Introduction 000000000 Resampling 000 Concentration method 00000

Quantile method

Multiple testing

Conclusion

Resampling-based confidence regions and multiple tests

joint work with Gi

Sylvain Arlot^{1,2,3} Gilles Blanchard⁴ Étienne Roquain⁵

¹CNRS

²École Normale Supérieure de Paris

³Willow, Inria Paris-Rocquencourt

⁴Universität Potsdam, Institut für Mathematik

⁵Université Pierre et Marie Curie, LPMA

JSTAR 2010, Statistiques en grande dimension, Rennes October, 21st 2010

Introduction •••••	Resampling 000	Concentration method	Quantile method	Multiple testing	Conclusion
Model					

Observations:
$$\mathbf{Y} = (Y^1, \dots, Y^n) = \begin{pmatrix} Y_1^1 & \dots & Y_1^n \\ \vdots & & \vdots \\ \vdots & & \vdots \\ Y_K^1 & \dots & Y_K^n \end{pmatrix}$$

$$Y^1, \ldots, Y^n \in \mathbb{R}^K$$
 i.i.d. symmetric

- Unknown mean $\mu = (\mu_k)_k$
- Unknown covariance matrix $\boldsymbol{\Sigma}$
- $n \ll K$

Aims: Find a confidence region for μ or $\{k \text{ s.t. } \mu_k \neq 0\}$

Introduction •••••	Resampling 000	Concentration method	Quantile method	Multiple testing	Conclusion
Model					

Observations:
$$\mathbf{Y} = (Y^1, \dots, Y^n) = \begin{pmatrix} Y_1^1 & \dots & Y_1^n \\ \vdots & & \vdots \\ \vdots & & \vdots \\ Y_K^1 & \dots & Y_K^n \end{pmatrix}$$

$$Y^1, \ldots, Y^n \in \mathbb{R}^K$$
 i.i.d. symmetric

- Unknown mean $\mu = (\mu_k)_k$
- Unknown covariance matrix $\boldsymbol{\Sigma}$
- *n* ≪ *K*

Aims: Find a confidence region for μ or $\{k \text{ s.t. } \mu_k \neq 0\}$

Introduction •••••	Resampling 000	Concentration method	Quantile method	Multiple testing	Conclusion
Model					

Observations:
$$\mathbf{Y} = (Y^1, \dots, Y^n) = \begin{pmatrix} Y_1^1 & \dots & Y_1^n \\ \vdots & & \vdots \\ \vdots & & \vdots \\ Y_K^1 & \dots & Y_K^n \end{pmatrix}$$

$$Y^1, \ldots, Y^n \in \mathbb{R}^K$$
 i.i.d. symmetric

- Unknown mean $\mu = (\mu_k)_k$
- Unknown covariance matrix $\boldsymbol{\Sigma}$
- *n* ≪ *K*

Aims: Find a confidence region for μ or $\{k \text{ s.t. } \mu_k \neq 0\}$

3/37

(neural activity)

(gene expression levels)

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion Multiple simultaneous hypothesis testing Conclusion Conclusion

For every k we test: $H_{0,k}$: " $\mu_k = 0$ " against $H_{1,k}$: " $\mu_k \neq 0$ ". A *multiple testing procedure* rejects:

 $R(\mathbf{Y}) \subset \{1,\ldots,K\}.$

Type I errors measured by the Family Wise Error Rate:

 $\mathsf{FWER}(R) = \mathbb{P}\left(\exists k \in R(\mathbf{Y}) \text{ s.t. } \mu_k = 0\right).$

 \Rightarrow build a procedure *R* such that FWER(*R*) $\leq \alpha$?

- strong control of the FWER: $\forall \mu \in \mathbb{R}^{K}$
- power: $Card(R(\mathbf{Y}))$ as large as possible

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion Multiple simultaneous hypothesis testing

For every k we test: $H_{0,k}$: " $\mu_k = 0$ " against $H_{1,k}$: " $\mu_k \neq 0$ ". A *multiple testing procedure* rejects:

 $R(\mathbf{Y}) \subset \{1,\ldots,K\}.$

Type I errors measured by the Family Wise Error Rate:

 $\mathsf{FWER}(R) = \mathbb{P}\left(\exists k \in R(\mathbf{Y}) \, \mathsf{s.t.} \, \mu_k = 0\right).$

 \Rightarrow build a procedure *R* such that FWER(*R*) $\leq \alpha$?

