Data-driven calibration of linear estimators with minimal penalties, with an application to multi-task regression

Sylvain Arlot (joint works with F. Bach & M. Solnon)

 $^{1}\mathrm{CNRS}$

²École Normale Supérieure (Paris), LIENS, Équipe SIERRA

Cambridge, November, 4th 2011

Goal: find the signal (denoising)

Statistical framework: regression, least-squares loss

• Observations: $Y = (Y_1, \dots, Y_n) \in \mathbb{R}^n$

$$Y_i = F_i + \varepsilon_i$$
 (e.g., $F_i = F(x_i)$)

with
$$Y_i \in \mathbb{R}$$
, $(\varepsilon_i)_{1 \leq i \leq n}$ i.i.d.

Introduction

000000000

Introduction

Statistical framework: regression, least-squares loss

• Observations: $Y = (Y_1, \dots, Y_n) \in \mathbb{R}^n$

$$Y_i = F_i + \varepsilon_i$$
 (e.g., $F_i = F(x_i)$)

with
$$Y_i \in \mathbb{R}$$
, $(\varepsilon_i)_{1 \le i \le n}$ i.i.d.

• Fixed design: x_i deterministic

Statistical framework: regression, least-squares loss

• Observations: $Y = (Y_1, \ldots, Y_n) \in \mathbb{R}^n$

$$Y_i = F_i + \varepsilon_i$$
 (e.g., $F_i = F(x_i)$)

with
$$Y_i \in \mathbb{R}$$
, $(\varepsilon_i)_{1 \le i \le n}$ i.i.d.

• Fixed design: x_i deterministic

Introduction

• Least-squares loss of a predictor $t \in \mathbb{R}^n$ (" $t_i = t(x_i)$ "):

$$\frac{1}{n} \|t - F\|^2 = \frac{1}{n} \sum_{i=1}^{n} (t_i - F_i)^2$$

Introduction

Statistical framework: regression, least-squares loss

• Observations: $Y = (Y_1, \dots, Y_n) \in \mathbb{R}^n$

$$Y_i = F_i + \varepsilon_i$$
 (e.g., $F_i = F(x_i)$)

with
$$Y_i \in \mathbb{R}$$
, $(\varepsilon_i)_{1 \leq i \leq n}$ i.i.d.

- Fixed design: x_i deterministic
- Least-squares loss of a predictor $t \in \mathbb{R}^n$ (" $t_i = t(x_i)$ "):

$$\frac{1}{n} ||t - F||^2 = \frac{1}{n} \sum_{i=1}^{n} (t_i - F_i)^2$$

 \Rightarrow Estimator $\widehat{F}(Y) \in \mathbb{R}^n$?

Estimators: example: regressogram

Introduction

• Natural idea: minimize an estimator of the risk $\frac{1}{n} ||t - F||^2$

Least-squares estimators

Introduction

000000000

- Natural idea: minimize an estimator of the risk $\frac{1}{n} ||t F||^2$
- Least-squares criterion:

$$\frac{1}{n} \|t - Y\|^2 = \frac{1}{n} \sum_{i=1}^{n} (t_i - Y_i)^2$$

$$\forall t \in \mathbb{R}^n$$
, $\mathbb{E}\left[\frac{1}{n}\|t - Y\|^2\right] = \frac{1}{n}\|t - F\|^2 + \frac{1}{n}\mathbb{E}\left[\|\varepsilon\|^2\right]$

Least-squares estimators

Lin. estim. selection

- Natural idea: minimize an estimator of the risk $\frac{1}{n} ||t F||^2$
- Least-squares criterion:

$$\frac{1}{n} \|t - Y\|^2 = \frac{1}{n} \sum_{i=1}^n (t_i - Y_i)^2$$

$$\forall t \in \mathbb{R}^n , \quad \mathbb{E}\left[\frac{1}{n} \|t - Y\|^2\right] = \frac{1}{n} \|t - F\|^2 + \frac{1}{n} \mathbb{E}\left[\|\varepsilon\|^2\right]$$

• Model: $S \subset \mathbb{R}^n \Rightarrow \text{Least-squares estimator on } S$:

$$\widehat{F}_{S} \in \arg\min_{t \in S} \left\{ \frac{1}{n} \|t - Y\|^{2} \right\} = \arg\min_{t \in S} \left\{ \frac{1}{n} \sum_{i=1}^{n} (t_{i} - Y_{i})^{2} \right\}$$

so that

$$\hat{F}_S = \Pi_S(Y)$$
 (orthogonal projection)

Model examples

Introduction

• histograms on some partition Λ of \mathcal{X} ⇒ the least-squares estimator (regressogram) can be written

$$\widehat{F}_m(x_i) = \sum_{\lambda \in \Lambda} \widehat{\beta}_{\lambda} \mathbb{1}_{x_i \in \lambda} \qquad \widehat{\beta}_{\lambda} = \frac{1}{\mathsf{Card} \left\{ x_i \in \lambda \right\}} \sum_{x_i \in \lambda} Y_i$$

- subspace generated by a subset of an orthogonal basis of $L^2(\mu)$ (Fourier, wavelets, and so on)
- variable selection: $x_i = \left(x_i^{(1)}, \dots, x_i^{(p)}\right) \in \mathbb{R}^p$ gathers pvariables that can (linearly) explain Y_i

$$\forall m \subset \{1, \dots, p\}$$
 , $S_m = \text{vect}\left\{x^{(j)} \text{ s.t. } j \in m\right\}$.

