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Regression: data
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Goal: find the signal (denoising)
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Statistical framework: regression, least-squares loss

@ Observations: Y = (Y1,...,Y,) € R”
Yi=Fi+e  (eg., Fi=F(x))

with Y; € R, (&/);j<, i-i.d.
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Statistical framework: regression, least-squares loss

@ Observations: Y = (Y1,...,Y,) € R”
Yi=Fi+e  (eg., Fi=F(x))
with Y; € R, (&)<, ii-d.

o Fixed design: x; deterministic

@ Least-squares loss of a predictor t € R"” (“t; = t(x;)"):

n

1 2 _ 1 2
e —=Fll :;Z(fi—Fi)

i=1
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Introduction
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Statistical framework: regression, least-squares loss

@ Observations: Y = (Y1,...,Y,) € R”
Yi=Fi+e  (eg. Fi=F(x))
with Y; € R, (&)<, i-id.
o Fixed design: x; deterministic

@ Least-squares loss of a predictor t € R"” (“t; = t(x;)"):

n

1 2 _ 1 2
e —=Fll :;Z(fi—Fi)

i=1

= Estimator F(Y) € R"?

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Introduction
000000

Estimators: example: regressogram

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Introduction
(o] lelelele)

L east-squares estimators

o Natural idea: minimize an estimator of the risk 1 ||t — F|?
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L east-squares estimators

o Natural idea: minimize an estimator of the risk 1 ||t — F|?
@ Least-squares criterion:

1 1 —
;“t— Y||2:;Z(ti— Yi)?
=1

1 1 1
VeeR" . E|Lle- VIE| = 2l FIP+ B[]
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L east-squares estimators

o Natural idea: minimize an estimator of the risk 1 ||t — F|?
@ Least-squares criterion:

1 » 1 2
e YP= 3 (- Y
NG
1 1 1
VeeR" . E|Lle- VIE| = 2l FIP+ B[]

@ Model: S C R" = Least-squares estimator on S:

~ (1 ) R )
F ~|t—=Y = *E ti— Y
seargr;nelg{nﬂ | } argrtnelg{n' ( ) }

i=1

so that

Fs = Ns(Y) (orthogonal projection)

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Introduction
[e]e] lelele)

Model examples

@ histograms on some partition A of X
= the least-squares estimator (regressogram) can be written

N ~ ~ 1

Fm i) = E ]IX' — = E \/l

(x) ArTen 2 Card{x; € \}
AeA X EX

@ subspace generated by a subset of an orthogonal basis of
L?(u) (Fourier, wavelets, and so on)

@ variable selection: x; = (xl.(l), . ,xl.(p)) € RP gathers p
variables that can (linearly) explain Y;

VYmc{l,...,p} , Sm:vect{x(j) s.t.jEm}
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k-nearest-neighbours estimator (k = 20)
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Nadaraya-Watson estimator (o = 0.01)
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Linear estimators

o OLS: F,, = s, Y (projection onto Sp,)

o (kernel) ridge regression, spline smoothing:

o~

~ ~ 1<
Fi=f(x;) with f €arg min{Z(\/;—f(xi))2+)\|]f||§:K}

feFk | n
€ K i=1

= /?/\,K = K(K+X)7'Y where K= (K (xi,%))1<ij<n

@ k-nearest neighbours

o Nadaraya-Watson estimators

F =AY where A does not depend on Y
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Estimator selection: regular regressograms
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Estimator selection: k nearest neighbours
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Estimator selection: Nadaraya-Watson
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Estimator selection

~

e Estimator collection (Fi)mem = m(Y)?
Example: F,, = AnY
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Estimator selection

o Estimator collection (F)mem = m(Y)?
Example: F,, = AnY

@ Goal: minimize the risk, i.e.,
Oracle inequality (in expectation or with a large probability):

1
n

~ 2 1~ 2
F,?,—FH < C inf {HF,,,—FH }+R,,
meM | n
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[e]e]e] lele)

Estimator selection

o Estimator collection (F)mem = m(Y)?
Example: F,, = AnY

@ Goal: minimize the risk, i.e.,
Oracle inequality (in expectation or with a large probability):

1
n

@ Examples:

~ 2 1~ 2
F,?,—FH < C inf {HF,,,—FH }+R,,
meM | n

e model selection

o calibration (choosing k or the distance for k-NN, choice of a
regularization parameter, choice of a kernel, etc.)