- strong control of the FWER: $\forall \mu \in \mathbb{R}^{K}$
- power: $Card(R(\mathbf{Y}))$ as large as possible

For every k we test: $H_{0,k}$: " $\mu_k = 0$ " against $H_{1,k}$: " $\mu_k \neq 0$ ". A *multiple testing procedure* rejects:

 $R(\mathbf{Y}) \subset \{1,\ldots,K\}.$

Type I errors measured by the Family Wise Error Rate:

 $\mathsf{FWER}(R) = \mathbb{P}\left(\exists k \in R(\mathbf{Y}) \text{ s.t. } \mu_k = 0\right).$

 \Rightarrow build a procedure *R* such that FWER(*R*) $\leq \alpha$?

• strong control of the FWER: $\forall \mu \in \mathbb{R}^{K}$

• power: $Card(R(\mathbf{Y}))$ as large as possible

For every k we test: $H_{0,k}$: " $\mu_k = 0$ " against $H_{1,k}$: " $\mu_k \neq 0$ ". A *multiple testing procedure* rejects:

 $R(\mathbf{Y}) \subset \{1,\ldots,K\}.$

Type I errors measured by the Family Wise Error Rate:

$$\mathsf{FWER}(R) = \mathbb{P}\left(\exists k \in R(\mathbf{Y}) \text{ s.t. } \mu_k = 0\right).$$

 \Rightarrow build a procedure *R* such that FWER(*R*) $\leq \alpha$?

- strong control of the FWER: $\forall \mu \in \mathbb{R}^{K}$
- power: $Card(R(\mathbf{Y}))$ as large as possible

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion occoococo Multiple simultaneous hypothesis testing

For every k we test: $H_{0,k}$: " $\mu_k = 0$ " against $H_{1,k}$: " $\mu_k \neq 0$ ". A *multiple testing procedure* rejects:

 $R(\mathbf{Y}) \subset \{1,\ldots,K\}.$

Type I errors measured by the Family Wise Error Rate:

$$\mathsf{FWER}(R) = \mathbb{P}\left(\exists k \in R(\mathbf{Y}) \text{ s.t. } \mu_k = 0\right).$$

 \Rightarrow build a procedure *R* such that FWER(*R*) $\leq \alpha$?

- strong control of the FWER: $\forall \mu \in \mathbb{R}^{K}$
- power: Card(R(Y)) as large as possible

Introduction	Resampling 000	Concentration method	Quantile method 000000000	Multiple testing	Conclusion
Thresho	lding				

Reject
$$R(\mathbf{Y}) = \{k \text{ s.t. } \sqrt{n} | \overline{\mathbf{Y}}_k | > t \}$$

where

•
$$\overline{\mathbf{Y}} = \frac{1}{n} \sum_{i=1}^{n} Y^{i}$$
 empirical mean

• $t = t_{\alpha}(\mathbf{Y})$ threshold (independent of $k \in \{1, \dots, K\}$)

$$\begin{aligned} \mathsf{FWER}(R) &= \mathbb{P}(\exists k \quad \text{s.t.} \quad \mu_k = 0 \text{ and } \sqrt{n} |\mathbf{\overline{Y}}_k| > t) \\ &= \mathbb{P}(\sqrt{n} \sup_{k \text{ s.t. } \mu_k = 0} |\mathbf{\overline{Y}}_k| > t) \\ &\leq \mathbb{P}(\sqrt{n} \sup_k |\mathbf{\overline{Y}}_k| > t) \\ &= \mathbb{P}\left(\|\mathbf{\overline{Y}} - \mu\|_{\infty} > tn^{-1/2} \right) \end{aligned}$$

So, L^{∞} confidence region \Rightarrow control of the FWER

Introduction	Resampling 000	Concentration method	Quantile method 000000000	Multiple testing	Conclusion
Thresho	lding				