Linear estimators

- OLS: $\widehat{F}_m = \prod_{S_m} Y$ (projection onto S_m)
- (kernel) ridge regression, spline smoothing:

$$\widehat{F}_i = \widehat{f}(x_i)$$
 with $\widehat{f} \in \arg\min_{f \in \mathcal{F}_K} \left\{ \frac{1}{n} \sum_{i=1}^n (Y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{F}_K}^2 \right\}$

$$\Rightarrow$$
 $\widehat{F}_{\lambda,K} = K(K + \lambda I)^{-1}Y$ where $K = (K(x_i, x_j))_{1 \le i,j \le n}$

- k-nearest neighbours
- Nadaraya-Watson estimators

$$\widehat{F} = AY$$
 where A does not depend on Y

Estimator selection: regular regressograms

Estimator selection: k nearest neighbours

Estimator selection: Nadaraya-Watson

Estimator selection

Lin. estim. selection 00000000

• Estimator collection $(\widehat{F}_m)_{m \in \mathcal{M}} \Rightarrow \widehat{m}(Y)$? Example: $\widehat{F}_m = A_m Y$

Estimator selection

- Estimator collection $(\widehat{F}_m)_{m \in \mathcal{M}} \Rightarrow \widehat{m}(Y)$? Example: $\widehat{F}_m = A_m Y$
- Goal: minimize the risk, i.e.,
 Oracle inequality (in expectation or with a large probability):

$$\frac{1}{n} \left\| \widehat{F}_{\widehat{m}} - F \right\|^2 \le C \inf_{m \in \mathcal{M}} \left\{ \frac{1}{n} \left\| \widehat{F}_m - F \right\|^2 \right\} + R_n$$

Estimator selection

- Estimator collection $(\widehat{F}_m)_{m \in \mathcal{M}} \Rightarrow \widehat{m}(Y)$? Example: $\widehat{F}_m = A_m Y$
- Goal: minimize the risk, i.e.,
 Oracle inequality (in expectation or with a large probability):

$$\frac{1}{n} \left\| \widehat{F}_{\widehat{m}} - F \right\|^2 \le C \inf_{m \in \mathcal{M}} \left\{ \frac{1}{n} \left\| \widehat{F}_m - F \right\|^2 \right\} + R_n$$

- Examples:
 - model selection
 - calibration (choosing k or the distance for k-NN, choice of a regularization parameter, choice of a kernel, etc.)
 - choice between methods different in nature ex.: k-NN vs. smoothing splines?

Bias-variance trade-off

Lin. estim. selection

$$\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_m - F\right\|^2\right] = \text{Bias} + \text{Variance}$$

Bias or Approximation error

$$\frac{1}{n} \|F_m - F\|^2 = \frac{1}{n} \|A_m F - F\|^2$$

Variance or Estimation error

$$\frac{\sigma^2 \operatorname{tr} \left(A_m^{\top} A_m \right)}{n} \quad \text{OLS:} \quad \frac{\sigma^2 \operatorname{dim} (S_m)}{n}$$

Bias-variance trade-off

Lin. estim. selection

$$\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_m - F\right\|^2\right] = \text{Bias} + \text{Variance}$$

Bias or Approximation error

$$\frac{1}{n} \|F_m - F\|^2 = \frac{1}{n} \|A_m F - F\|^2$$

Variance or Estimation error

$$\frac{\sigma^2 \operatorname{tr} \left(A_m^{\top} A_m \right)}{n} \quad \text{OLS:} \quad \frac{\sigma^2 \operatorname{dim} (S_m)}{n}$$

Bias-variance trade-off

avoid overfitting and underfitting

Penalization

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{n} \left\| \widehat{F}_m - Y \right\|^2 + \operatorname{pen}(m) \right\}$$

Penalization

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{n} \left\| \widehat{F}_m - Y \right\|^2 + \operatorname{pen}(m) \right\}$$

• Ideal penalty:

$$pen_{id}(m) := \frac{1}{n} \left\| \widehat{F}_m - F \right\|^2 - \frac{1}{n} \left\| \widehat{F}_m - Y \right\|^2 = Risk - Empirical risk$$

• Mallows' heuristic: $pen(m) \approx \mathbb{E}[pen_{id}(m)]$ \Rightarrow oracle inequality if Card(\mathcal{M}) not too large (+ concentration inequalities)

Penalization

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{n} \left\| \widehat{F}_m - Y \right\|^2 + \operatorname{pen}(m) \right\}$$

• Ideal penalty:

$$\operatorname{pen}_{\operatorname{id}}(m) := \frac{1}{n} \left\| \widehat{F}_m - F \right\|^2 - \frac{1}{n} \left\| \widehat{F}_m - Y \right\|^2 = \operatorname{Risk} - \operatorname{Empirical risk}$$

- Mallows' heuristic: $pen(m) \approx \mathbb{E}[pen_{id}(m)]$ \Rightarrow oracle inequality if Card(\mathcal{M}) not too large (+ concentration inequalities)
- \Rightarrow OLS: C_n : $2\sigma^2 D_m/n$ (Mallows, 1973)
- \Rightarrow Linear estimators: C_L : $2\sigma^2 \operatorname{tr}(A_m)/n$ (Mallows, 1973)

Oracle inequality

Theorem (Birgé & Massart 2007, A. & Bach 2009-2011)

Assumptions:

•
$$pen(m) = \frac{2C \operatorname{tr}(A_m)}{n}$$
 with $|C\sigma^{-2} - 1| \le L_0 \sqrt{\frac{\ln(n)}{n}}$

Then, with probability at least $1-3\operatorname{Card}(\mathcal{M})n^{-\delta}$, if $n\geq n_0$, for every $\eta\in(0,1)$,

$$\frac{1}{n}\left\|\widehat{F}_{\widehat{m}}-F\right\|^{2} \leq (1+\eta)\inf_{m\in\mathcal{M}}\left\{\frac{1}{n}\left\|\widehat{F}_{m}-F\right\|^{2}\right\} + K(\delta,L_{0},L_{1})\frac{\ln(n)\sigma^{2}}{\eta n}$$

