
the errors)?

Solution: the Block Bootstrap (e.g., Politis, 2003):
First, group data into blocks: (ti ,Xi )i∈B`

for 1 ≤ ` ≤ Nb

Then, resample the blocks

⇒ dependences inside the blocks are caught by the block
bootstrap

Assumption: blocks are (almost) independent
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Data generation

N = 3650 observation dates (ti )1≤i≤N , ti+1 − ti = 4 days,
from 1960 to 2000

Initial orbit: ∀i , X (0)
i = x (0)(ti ) = ϕ(ĉ , ti ) where ĉ estimated

from real data

Simulated k-th observation set: X
(k)
i = X

(0)
i + σM(i)ξi where

ξ1, . . . , ξN are i.i.d. N (0, 1), M(i) is the month to which ti
belongs, σ1, . . . , σM(N) are i.i.d. N (µ, τ2) with µ = 0.15′′ and
τ = 0.05′′.

⇒ estimate ĉ(k) by least-squares ⇒ x (k)(t) = ϕ(ĉ(k), t)

⇒ angular separation at time t: sk(t) =√((
α(k)(t)− α(0)(t)

)
cos
(
δ(0)(t)

))2
+
(
δ(k)(t)− δ(0)(t)

)2

⇒ Dependent observations, of rather good quality
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⇒ estimate ĉ(k) by least-squares ⇒ x (k)(t) = ϕ(ĉ(k), t)
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Region of possible motions (K = 200)
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Region of possible motions: Titan (TASS)
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Average size of the region of possible motions

σS(t) =

√√√√ 1

K

K∑
k=1

(sk(t))2

where

sk(t) =

√((
α(k)(t)− α(0)(t)

)
cos
(
δ(0)(t)

))2
+
(
δ(k)(t)− δ(0)(t)

)2

is the (angular) separation between the k-th orbit and the inital
orbit at time t
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Size of the region of possible motions: Mimas (TASS)
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Size of the region of possible motions: Titan (TASS)
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Principle of simulations
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Performance of MCCM: Mimas (B = 200), TASS
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Performance of the Bootstrap: Mimas (B = 200), TASS
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Performance of the Block Bootstrap: Mimas (B = 200)
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Correlation coefficient and multiplying factor (TASS)

correlation coefficient ρS = corr(σsimS (t) , σestimS (t))

multiplying factor κS

Mimas Titan

Method ρS κS ρS κS
MCCM 0.511 1.876 0.955 0.790
MCO 0.999 1.001 0.994 0.966
Bootstrap 1.000 1.458 0.999 1.456
Block Bootstrap 0.999 1.484 0.999 1.441

(B = 200 ; only for one simulated reference orbit)
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Comments

MCO shouldn’t / can’t be used on real data:

Data generation clearly in favour of MCO in the simulations
(noise really Gaussian, constant variance)
Unknown noise-level(s), difficult to estimate precisely
Inhomogeneity of real observations (different coordinates,
different kinds of observations) ⇒ can’t easily “add” noise

Problem of choosing the blocks:

Dependent blocks ⇒ slight overestimation of the error
Too large blocks ⇒ more variable estimation
Question: when are two observations independent?

Multiplying factor for the bootstrap ∈ [1.4; 1.5]: why? how
general is this?
κS seems much closer to 1 for NUMINT
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How many resamples do we need? ρS (TASS)

Resampling-based estimation of ephemerides Sylvain Arlot



33/52

Introduction Estimation methods Validation on simulated data Application on real data Conclusion

How many resamples do we need? mS (TASS)

Resampling-based estimation of ephemerides Sylvain Arlot



34/52

Introduction Estimation methods Validation on simulated data Application on real data Conclusion

Application: old vs. recent observations
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Precision of old observations: Mimas (TASS)
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Precision of recent observations: Mimas (TASS)
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Precision when using all the observations: Mimas (TASS)
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Precision of old observations: Titan (TASS)
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Precision of recent observations: Titan (TASS)
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Precision when using all the observations: Titan (TASS)
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Precision when using all the observations: Japet (TASS)
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Astronomical conclusions

qualitative differences between satellites:
fast motion (Mimas) / slow motion (Titan)
main term of the mean longitude

accurate observations on a short period can be less useful
than noisy observations on a long period
⇒ old observations indeed are useful

Other applications (Desmars’ Ph.D., 2009):

expected improvement of reducing errors: Gaia mission (a few
observations very accurate + improvement of the accuracy of
past observations)
asteroids: Toutatis (time-space accuracy of close approaches
to Earth)
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Toutatis: will December, 12th be the end of the world?
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Mathematical conclusions

Bootstrap: versatile and robust method for estimating the
extrapolated error

Building blocks ⇒ handling dependence between observations

Open problems:

Multiplying factor κS
Formal proofs: known results in simpler statistical frameworks
only
Theoretical link between sensitivity to initial conditions and
resampling-based estimators of extrapolated error
What about other resampling methods (e.g., subsampling)?
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Expected improvement of precision thanks to Gaia results:
Mimas
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Expected improvement of precision thanks to Gaia results:
Encelade
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Toutatis orbit
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Toutatis: time-space precision of close approach to Earth
on December, 12th 2012
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Toutatis: time-space precision of close approach to Earth
on October 2322
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Results with NUMINT instead of TASS (B = 30 samples)
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Results with NUMINT instead of TASS (B = 30 samples)

Mimas Titan

Method ρS κS ρS κS
MCO 0.989 0.848 0.997 0.723
Bootstrap 0.999 1.041 0.997 0.832
Block Bootstrap 0.981 0.999 0.997 0.842
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