e choice between methods different in nature
ex.: k-NN vs. smoothing splines?
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Bias-variance trade-off

1~ 2 model
E { HFm - FH ] = Bias + Variance
n target
&
Bias or Approximation error ‘ﬁ’
1 1
1P = FI? = 1 AnF = FIP
n n

Variance or Estimation error

2tr (Al Am 2 di
o r(nm ) oLS: adlr;(Sm)
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Lin. estim. selection
[e]e]e]e] o)

Bias-variance trade-off

1~ 2 ) ) model
E { HFm - FH ] = Bias + Variance
n target
&
Bias or Approximation error ‘ﬁ’
1 1
~Fm = FI? =~ | AnF — F
n n

Variance or Estimation error

2tr (Al Am 2 di
o r(nm ) oLS: adlr;(Sm)

Bias-variance trade-off
& avoid overfitting and underfitting
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Why should the empirical risk be penalized?

0.1f

0.05fF

-0.05p

= = =Biais
Exces de risque
—— E[Risque empirique]
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Lin. estim. selection

Penalization

- : 12 2
m € arg min ¢ — HFm — YH + pen(m)
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Lin. estim. selection
[ le]

Penalization

€ arg mln{ HF —YH + pen(m )}

meM

o Ideal penalty:

pen;q(m) HF - FH - = HF — YH = Risk — Empirical risk

e Mallows' heuristic: pen(m) ~ E[pen;q(m)]
= oracle inequality if Card(M) not too large
(+ concentration inequalities)
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Lin. estim. selection
[ le]

Penalization

m € arg min { HF - YH + pen(m )}
meM
o Ideal penalty:

pen;q(m) HF - FH - = HF — YH = Risk — Empirical risk

e Mallows' heuristic: pen(m) ~ E[pen;q(m)]
= oracle inequality if Card(M) not too large
(+ concentration inequalities)

= OLS: G, 202D, /n (Mallows, 1973)
= Linear estimators: C,: 202tr(A,)/n (Mallows, 1973)
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Oracle inequality

Theorem (Birgé & Massart 2007, A. & Bach 2009-2011)

Assumptions:

e pen(m) = ZCtrin(A’") with |Co™2 —1| < LO\/@

Then, with probability at least 1 — 3 Card(M)n=%, if n > nq, for
everyn € (0,1),

1~ 2 1~ 2 [ 2
—|Fs - £ < (1) inf {HFmFH }+K(5,L0,L1) nln)g”
n meM | n nn
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o] ]

Oracle inequality

Theorem (Birgé & Massart 2007, A. & Bach 2009-2011)

Assumptions:

e pen(m) = ZCtrin(A’") with |Co™2 —1| < LO\/@

Then, with probability at least 1 — 3 Card(M)n=?, if n > ng, for
everyn € (0,1),

In(n)¢?
nn

S

.

n

_ 2 11~ 2
Fa—Fl <2 inf 3= [|Fm = F||" p + K6 Lo,
<( +77)m'2M{n + K(9, Lo, L1)

A\

Note: ridge, A € [0, +o0] < Card(M) o< n
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o] ]

Oracle inequality

Theorem (Birgé & Massart 2007, A. & Bach 2009-2011)
Assumptions:
e pen(m) = 2Ct(An) itk |Co™2—1| < Lo In(n)

o VYme M, ||Anll < L1 and tr(A}Am) < tr(Am) < n

o Gaussian noise: ¢; ~ N(0,0?)

Then, with probability at least 1 — 3 Card(M)n=%, if n > nq, for
everyn € (0,1),

In(n)a?

Q

RO e e

Note: ridge, A € [0, +00] < Card(M) x n
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Penalty calibration (OLS)
[ le]

Motivation (1): penalties known up to a constant factor

202Dy, 202 tr(Am)

Ex.: penc,(m) = pency,(m) =
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Penalty calibration (OLS)
[ le]

Motivation (1): penalties known up to a constant factor

202Dy, 202 tr(Am)

n

Ex.: penc,(m) = pency,(m) =

o Classical estimators of o2 :
o Gpy = ||Y = Faol?/(n — Dm,) (OLS)
problem: choice of mg?

o 72, = FPE (Akaike, 1970) and GCV (Craven & Wahba, 1979)
problem: avoiding the largest models
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Penalty calibration (OLS)
[ le]

Motivation (1): penalties known up to a constant factor

202Dy, 207 tr(Ap)

pencr(m) =

Ex.: penc,(m) = -

o Classical estimators of o2 :
o Gpy = ||Y = Faol?/(n — Dm,) (OLS)
problem: choice of mg?

o 72, = FPE (Akaike, 1970) and GCV (Craven & Wahba, 1979)
problem: avoiding the largest models

@ Goals: estimation of o2 for model selection, under minimal
assumptions, without overfitting
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Penalty calibration (OLS)
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Motivation (2): “L-curve” and elbow heuristics?