Oracle inequality

Theorem (Birgé & Massart 2007, A. & Bach 2009–2011)

Assumptions:

• pen
$$(m) = \frac{2C \operatorname{tr}(A_m)}{n}$$
 with $|C\sigma^{-2} - 1| \le L_0 \sqrt{\frac{\ln(n)}{n}}$

Then, with probability at least $1-3\operatorname{Card}(\mathcal{M})n^{-\delta}$, if $n\geq n_0$, for every $\eta\in(0,1)$,

$$\frac{1}{n}\left\|\widehat{F}_{\widehat{m}}-F\right\|^{2} \leq (1+\eta)\inf_{m\in\mathcal{M}}\left\{\frac{1}{n}\left\|\widehat{F}_{m}-F\right\|^{2}\right\} + K(\delta,L_{0},L_{1})\frac{\ln(n)\sigma^{2}}{\eta n}$$

Note: ridge, $\lambda \in [0, +\infty] \Leftrightarrow Card(\mathcal{M}) \propto n$

Oracle inequality

Theorem (Birgé & Massart 2007, A. & Bach 2009–2011)

Assumptions:

•
$$pen(m) = \frac{2C \operatorname{tr}(A_m)}{n}$$
 with $|C\sigma^{-2} - 1| \le L_0 \sqrt{\frac{\ln(n)}{n}}$

- $\forall m \in \mathcal{M}$, $||A_m|| \le L_1$ and $\operatorname{tr}(A_m^\top A_m) \le \operatorname{tr}(A_m) \le n$
- Gaussian noise: $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

Then, with probability at least $1-3\operatorname{Card}(\mathcal{M})n^{-\delta}$, if $n\geq n_0$, for every $\eta\in(0,1)$,

$$\frac{1}{n}\left\|\widehat{F}_{\widehat{m}}-F\right\|^{2} \leq (1+\eta)\inf_{m\in\mathcal{M}}\left\{\frac{1}{n}\left\|\widehat{F}_{m}-F\right\|^{2}\right\} + K(\delta,L_{0},L_{1})\frac{\ln(n)\sigma^{2}}{\eta n}$$

Note: ridge, $\lambda \in [0, +\infty] \Leftrightarrow Card(\mathcal{M}) \propto n$

Motivation (1): penalties known up to a constant factor

Ex.:
$$\operatorname{pen}_{Cp}(m) = \frac{2\sigma^2 D_m}{n}$$
 $\operatorname{pen}_{CL}(m) = \frac{2\sigma^2 \operatorname{tr}(A_m)}{n}$

Motivation (1): penalties known up to a constant factor

Ex.:
$$\operatorname{pen}_{Cp}(m) = \frac{2\sigma^2 D_m}{n}$$
 $\operatorname{pen}_{CL}(m) = \frac{2\sigma^2 \operatorname{tr}(A_m)}{n}$

- Classical estimators of σ^2 :
 - $\widehat{\sigma}_{m_0}^2 := \|Y \widehat{F}_{m_0}\|^2/(n D_{m_0})$ (OLS) problem: choice of m_0 ?
 - $\hat{\sigma}_m^2 \Rightarrow \text{FPE}$ (Akaike, 1970) and GCV (Craven & Wahba, 1979) problem: avoiding the largest models

Motivation (1): penalties known up to a constant factor

Ex.:
$$\operatorname{pen}_{\mathrm{Cp}}(m) = \frac{2\sigma^2 D_m}{n}$$
 $\operatorname{pen}_{\mathrm{CL}}(m) = \frac{2\sigma^2 \operatorname{tr}(A_m)}{n}$

- Classical estimators of σ^2 :
 - $\widehat{\sigma}_{m_0}^2 := \|Y \widehat{F}_{m_0}\|^2/(n D_{m_0})$ (OLS) problem: choice of m_0 ?
 - $\hat{\sigma}_m^2 \Rightarrow \text{FPE}$ (Akaike, 1970) and GCV (Craven & Wahba, 1979) problem: avoiding the largest models
- Goals: estimation of σ^2 for model selection, under minimal assumptions, without overfitting

Motivation (2): "L-curve" and elbow heuristics?

$\mathbb{E}[\text{ Empirical risk }] + \frac{\mathbf{0}}{\mathbf{v}} \times \frac{\sigma^2 D_m n^{-1}}{\sigma^2} \text{ (OLS)}$

$\mathbb{E}[\text{ Empirical risk }] + 0.8 \times \sigma^2 D_m n^{-1} \text{ (OLS)}$

$\mathbb{E}[\text{ Empirical risk }] + 0.9 \times \sigma^2 D_m n^{-1} \text{ (OLS)}$

$\mathbb{E}[\text{ Empirical risk }] + 1.2 \times \sigma^2 D_m n^{-1} \text{ (OLS)}$

OLS: Dimension jump

OLS: algorithm (Birgé & Massart 2007)

• for every C > 0, compute

$$\widehat{m}(C) \in \arg\min_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| \widehat{F}_m - Y \right\|^2 + \frac{C \frac{D_m}{n}}{n} \right\}$$

- ② find \widehat{C}_{\min} such that $D_{\widehat{m}(C)}$ is "very large" when $C < \widehat{C}_{\min}$ and "reasonably small" when $C > \widehat{C}_{\min}$

Practical use: CAPUSHE package (Baudry, Maugis & Michel, 2010) http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html

- visual checking of existence of a jump
- calibration independent from the choice of some m_0
- too strong overfitting almost impossible
- one remaining parameter: how to localize the jump

Theorem (1): Dimension jump / Minimal penalty

Theorem (Birgé & Massart 2007, A. & Bach 2009-2011)