Reject
$$R(\mathbf{Y}) = \{k \text{ s.t. } \sqrt{n} | \overline{\mathbf{Y}}_k | > t \}$$

where

•
$$\overline{\mathbf{Y}} = rac{1}{n} \sum_{i=1}^{n} Y^{i}$$
 empirical mean

• $t = t_{\alpha}(\mathbf{Y})$ threshold (independent of $k \in \{1, \dots, K\}$)

$$\begin{aligned} \mathsf{FWER}(R) &= \mathbb{P}(\exists k \quad \text{s.t.} \quad \mu_k = 0 \text{ and } \sqrt{n} |\overline{\mathbf{Y}}_k| > t) \\ &= \mathbb{P}(\sqrt{n} \sup_{k \text{ s.t. } \mu_k = 0} |\overline{\mathbf{Y}}_k| > t) \\ &\leq \mathbb{P}(\sqrt{n} \sup_k |\overline{\mathbf{Y}}_k| > t) \\ &= \mathbb{P}\left(\|\overline{\mathbf{Y}} - \mu\|_{\infty} > tn^{-1/2} \right) \end{aligned}$$

So, L^{∞} confidence region \Rightarrow control of the FWER

Union bound:

$$egin{aligned} \mathsf{FWER}(R) &\leq \mathbb{P} \left(\exists k \quad ext{s.t.} \quad \sqrt{n} \left| \overline{\mathbf{Y}}_k - \mu_k \right| > t
ight) \ &\leq K \sup_k \mathbb{P}(\sqrt{n} |\overline{\mathbf{Y}}_k - \mu_k| > t) \ &\leq 2 \mathcal{K} \overline{\Phi}(t/\sigma) \ , \end{aligned}$$

where $\overline{\Phi}$ is the standard Gaussian upper tail function.

Bonferroni's threshold: $t_{\alpha}^{\text{Bonf}} = \sigma \overline{\Phi}^{-1}(\alpha/(2K)).$

- deterministic threshold
- too conservative if there are strong correlations between the coordinates Y_k
- \Rightarrow how to do better ?

Union bound:

$$egin{aligned} \mathsf{FWER}(R) &\leq \mathbb{P} \left(\exists k \quad ext{s.t.} \quad \sqrt{n} \left| \overline{\mathbf{Y}}_k - \mu_k \right| > t
ight) \ &\leq K \sup_k \mathbb{P}(\sqrt{n} |\overline{\mathbf{Y}}_k - \mu_k| > t) \ &\leq 2 \mathcal{K} \overline{\Phi}(t/\sigma) \ , \end{aligned}$$

where $\overline{\Phi}$ is the standard Gaussian upper tail function.

Bonferroni's threshold: $t_{\alpha}^{\text{Bonf}} = \sigma \overline{\Phi}^{-1}(\alpha/(2K)).$

- deterministic threshold
- too conservative if there are strong correlations between the coordinates Y_k
- \Rightarrow how to do better ?

Introduction	Resampling 000	Concentration method	Quantile method 000000000	Multiple testing	Conclusion
Goal					

For every $p\in [1,+\infty]$, find a threshold $t_lpha(\mathbf{Y})$ such that

$$\forall \mu \in \mathbb{R}^{K} \qquad \mathbb{P}\left(\sqrt{n} \| \overline{\mathbf{Y}} - \mu \|_{p} > t_{\alpha}\left(\mathbf{Y}\right)\right) \leq \alpha \;\;.$$

 \Rightarrow L^p confidence ball for μ at level α (FWER(R) $\leq \alpha$ if $p = +\infty$)

- Non-asymptotic: $\forall K, n$
- General correlations
- Assumptions:

(Gauss) $Y^i \sim \mathcal{N}(\mu, \Sigma)$ with $\sigma = (\Sigma_{k,k})_{k=1...K}$ known (SB) $Y^i - \mu \sim \mu - Y^i$ (symmetry) and $\forall k$, $|Y_k^i| \leq M$ a.s.