15

empirical / generalization error
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Penalty calibration (OLS)
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E[ Empirical risk | + Dn,n~t (OLS)

1.5¢ 1

E[empirical error + 0* pen min]

0 200 400 600 800 1000
dimension
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Penalty calibration (OLS)
[ leJele]

E[ Empirical risk | + D,n~t (OLS)

E[empirical error + 0.8* pen min]

0 200 400 600 800 1000
dimension
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E[ Empirical risk | +

E[empirical error + 0.9* pen min]

Penalty calibration (OLS)

D,n~t (OLS)

@000

200

400 600 800 1000
dimension
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E[ Empirical risk | +

E[empirical error + 1.1* pen min]

Penalty calibration (OLS)

D,n~t (OLS)

@000
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Penalty calibration (OLS)
[ leJele]

E[ Empirical risk | + D,n~t (OLS)

0.5¢

E[empirical error + 1.2* pen min]

0 200 400 600 800 1000
dimension
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Penalty calibration (OLS)
[ leJele]

E[ Empirical risk | + Dn,n~t (OL

E[empirical error + 2* pen min]

0 200 400 600 800 1000
dimension
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Penalty calibration (OLS)
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OLS: Dimension jump

1000

800 1

600r 1

400 1

dimension of m(C)

200r 1

C/sigma2
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Penalty calibration (OLS)
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OLS: algorithm (Birgé & Massart 2007)

@ for every C > 0, compute

~ . 1z 2 D
m(C) € arg min {HFm—YH +C}
meM, | n n

@ find Emin such that Dz (c) is “very large” when
C< E‘min and “reasonably small" when C > Em;n

Q select m=m (2/€min)

Practical use: CAPUSHE package (Baudry, Maugis & Michel, 2010)
http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot
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Penalty calibration (OLS)
[e]e]e] ]

Practical qualities of the algorithm

@ visual checking of existence of a jump

@ calibration independent from the choice of some mg

@ too strong overfitting almost impossible

@ one remaining parameter: how to localize the jump

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Penalty calibration (OLS)
e0

Theorem (1): Dimension jump / Minimal penalty

Theorem (Birgé & Massart 2007, A. & Bach 2009-2011)
Assumptions:
© 3my € M, Dy < /0 and L||Fpy — F|* < 0?y/In(n)/n.
o Gaussian noise: £; ~ N(0,0?)
Then, with probability at least 1 — 3 Card(M)n=%, if n > no(0),

Ve < (1 — L30 In(n)) o2, Dzc) > n
n 3

ves (14600 ) 2 p <
3 o o, m(C) = 10

n

and in the first case, 1”75,?,((_-) — F|> > inmeMn{%H/l_:m — F|?}.
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Penalty calibration (OLS)
(o] ]

Theorem (2): Oracle inequality

Theorem (Birgé & Massart 2007, A. & Bach 2009-2011)
Assumptions:
e me€arg minmeM{%Hl?m - Y|?+ 2Emin%}
© 3my € M, Dy < /0 and L||Fp, — F|? < 0?\/In(n)/n.
o Gaussian noise: ¢; ~ N(0,0?)

Then, with probability at least 1 — 3 Card(M)n=%, if n > no(), for
every n > 0,

2

.
n

- 2 1~ 2 I
Fao— Fl| < (1) inf {HFmFH }+K(6) n(n)o
meM | n nn
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Linear estimators
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Generalization of minimal penalties to linear estimators?

OLS

202D,
penCp(m) =

n
1~ D
in $ =||Fm— Y2+ C—=
o iy { Gl = Y17+ T}
2

= Dgyc) “jumps” at E‘m;n ~o

= optimal choice with fﬁ(2€"min)
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Linear estimators
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Generalization of minimal penalties to linear estimators?