Assumptions:

- $\exists m_0 \in \mathcal{M}$, $D_{m_0} \leq \sqrt{n}$ and $\frac{1}{n} \|F_{m_0} F\|^2 \leq \sigma^2 \sqrt{\ln(n)/n}$.
- Gaussian noise: $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

Then, with probability at least $1-3\operatorname{Card}(\mathcal{M})n^{-\delta}$, if $n\geq n_0(\delta)$,

$$\forall C < \left(1 - L_3 \delta \sqrt{\frac{\ln(n)}{n}}\right) \sigma^2, \quad D_{\widehat{m}(C)} \ge \frac{n}{3}$$

$$\forall C > \left(1 + L_3 \delta \sqrt{\frac{\ln(n)}{n}}\right) \sigma^2, \quad D_{\widehat{m}(C)} \le \frac{n}{10}$$

and in the first case, $\frac{1}{n}\|\widehat{F}_{\widehat{m}(C)} - F\|^2 \gg \inf_{m \in \mathcal{M}_n} \{\frac{1}{n}\|\widehat{F}_m - F\|^2\}.$

Theorem (2): Oracle inequality

Theorem (Birgé & Massart 2007, A. & Bach 2009–2011)

Assumptions:

- $\widehat{m} \in \operatorname{arg\,min}_{m \in \mathcal{M}} \{ \frac{1}{n} \| \widehat{F}_m Y \|^2 + 2 \widehat{C}_{\min} \frac{D_m}{n} \}$
- $\exists m_0 \in \mathcal{M}$, $D_{m_0} \leq \sqrt{n}$ and $\frac{1}{n} \|F_{m_0} F\|^2 \leq \sigma^2 \sqrt{\ln(n)/n}$.
- Gaussian noise: $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

Then, with probability at least $1-3\operatorname{Card}(\mathcal{M})n^{-\delta}$, if $n\geq n_0(\delta)$, for every $\eta>0$,

$$\frac{1}{n}\left\|\widehat{F}_{\widehat{m}}-F\right\|^{2} \leq (1+\eta)\inf_{m\in\mathcal{M}}\left\{\frac{1}{n}\left\|\widehat{F}_{m}-F\right\|^{2}\right\} + K(\delta)\frac{\ln(n)\sigma^{2}}{\eta n}$$

Generalization of minimal penalties to linear estimators?

OLS

$$\mathsf{pen}_{\mathrm{Cp}}(m) = \frac{2\sigma^2 D_m}{n}$$

$$\arg\min_{m\in\mathcal{M}}\left\{\frac{1}{n}\|\widehat{F}_m-Y\|^2+\frac{C}{n}\frac{D_m}{n}\right\}$$

$$\Rightarrow D_{\widehat{m}(C)}$$
 "jumps" at $\widehat{C}_{\min} \approx \sigma^2$

$$\Rightarrow$$
 optimal choice with $\widehat{m}(2\widehat{C}_{min})$

Generalization of minimal penalties to linear estimators?

OLS

$$\operatorname{pen}_{\operatorname{Cp}}(m) = \frac{2\sigma^2 D_m}{n}$$

$$\operatorname{arg \min_{m \in \mathcal{M}}} \left\{ \frac{1}{n} \|\widehat{F}_m - Y\|^2 + \frac{C}{n} \frac{D_m}{n} \right\}$$

$$m \in \mathcal{M} \setminus n^{||r|m|} \cap n$$

$$\Rightarrow D_{\widehat{m}(C)}$$
 "jumps" at $\widehat{C}_{\min} \approx \sigma^2$

$$\Rightarrow$$
 optimal choice with $\widehat{m}(2\widehat{C}_{\min})$

Linear estimators

$$pen_{CL}(m) = \frac{2\sigma^2 \operatorname{tr}(A_m)}{n}$$

Generalization of minimal penalties to linear estimators?

OLS

$$\mathsf{pen}_{\mathrm{Cp}}(m) = \frac{2\sigma^2 D_m}{n}$$

$$\arg\min_{m\in\mathcal{M}}\left\{\frac{1}{n}\|\widehat{F}_m-Y\|^2+C\frac{D_m}{n}\right\}$$

$$\Rightarrow D_{\widehat{m}(C)}$$
 "jumps" at $\widehat{C}_{\min} \approx \sigma^2$

$$\Rightarrow$$
 optimal choice with $\widehat{m}(2\widehat{C}_{min})$

Linear estimators

$$pen_{CL}(m) = \frac{2\sigma^2 \operatorname{tr}(A_m)}{n}$$

$$\arg\min_{m\in\mathcal{M}}\left\{\frac{1}{n}\|\widehat{F}_m-Y\|^2+\frac{\mathsf{C}}{n}\frac{\mathsf{tr}(A_m)}{n}\right\}$$

Does
$$\operatorname{tr}(A_{\widehat{m}(C)})$$
 jump at $\widehat{C}_{\min} \approx \sigma^2$?

optimal choice with
$$\widehat{m}(2\widehat{C}_{\min})$$
?