Ideal threshold: $t = q_{\alpha}^{\star}$, $(1 - \alpha)$ -quantile of $\mathcal{D}\left(\sqrt{n} \| \overline{\mathbf{Y}} - \mu \|_{p}\right)$ q_{α}^{\star} depends on $\mathcal{D}(\mathbf{Y})$ unknown \Rightarrow estimated by **resampling**.

Introduction 000000000	Resampling 000	Concentration method	Quantile method 000000000	Multiple testing	Conclusion
Goal					

For every $\pmb{p} \in [1,+\infty]$, find a threshold $t_lpha(\mathbf{Y})$ such that

$$\forall \mu \in \mathbb{R}^{K} \qquad \mathbb{P}\left(\sqrt{n} \| \overline{\mathbf{Y}} - \mu \|_{p} > t_{\alpha}\left(\mathbf{Y}\right)\right) \leq \alpha \;\;.$$

 $\Rightarrow L^p$ confidence ball for μ at level α (FWER(R) $\leq \alpha$ if $p = +\infty$)

- Non-asymptotic: $\forall K, n$
- General correlations
- Assumptions:

(Gauss) $Y^i \sim \mathcal{N}(\mu, \Sigma)$ with $\sigma = (\Sigma_{k,k})_{k=1...K}$ known (SB) $Y^i - \mu \sim \mu - Y^i$ (symmetry) and $\forall k$, $|Y_k^i| \leq M$ a.s.

Ideal threshold: $t = q_{\alpha}^{\star}$, $(1 - \alpha)$ -quantile of $\mathcal{D}\left(\sqrt{n} \|\overline{\mathbf{Y}} - \mu\|_{p}\right)$ q_{α}^{\star} depends on $\mathcal{D}(\mathbf{Y})$ unknown \Rightarrow estimated by **resampling**.

Introduction 000000000	Resampling 000	Concentration method	Quantile method 000000000	Multiple testing	Conclusion
Goal					

For every $\pmb{p} \in [1,+\infty]$, find a threshold $t_lpha(\mathbf{Y})$ such that

$$\forall \mu \in \mathbb{R}^{K} \qquad \mathbb{P}\left(\sqrt{n} \| \overline{\mathbf{Y}} - \mu \|_{p} > t_{\alpha}\left(\mathbf{Y}\right)\right) \leq \alpha \;\;.$$

 \Rightarrow L^p confidence ball for μ at level α (FWER(R) $\leq \alpha$ if $p = +\infty$)

- Non-asymptotic: $\forall K, n$
- General correlations
- Assumptions:

(Gauss) $Y^i \sim \mathcal{N}(\mu, \Sigma)$ with $\sigma = (\Sigma_{k,k})_{k=1...K}$ known (SB) $Y^i - \mu \sim \mu - Y^i$ (symmetry) and $\forall k$, $|Y_k^i| \leq M$ a.s.

Ideal threshold: $t = q_{\alpha}^{\star}$, $(1 - \alpha)$ -quantile of $\mathcal{D}\left(\sqrt{n} \| \overline{\mathbf{Y}} - \mu \|_{p}\right)$ q_{α}^{\star} depends on $\mathcal{D}(\mathbf{Y})$ unknown \Rightarrow estimated by **resampling**.

- Parametric statistics: no, because $K^2 \gg nK$.
- Asymptotic results (e.g. [van der Vaart and Wellner 1996]): not valid, because $K \gg n$.
- Holm's multiple testing procedure: better than Bonferroni, but unefficient with strong correlations
- (Multiple) tests by symmetrization: do not work if H_{0,k} = {µ_k ≤ 0}. do not give confidence regions. not translation-invariant ⇒ less powerful if ||µ||_∞ is large

- Parametric statistics: no, because $K^2 \gg nK$.
- Asymptotic results (e.g. [van der Vaart and Wellner 1996]): not valid, because $K \gg n$.
- Holm's multiple testing procedure: better than Bonferroni, but unefficient with strong correlations
- (Multiple) tests by symmetrization: do not work if H_{0,k} = {µ_k ≤ 0}. do not give confidence regions. not translation-invariant ⇒ less powerful if ||µ||_∞ is large