OLS Linear estimators
2
20°D 202 tr(Am)
pency(m) = == pency (m) = = =

1~ D

in $ =||Fm— Y2+ C—=
o min { 1P~ VI <O |
2

= Dgyc) “jumps” at E‘m;n ~o

= optimal choice with fﬁ(2€"min)
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Linear estimators
e0

Generalization of minimal penalties to linear estimators?

OLS Linear estimators
2
20°D 202 tr(Am)
pency(m) = == pency (m) = = =

N 2 Dnm (1~ tr(Am)
argncgl/r\l({nHFm_YH +Cn} arg,;r;%({nHFm—YHz—i—Cnm}
= Da(cy "jumps” at Comin 0% Does tr(As(c)) jump at Conin &~ 027

= optimal choice with m(2Cin)  optimal choice with ﬁv(ZEm;n) ?

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot
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No dimension jump with a penalty o tr(A;,)

100 : :
\ —o—optimal penalty / 2\
800
~ 600}
S
<
NS
= 400t
200¢
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Iog(C/sigmaZ)

Sylvain Arlot

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression



Linear estimators
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Minimal penalties for linear estimators

1 Al An)o?
n

~ 2 t
Frn — FH ] = Ly = amyFpp 45 — bias + variance

n n

E[l
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Linear estimators
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Minimal penalties for linear estimators

1 ) )
E [ = bias + variance

tr(A} Am)o?
n n

~ 2 1 5
P Fl| | = 2110 = Am)FIP+

2tr(Am) — tr(ALAm) ) 02

n

1~ 2 1
E [ |7 ¥ ] =2 - AL
n n

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot
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Minimal penalties for linear estimators

tr(Al A,,)o2 _
M = bias + variance
n

1= 2 1
E [ P F| ] = (= An)F[* +
n n

(2tr(Am) — tr(ALAm) ) 02

n

1~ 2 1
E [ |0 v] ] — o2 L (- An)FIP -
n n

(2tr(An)) o2

n

= optimal penalty
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Linear estimators
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Minimal penalties for linear estimators

1 ) )
E [ = bias + variance

tr(A} Am)o?
n n

~ 2 1 5
P Fl| | = 2110 = Am)FIP+

2tr(Am) — tr(ALAm) ) 02

n

—~ 2
EFH%—YH]=¥+HW—AMHF<
n n

(2tr(Am)) 02

= optimal penalty

(2tr(Am) — tr(ALAm) ) 02

n

= minimal penalty

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Linear estimators
@®00000

Minimal penalties for linear estimators

tr(ANAm)o? :
tr(AnAm)o” = bias + variance
n

E [,11 H’E’" - FH2] - % (1 — Am)F)? +

(2tr(Am) — tr(ALAm) ) o2

1~ 2 1
E [ |0 v] ] — o2 21— An)FIP -
n n

2tr(A 2
= optimal penalty M

1~ 2
ﬁv(C)eargmin{HFm—YH +C x
n

2tr(Am) — tr(ALAR)
AEA

n

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Linear estimators

O®0000

“Dimension” jump (ridge regression)

——minimal penalty
—o—optimal penalty / 2

100

800

~ 600
)
<
<
= 400} ]
200r 1
| | | >
96 -4 -2 0 2 4 6
Iog(C/sigmaZ)
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Linear estimators
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Penalty calibration algorithm (A. & Bach 2009)

@ for every C > 0, compute

Mmin(C) € arg min {,17 HY _ I?mH2 N C (2tr(Am) — tr(ALAm)) }

meM n

@ find Cpin such that tr(Agm,..(c)) is “too large” when
C< E‘m;n and “reasonably small" when C > an;n,

@ select

1 ~ 112 2Cmintr(A
meargmijr\]A{HYFmH +Cmmnr(m)}
me& n

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Linear estimators
[o]e] lele]e]

Penalty calibration algorithm (A. & Bach 2009)

@ for every C > 0, compute

meM n

Mmin(C) € arg min {,17 HY _ I?mH2 N C (2tr(Am) — tr(ALAm)) }

@ find Cpin such that tr(Agm,..(c)) is “too large” when
C< E‘m;n and “reasonably small" when C > an;n,

© select
_ |1 ~ 112 2Cmin tr(A
m € arg mm{HYFmH +mmr(m)}
meM | n n

o~

= [Cpino 2 — 1‘ < Lg+/In(n)/n and oracle inequality (same
assumptions as before).