No dimension jump with a penalty $\propto \operatorname{tr}(A_m)$

$$\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_m - F\right\|^2\right] = \frac{1}{n}\left\|(I - A_m)F\right\|^2 + \frac{\operatorname{tr}(A_m^\top A_m)\sigma^2}{n} = \operatorname{bias} + \operatorname{variance}$$

Minimal penalties for linear estimators

$$\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_m - F\right\|^2\right] = \frac{1}{n}\left\|(I - A_m)F\right\|^2 + \frac{\operatorname{tr}(A_m^\top A_m)\sigma^2}{n} = \operatorname{bias} + \operatorname{variance}$$

$$\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_m - Y\right\|^2\right] = \sigma^2 + \frac{1}{n}\left\|(I - A_m)F\right\|^2 - \frac{\left(2\operatorname{tr}(A_m) - \operatorname{tr}(A_m^\top A_m)\right)\sigma^2}{n}$$

Minimal penalties for linear estimators

$$\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_m - F\right\|^2\right] = \frac{1}{n}\left\|(I - A_m)F\right\|^2 + \frac{\mathsf{tr}(A_m^\top A_m)\sigma^2}{n} = \mathsf{bias} + \mathsf{variance}$$

$$\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_{m}-Y\right\|^{2}\right]=\sigma^{2}+\frac{1}{n}\left\|(I-A_{m})F\right\|^{2}-\frac{\left(2\operatorname{tr}(A_{m})-\operatorname{tr}(A_{m}^{\top}A_{m})\right)\sigma^{2}}{n}$$

$$\Rightarrow$$
 optimal penalty $\frac{(2 \operatorname{tr}(A_m)) \sigma^2}{n}$

$$\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_m - F\right\|^2\right] = \frac{1}{n}\left\|(I - A_m)F\right\|^2 + \frac{\operatorname{tr}(A_m^\top A_m)\sigma^2}{n} = \operatorname{bias} + \operatorname{variance}$$

$$\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_m - Y\right\|^2\right] = \sigma^2 + \frac{1}{n}\left\|(I - A_m)F\right\|^2 - \frac{\left(2\operatorname{tr}(A_m) - \operatorname{tr}(A_m^\top A_m)\right)\sigma^2}{n}$$

$$\Rightarrow$$
 optimal penalty $\frac{(2\operatorname{tr}(A_m))\sigma^2}{n}$

$$\Rightarrow$$
 minimal penalty $\frac{\left(2\operatorname{tr}(A_m)-\operatorname{tr}(A_m^\top A_m)\right)\sigma^2}{n}$

Linear estimators

$$\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_m - F\right\|^2\right] = \frac{1}{n}\left\|(I - A_m)F\right\|^2 + \frac{\operatorname{tr}(A_m^\top A_m)\sigma^2}{n} = \operatorname{bias} + \operatorname{variance}$$

$$\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_m - Y\right\|^2\right] = \sigma^2 + \frac{1}{n}\left\|(I - A_m)F\right\|^2 - \frac{\left(2\operatorname{tr}(A_m) - \operatorname{tr}(A_m^\top A_m)\right)\sigma^2}{n}$$

$$\Rightarrow$$
 optimal penalty $\frac{(2\operatorname{tr}(A_m))\sigma^2}{n}$

$$\widehat{m}(C) \in \arg\min_{\lambda \in \Lambda} \left\{ \frac{1}{n} \left\| \widehat{F}_m - Y \right\|^2 + C \times \frac{2\operatorname{tr}(A_m) - \operatorname{tr}(A_m^\top A_m)}{n} \right\}$$

Sylvain Arlot

"Dimension" jump (ridge regression)

Penalty calibration algorithm (A. & Bach 2009)

• for every C > 0, compute

$$\widehat{m}_{\min}(C) \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{C \left(2 \operatorname{tr}(A_m) - \operatorname{tr}(A_m^\top A_m) \right)}{n} \right\}$$

- ② find \widehat{C}_{\min} such that $\operatorname{tr}(A_{\widehat{m}_{\min}(C)})$ is "too large" when $C < \widehat{C}_{\min}$ and "reasonably small" when $C > \widehat{C}_{\min}$,
- select

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{2\widehat{C}_{\min} \operatorname{tr}(A_m)}{n} \right\}$$

Penalty calibration algorithm (A. & Bach 2009)

• for every C > 0, compute

$$\widehat{m}_{\min}(C) \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{C \left(2 \operatorname{tr}(A_m) - \operatorname{tr}(A_m^\top A_m) \right)}{n} \right\}$$

- ② find \widehat{C}_{\min} such that $\operatorname{tr}(A_{\widehat{m}_{\min}(C)})$ is "too large" when $C < \widehat{C}_{\min}$ and "reasonably small" when $C > \widehat{C}_{\min}$,
- select

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{2\widehat{C}_{\min} \operatorname{tr}(A_m)}{n} \right\}$$

 $\Rightarrow \left| \widehat{C}_{\min} \sigma^{-2} - 1 \right| \leq L_4 \sqrt{\ln(n)/n}$ and oracle inequality (same assumptions as before).

Linear estimators

0000000

Linear estimators:

$$\operatorname{pen}_{\min}(m) = \frac{\sigma^2 \left(2\operatorname{tr}(A_m) - \operatorname{tr}(A_m^\top A_m) \right)}{n}$$

$$\operatorname{pen}_{\operatorname{opt}}(m) = \frac{\sigma^2 \left(2\operatorname{tr}(A_m) \right)}{n}$$

$$\frac{\operatorname{pen}_{\operatorname{opt}}(m)}{\operatorname{pen}_{\min}(m)} = \frac{2\operatorname{tr}(A_m)}{2\operatorname{tr}(A_m) - \operatorname{tr}(A_m^\top A_m)} \in (1, 2]$$

Comparison with least-squares

• Linear estimators:

$$\begin{aligned} \text{pen}_{\min}(m) &= \frac{\sigma^2 \left(2 \operatorname{tr}(A_m) - \operatorname{tr}(A_m^\top A_m) \right)}{n} \\ \text{pen}_{\text{opt}}(m) &= \frac{\sigma^2 \left(2 \operatorname{tr}(A_m) \right)}{n} \\ \frac{\text{pen}_{\text{opt}}(m)}{\text{pen}_{\min}(m)} &= \frac{2 \operatorname{tr}(A_m)}{2 \operatorname{tr}(A_m) - \operatorname{tr}(A_m^\top A_m)} \in (1, 2] \end{aligned}$$

Least-squares case:

$$A_m^{\top} A_m = A_m \quad \Rightarrow \quad \frac{\text{pen}_{\text{opt}}(m)}{\text{pen}_{\text{min}}(m)} = 2 \quad \Rightarrow \quad \text{Slope heuristics}$$

The *k*-nearest neighbours case

$$orall i,j \in \{1,\ldots,n\} \;, \quad A_{i,j} \in \left\{0,rac{1}{k}
ight\}$$
 $orall i \in \{1,\ldots,n\} \;, \quad A_{i,i} = rac{1}{k} \quad ext{and} \quad \sum_{i=1}^n A_{i,j} = 1$

The *k*-nearest neighbours case

$$orall i,j \in \{1,\ldots,n\} \;, \quad A_{i,j} \in \left\{0,rac{1}{k}
ight\}$$
 $orall i \in \{1,\ldots,n\} \;, \quad A_{i,i} = rac{1}{k} \quad ext{and} \quad \sum_{j=1}^n A_{i,j} = 1$

$$\Rightarrow$$
 $\operatorname{tr}(A) = \frac{n}{k} = \operatorname{tr}(A^{\top}A)$

$$\Rightarrow$$
 pen_{opt} = 2 pen_{min}

Simulation study (ridge regression, choice of λ)

• We want to solve $p \ge 2$ regression problems simultaneously

- We want to solve $p \ge 2$ regression problems simultaneously
- Observations: $Y_1, \ldots, Y_n \in \mathbb{R}^p$

$$Y_i^j = F_i^j + \varepsilon_i^j$$
 $j = 1, \dots, p$ (e.g., $F_i^j = F^j(x_i)$)

with
$$(\varepsilon_i)_{1 \leq i \leq n}$$
 i.i.d. $\mathcal{N}(0, \Sigma)$, $\Sigma \in \mathcal{S}^+_p(\mathbb{R})$

- We want to solve $p \ge 2$ regression problems simultaneously
- Observations: $Y_1, \ldots, Y_n \in \mathbb{R}^p$

$$Y_i^j = F_i^j + \varepsilon_i^j$$
 $j = 1, \dots, p$ (e.g., $F_i^j = F^j(x_i)$) with $(\varepsilon_i)_{1 \le i \le p}$ i.i.d. $\mathcal{N}(0, \Sigma)$, $\Sigma \in \mathcal{S}_p^+(\mathbb{R})$

Implicit assumption: the p problems are "similar"

- We want to solve $p \ge 2$ regression problems simultaneously
- Observations: $Y_1, \ldots, Y_n \in \mathbb{R}^p$

$$Y_i^j = F_i^j + \varepsilon_i^j$$
 $j = 1, \dots, p$ (e.g., $F_i^j = F^j(x_i)$) with $(\varepsilon_i)_{1 \le i \le p}$ i.i.d. $\mathcal{N}(0, \Sigma)$, $\Sigma \in \mathcal{S}_p^+(\mathbb{R})$

- Implicit assumption: the p problems are "similar"
- Least-squares loss of a predictor $t \in \mathbb{R}^{np}$ (" $t_i^j = t^j(x_i)$ "):

$$\frac{1}{np} \|t - F\|^2 = \frac{1}{np} \sum_{i=1}^{n} \sum_{i=1}^{p} \left(t_i^j - F_i^j \right)^2$$

- We want to solve $p \ge 2$ regression problems simultaneously
- Observations: $Y_1, \ldots, Y_n \in \mathbb{R}^p$

$$Y_i^j = F_i^j + \varepsilon_i^j$$
 $j = 1, ..., p$ (e.g., $F_i^j = F^j(x_i)$)

with
$$(\varepsilon_i)_{1 \leq i \leq n}$$
 i.i.d. $\mathcal{N}(0, \Sigma)$, $\Sigma \in \mathcal{S}_p^+(\mathbb{R})$

- Implicit assumption: the p problems are "similar"
- Least-squares loss of a predictor $t \in \mathbb{R}^{np}$ (" $t_i^j = t^j(x_i)$ "):

$$\frac{1}{np} \|t - F\|^2 = \frac{1}{np} \sum_{i=1}^{n} \sum_{i=1}^{p} \left(t_i^j - F_i^j \right)^2$$

 \Rightarrow Estimator $\widehat{F}(Y_1, \dots, Y_n) \in \mathbb{R}^{np}$?

Ridge multi-task regression

$$\widehat{F} = (\widehat{F}_i^j)_{1 \leq i \leq n, \, 1 \leq j \leq p}$$
 with $\widehat{F}_i^j = \widehat{f}^j(x_i)$ and \widehat{f} defined by:

• If we consider the tasks separately:

$$\arg \min_{f \in \mathcal{F}_{K}^{p}} \left\{ \frac{1}{np} \sum_{i=1}^{n} \sum_{j=1}^{p} \left(Y_{i}^{j} - f^{j}(x_{i}) \right)^{2} + \sum_{j=1}^{p} \lambda^{j} \left\| f^{j} \right\|_{\mathcal{F}_{K}}^{2} \right\}$$

Ridge multi-task regression

$$\widehat{F} = (\widehat{F}_i^j)_{1 \leq i \leq n, \, 1 \leq j \leq p}$$
 with $\widehat{F}_i^j = \widehat{f}^j(x_i)$ and \widehat{f} defined by:

• If we consider the tasks separately:

$$\arg \min_{f \in \mathcal{F}_{K}^{p}} \left\{ \frac{1}{np} \sum_{i=1}^{n} \sum_{j=1}^{p} \left(Y_{i}^{j} - f^{j}(x_{i}) \right)^{2} + \sum_{j=1}^{p} \lambda^{j} \left\| f^{j} \right\|_{\mathcal{F}_{K}}^{2} \right\}$$