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression
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Linear estimators
000000

Comparison with least-squares

@ Linear estimators:

o2 (2tr(Am) — tr(ALAm))
_0%(2 tr(Am);7

) B gtr(Am)
penin(m)  2tr(Ay) — tr(ALAR)

€(1,2]
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Linear estimators
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Comparison with least-squares

@ Linear estimators:

o2 (2tr(Am) — tr(ALAm))

penmin(m) = n
2

o (2tr(Am))

pen(m) = & (21 An))

penopt(m 2tr(Am)

)
m) = 2t(An) — tr(ATAy) € 12

mln(

o Least-squares case:

penopt(m)

Al Am = Am
penmin(m)

=2 = Slope heuristics

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot
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The k-nearest neighbours case
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The k-nearest neighbours case
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Simulation study (ridge regression, choice of \)

B e
2 _[ - --10-fold CV

R N A Gev

% ZE,‘:’,{'—\—‘{"I* ’ 1\\ —— min. penalty

g 1.5\\-\ "{:,‘LL

(b} 1‘~i-.i=_=

T 1 '

@

o]

€ 05
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Multi-task
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Multi-task regression

o We want to solve p > 2 regression problems simultaneously
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Multi-task regression

o We want to solve p > 2 regression problems simultaneously
@ Observations: Yi,..., Y, € RP

Yi=F+d  j=1...p (eg, F/ =F(x))
with (&i);<jc, 1. V(0,X), T € S5 (R)
@ Implicit assumption: the p problems are “similar”
@ Least-squares loss of a predictor t € R"P (t,’ =t(x)"):

! A= LS S (d-F)
ol FIP =SS (6 F)

i=1 j=1
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Multi-task
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Multi-task regression

o We want to solve p > 2 regression problems simultaneously
@ Observations: Yi,..., Y, € RP

YI=F+e j=1..p (e, F =F(x))
with (&/);<j<, i-d. N(0,X), T € SF(R)
@ Implicit assumption: the p problems are “similar”
@ Least-squares loss of a predictor t € R"P (t,’ =t(x)"):
1 ) 1 & . N2
— |t —F||*=— (1.'] — FJ)
ol AP = 3 (4

= Estimator F(Y1,...,Y,) € R%P?
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Ridge multi-task regression

~

F:(?{)lﬁiﬁn,lﬁjép with [?’!':?f(x,-) and f defined by:

o If we consider the tasks separately:

arg min anZ(YJ_fJ ) +Z)\J }fJH

P
feFg i—1 j=1
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Ridge multi-task regression

~

F:(?{)lﬁiﬁn,lﬁjép with [?’!':?f(x,-) and f defined by:

o If we consider the tasks separately:

arg min ZZ(YJ—F (x7) ) —i—Z)\J }fJHfK

P
feFg i—1 j=1

@ A possible multi-task approach (Evgeniou et al., 2005):

2 L - ) e
S En M URTO RS RS

P
feFy i—1 j=1
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Ridge multi-task regression

~

F:(?{)lﬁiﬁn,lﬁjép with [?’!':?f(x,-) and f defined by:

o If we consider the tasks separately:

arg min ZZ(YJ—F (x7) ) —i—Z)\J }fJHfK

P
feFg i—1 j=1

@ A possible multi-task approach (Evgeniou et al., 2005):

2 L - ) e
2 B R e LR

P
feFy i—1 j=1

o More generally: for M € S5 (R),

arg min, anZ(Y’—f’ )+ S My (7, ")

i=1 j=1 R4

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Multi-task
[efe] ]

Multi-task estimator selection

= Estimators collection (Fu)meam, M C Sy (R),

with  Fyy=AyY and Ay= (M 1@K)((M'@K)+nply) "

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Multi-task
[efe] ]

Multi-task estimator selection

= Estimators collection (Fu)meam, M C Sy (R),
with  Fyy=AyY and Ay= (M 1@K)((M'@K)+nply) "

o Goal: select M € M such that nipHF,\;, — F||? is minimal

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Multi-task
[efe] ]

Multi-task estimator selection

= Estimators collection (Fi)men, M C Sy (R),

with  Fyy=AyY and Ay= (M 1@K)((M'@K)+nply) "

e Goal: select M € M such that nipHF,\;, — F||? is minimal

@ Expectation of the ideal penalty:

E [penyy(M)] = ,fptrmmz 1))
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Multi-task estimator selection

= Estimators collection (Fi)men, M C Sy (R),
with  Fyy=AyY and Ay= (M 1@K)((M'@K)+nply) "
o Goal: select M € M such that nipH/I-:,\;, — F||? is minimal
@ Expectation of the ideal penalty:
E [pena(M)] = - tr (Aw (Z1,))

@ Problem: How to estimate X 7?