A possible multi-task approach (Evgeniou et al., 2005):

$$\arg \min_{f \in \mathcal{F}_{K}^{p}} \left\{ \frac{1}{np} \sum_{i=1}^{n} \sum_{j=1}^{p} \left(Y_{i}^{j} - f^{j}(x_{i}) \right)^{2} + \lambda \sum_{j=1}^{p} \left\| f^{j} \right\|_{\mathcal{F}_{K}}^{2} + \mu \sum_{j \neq \ell} \left\| f^{j} - f^{\ell} \right\|_{\mathcal{F}_{K}}^{2} \right\}$$

Ridge multi-task regression

$$\widehat{F} = (\widehat{F}_i^j)_{1 \leq i \leq n, \ 1 \leq j \leq p}$$
 with $\widehat{F}_i^j = \widehat{f}^j(x_i)$ and \widehat{f} defined by:

• If we consider the tasks separately:

$$\arg \min_{f \in \mathcal{F}_{K}^{p}} \left\{ \frac{1}{np} \sum_{i=1}^{n} \sum_{j=1}^{p} \left(Y_{i}^{j} - f^{j}(x_{i}) \right)^{2} + \sum_{j=1}^{p} \lambda^{j} \left\| f^{j} \right\|_{\mathcal{F}_{K}}^{2} \right\}$$

A possible multi-task approach (Evgeniou et al., 2005):

$$\arg \min_{f \in \mathcal{F}_{K}^{p}} \left\{ \frac{1}{np} \sum_{i=1}^{n} \sum_{j=1}^{p} \left(Y_{i}^{j} - f^{j}(x_{i}) \right)^{2} + \lambda \sum_{j=1}^{p} \left\| f^{j} \right\|_{\mathcal{F}_{K}}^{2} + \mu \sum_{j \neq \ell} \left\| f^{j} - f^{\ell} \right\|_{\mathcal{F}_{K}}^{2} \right\}$$

• More generally: for $M \in \mathcal{S}_{p}^{+}(\mathbb{R})$,

$$\arg\min_{f\in\mathcal{F}_K^p}\left\{\frac{1}{np}\sum_{i=1}^n\sum_{j=1}^p\left(Y_i^j-f^j(x_i)\right)^2+\sum_{j,\ell}M_{j,\ell}\left\langle f^j,\,f^\ell\right\rangle_{\mathcal{F}_K}\right\}$$

$$\Rightarrow$$
 Estimators collection $(\widehat{F}_M)_{M\in\mathcal{M}}$, $\mathcal{M}\subset\mathcal{S}^+_p(\mathbb{R})$,

with
$$\widehat{F}_{M} = A_{M}Y$$
 and $A_{M} = (M^{-1} \otimes K)((M^{-1} \otimes K) + npI_{np})^{-1}$

 \Rightarrow Estimators collection $(\widehat{F}_M)_{M\in\mathcal{M}}$, $\mathcal{M}\subset\mathcal{S}^+_p(\mathbb{R})$,

with
$$\widehat{F}_{M} = A_{M}Y$$
 and $A_{M} = (M^{-1} \otimes K) ((M^{-1} \otimes K) + npI_{np})^{-1}$

• Goal: select $\widehat{M} \in \mathcal{M}$ such that $\frac{1}{np} \|\widehat{F}_{\widehat{M}} - F\|^2$ is minimal

Multi-task estimator selection

 \Rightarrow Estimators collection $(\widehat{F}_M)_{M\in\mathcal{M}}$, $\mathcal{M}\subset\mathcal{S}^+_{\mathfrak{p}}(\mathbb{R})$,

with
$$\widehat{F}_{M}=A_{M}Y$$
 and $A_{M}=\left(M^{-1}\otimes K
ight)\left(\left(M^{-1}\otimes K
ight)+npI_{np}
ight)^{-1}$

- Goal: select $\widehat{M} \in \mathcal{M}$ such that $\frac{1}{m} \|\widehat{F}_{\widehat{M}} F\|^2$ is minimal
- Expectation of the ideal penalty:

$$\mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(M)\right] = \frac{2}{np} \operatorname{tr}\left(A_M\left(\Sigma \otimes I_n\right)\right)$$

Multi-task estimator selection

 \Rightarrow Estimators collection $(\widehat{F}_M)_{M\in\mathcal{M}}$, $\mathcal{M}\subset\mathcal{S}_p^+(\mathbb{R})$,

with
$$\widehat{F}_{M}=A_{M}Y$$
 and $A_{M}=\left(M^{-1}\otimes K
ight)\left(\left(M^{-1}\otimes K
ight)+npI_{np}
ight)^{-1}$

- Goal: select $\widehat{M} \in \mathcal{M}$ such that $\frac{1}{nn} \|\widehat{F}_{\widehat{M}} F\|^2$ is minimal
- Expectation of the ideal penalty:

$$\mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(M)\right] = \frac{2}{np} \operatorname{tr}\left(A_M\left(\Sigma \otimes I_n\right)\right)$$

Problem: How to estimate Σ?

Estimating the covariance matrix: idea (p = 2)

Estimating the covariance matrix: idea (p = 2)

Estimating the covariance matrix: algorithm

- for every $j \in \{1, \dots, p\}$, apply the "minimal penalties" algorithm to the data set $(Y_i^J)_{1 \le i \le n}$
 - \Rightarrow estimator $a(e_i)$ of $\Sigma_{i,i}$
- for every $j \neq \ell \in \{1, \dots, p\}$, apply the "minimal penalties" algorithm to the data set $(Y_i^j + Y_i^\ell)_{1 \le i \le n}$ \Rightarrow estimator $a(e_i + e_\ell)$ of $\Sigma_{i,i} + \Sigma_{\ell,\ell} + 2\Sigma_{i,\ell}$

Estimating the covariance matrix: algorithm

- for every $j \in \{1, \dots, p\}$, apply the "minimal penalties" algorithm to the data set $(Y_i^J)_{1 \le i \le n}$ \Rightarrow estimator $a(e_i)$ of $\Sigma_{i,i}$
- for every $j \neq \ell \in \{1, \dots, p\}$, apply the "minimal penalties" algorithm to the data set $(Y_i^j + Y_i^\ell)_{1 \le i \le n}$ \Rightarrow estimator $a(e_i + e_\ell)$ of $\Sigma_{i,i} + \Sigma_{\ell,\ell} + 2\Sigma_{i,\ell}$
- Recover an estimator $\widehat{\Sigma}$ of Σ :

$$\widehat{\Sigma} = J(a(e_1), \ldots, a(e_p), a(e_1 + e_2), \ldots, a(e_{p-1} + e_p))$$

where J is the unique linear application $R^{p(p+1)/2} \mapsto \mathcal{S}_p(\mathbb{R})$ such that

$$\Sigma = J(\Sigma_{1,1}, \dots, \Sigma_{p,p}, \Sigma_{1,1} + \Sigma_{2,2} + 2\Sigma_{1,2}, \dots, \Sigma_{p-1,p-1} + \Sigma_{p,p} + 2\Sigma_{p-1,p})$$

Theorem: Estimating the covariance matrix

Theorem (Solnon, A. & Bach, 2011)

If for every $j=1,\ldots,p$, some $\lambda_j>0$ exists such that $\mathrm{tr}(A_{\lambda_j})\leq \sqrt{n}$ and

$$\frac{1}{n} \left\| (I_n - A_{\lambda_j}) F^j \right\|^2 \leq \Sigma_{j,j} \sqrt{\frac{\ln(n)}{n}} \quad \text{where} \quad A_{\lambda_j} = K(K + n\lambda_j I_n)^{-1} \ ,$$

Then, with probability $1 - L_5 p^2 n^{-\delta}$, if $n \ge n_0(\delta)$,

$$(1-\eta)\Sigma \preceq \widehat{\Sigma} \preceq (1+\eta)\Sigma$$
 with $\eta := L(2+\delta)c(\Sigma)^2 p \sqrt{\frac{\ln(n)}{n}}$

where $c(\Sigma) = \max(\operatorname{Sp}(\Sigma)) / \min(\operatorname{Sp}(\Sigma))$.

⇒ sufficient condition for consistency

Theorem: Oracle inequality

Theorem (Solnon, A. & Bach, 2011)

If moreover matrices $M \in \mathcal{M}$ can be diagonalized in the same orthogonal basis, and if

$$\widehat{M} \in \arg\min_{M \in \mathcal{M}} \left\{ \frac{1}{np} \left\| \widehat{F}_M - Y \right\|^2 + \frac{2}{np} \operatorname{tr} \left(A_M \left(\widehat{\Sigma} \otimes I_n \right) \right) \right\} ,$$

Then, with probability $1 - L_5 p^2 n^{-\delta}$, if $n > n_0(\delta)$,

$$\frac{1}{np} \left\| \widehat{F}_{\widehat{M}} - F \right\|^2 \le \left(1 + \frac{1}{\ln(n)} \right)^2 \inf_{M \in \mathcal{M}} \left\{ \frac{1}{np} \left\| \widehat{F}_M - F \right\|^2 \right\} + L(2 + \delta)^2 c(\Sigma)^4 \frac{\operatorname{tr}(\Sigma)}{p} \frac{p^3 \ln(n)^3}{n}$$

Simulations: $n = 100, \ 2 \le p \le 50, \ 1.1 \le c(\Sigma) \le 22.5$

 Minimal penalties: efficient for data-driven calibration of multiplicative constants in penalties

- Minimal penalties: efficient for data-driven calibration of multiplicative constants in penalties
- ullet pen $_{
 m opt}$ / pen $_{
 m min}$ pprox 2 for least-squares estimators

- Minimal penalties: efficient for data-driven calibration of multiplicative constants in penalties
- $pen_{opt} / pen_{min} \approx 2$ for least-squares estimators
- $pen_{opt} / pen_{min} \in (1; 2]$ for linear estimators

- Minimal penalties: efficient for data-driven calibration of multiplicative constants in penalties
- ullet pen $_{
 m opt}$ / pen $_{
 m min}$ pprox 2 for least-squares estimators
- $pen_{opt} / pen_{min} \in (1; 2]$ for linear estimators
- Can be applied with a data-driven shape of penalty (e.g., if data are heteroscedastic): V-fold/resampling penalties (OLS: A. 2008, 2009; Lerasle, 2009)

Minimal penalties: which frameworks?

Theoretical results:

- OLS, homoscedastic Gaussian regression (Birgé & Massart, 2007)
- regressograms, heteroscedastic (A. & Massart, 2009)
- Least-squares density estimation, i.i.d. (Lerasle, 2009) or mixing (Lerasle, 2010) data
- Linear estimators, regression (A. & Bach, 2009–2011)
- Minimum contrast estimator, regular contrast (Saumard, 2010)
- Multitask regression (Solnon, A. & Bach, 2011)
- ...

Empirical results:

- Change-point detection (Lebarbier, 2005)
- Gaussian mixture models (Maugis & Michel, 2008–2010)
- Unsupervised classification (Baudry, 2009)
- Computational geometry (Caillerie & Michel, 2009)
- Lasso (Connault, 2011)
- ... (see Baudry, Maugis & Michel, 2011)