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Multi-task
0000

Estimating the covariance matrix: idea (p = 2)

02

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Multi-task
0000

Estimating the covariance matrix: idea (p = 2)

02

g3

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Multi-task
0000

Estimating the covariance matrix: idea (p = 2)

02

g3

Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression Sylvain Arlot



Multi-task
0e000

Estimating the covariance matrix: algorithm

o forevery j € {1,...,p}, apply the “minimal penalties”
algorithm to the data set (Y/)i<i<n
= estimator a(ej) of ¥ ;

o forevery j#( € {1,...,p}, apply the “minimal penalties"
algorithm to the data set (Y? + Y,-g)lgign
= estimator a(ej +e/) of Xj;+ Xy + 2%,
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Estimating the covariance matrix: algorithm

o forevery j € {1,...,p}, apply the “minimal penalties”
algorithm to the data set (Y/)i<i<n
= estimator a(ej) of ¥ ;

o forevery j#( € {1,...,p}, apply the “minimal penalties"
algorithm to the data set (Y? + Y,-g)lgign
= estimator a(ej +e/) of Xj;+ Xy + 2%,

o Recover an estimator ¥ of ¥:
Y= J(a(e1),...,a(ep),aler + e),...,a(ep—1 + €p))

where J is the unique linear application RP(PT1)/2 5 S (R)
such that

Y = J(ZLl, RN Zp7p, 2171 + 2272 + 22172, RN zpfl,pfl + Zp,p + 2Zp,1’p)
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Theorem: Estimating the covariance matrix

Theorem (Solnon, A. & Bach, 2011)

If for every j =1,...,p, some \; > 0 exists such that
tr(Ay;) < +/n and

1 2 In(n _
EH(/n—A,\j)FJH <Y, E]) where Ay = K(K+nAjl,) ™",

Then, with probability 1 — Lsp?n=%, if n > no(0),

(1-E <L < (1+n)X with n:=L2+0)c(X)p |nE’n)

where c¢(X) = max(Sp(X))/ min(Sp(X)).

= sufficient condition for consistency
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Theorem: Oracle inequality

Theorem (Solnon, A. & Bach, 2011)

If moreover matrices M € M can be diagonalized in the same
orthogonal basis, and if

Meargquelfr\]A{li)“ﬁM_Y“2+n2ptr(AM <§®In))} ;

Then, with probability 1 — Lsp?n=%, if n > no(0),

LIl < (14 ) it HFM FH}
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Simulations: n =100, 2 < p <50, 1.1 < ¢(X) <225

= Improvement of the multi—task procedure]

0.5;5— ) 3 t 1

Ratio of the quadratic errors
5
F—e—r
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Conclusion
e0

Summary

Minimal penalties: efficient for data-driven calibration of
multiplicative constants in penalties

pen,,. / peny, ~ 2 for least-squares estimators

penyyt / Penyi, € (1;2] for linear estimators

Can be applied with a data-driven shape of penalty (e.g., if
data are heteroscedastic): V/-fold/resampling penalties (OLS:
A. 2008, 2009; Lerasle, 2009)
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Minimal penalties: which frameworks?

@ Theoretical results:
o OLS, homoscedastic Gaussian regression (Birgé & Massart,
2007)

o regressograms, heteroscedastic (A. & Massart, 2009)
Least-squares density estimation, i.i.d. (Lerasle, 2009) or
mixing (Lerasle, 2010) data
Linear estimators, regression (A. & Bach, 2009-2011)
Minimum contrast estimator, regular contrast (Saumard, 2010)
Multitask regression (Solnon, A. & Bach, 2011)

@ Empirical results:
Change-point detection (Lebarbier, 2005)
Gaussian mixture models (Maugis & Michel, 2008-2010)
Unsupervised classification (Baudry, 2009)
Computational geometry (Caillerie & Michel, 2009)
Lasso (Connault, 2011)

. (see Baudry, Maugis & Michel, 2011)
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