- Parametric statistics: no, because $K^2 \gg nK$.
- Asymptotic results (e.g. [van der Vaart and Wellner 1996]): not valid, because $K \gg n$.
- Holm's multiple testing procedure: better than Bonferroni, but unefficient with strong correlations
- (Multiple) tests by symmetrization: do not work if H_{0,k} = {μ_k ≤ 0}. do not give confidence regions. not translation-invariant ⇒ less powerful if ||μ||_∞ is large

Sample $Y^1, \ldots, Y^n \xrightarrow{resampling} (W_1, Y^1), \ldots, (W_n, Y^n)$ weighted sample

- "Yⁱ is kept W_i times in the resample"
- Weight vector: (W_1, \ldots, W_n) , independent of **Y**
- Example 1: Efron's bootstrap \Leftrightarrow *n*-sample with replacement $\Leftrightarrow (W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots, n^{-1})$
- Example 2: Rademacher weights: W_i i.i.d. ~ ¹/₂δ₋₁ + ¹/₂δ₁ ⇔ subsampling, with subsample size ≈ n/2

Heuristics: $\mathcal{D}(\mathsf{sample}|\mathsf{true}|\mathsf{distribution}) \approx \mathcal{D}(\mathsf{resample}|\mathsf{sample})$

$\mathsf{Sample} \quad Y^1, \dots, Y^n \stackrel{\textit{resampling}}{\longrightarrow} (W_1, Y^1), \dots, (W_n, Y^n) \quad \mathsf{weighted sample}$

- " Y^i is kept W_i times in the resample"
- Weight vector: (W_1, \ldots, W_n) , independent of **Y**
- Example 1: Efron's bootstrap ⇔ n-sample with replacement
 ⇔ (W₁,..., W_n) ~ M(n; n⁻¹,...n⁻¹)
- Example 2: Rademacher weights: W_i i.i.d. ~ ¹/₂δ₋₁ + ¹/₂δ₁ ⇔ subsampling, with subsample size ≈ n/2

Heuristics: $\mathcal{D}(\mathsf{sample}|\mathsf{true}|\mathsf{distribution}) \approx \mathcal{D}(\mathsf{resample}|\mathsf{sample})$

Sample $Y^1, \ldots, Y^n \xrightarrow{resampling} (W_1, Y^1), \ldots, (W_n, Y^n)$ weighted sample

- "Yⁱ is kept W_i times in the resample"
- Weight vector: (W_1, \ldots, W_n) , independent of **Y**
- Example 1: Efron's bootstrap \Leftrightarrow *n*-sample with replacement $\Leftrightarrow (W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots n^{-1})$
- Example 2: Rademacher weights: W_i i.i.d. ~ ¹/₂δ₋₁ + ¹/₂δ₁ ⇔ subsampling, with subsample size ≈ n/2

Heuristics: $\mathcal{D}(\mathsf{sample}|\mathsf{true}|\mathsf{distribution}) pprox \mathcal{D}(\mathsf{resample}|\mathsf{sample})$

Sample $Y^1, \ldots, Y^n \xrightarrow{resampling} (W_1, Y^1), \ldots, (W_n, Y^n)$ weighted sample

• " Y^i is kept W_i times in the resample"

- Weight vector: (W_1, \ldots, W_n) , independent of **Y**
- Example 1: Efron's bootstrap \Leftrightarrow *n*-sample with replacement $\Leftrightarrow (W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots n^{-1})$
- Example 2: Rademacher weights: W_i i.i.d. ~ ¹/₂δ₋₁ + ¹/₂δ₁ ⇔ subsampling, with subsample size ≈ n/2

Heuristics: $\mathcal{D}(\mathsf{sample}|\mathsf{true}|\mathsf{distribution}) \approx \mathcal{D}(\mathsf{resample}|\mathsf{sample})$

Introduction 000000000	Resampling ○●○	Concentration method	Quantile method 000000000	Multiple testing	Conclusion
Concent	ration me	ethod			

- $\|\overline{\mathbf{Y}} \mu\|_p$ concentrates around its expectation, standard-deviation $\leq \|\sigma\|_p n^{-1/2}$
- Estimate $\mathbb{E}\left[\|\overline{\mathbf{Y}} \boldsymbol{\mu}\|_{p}\right]$ by resampling

$\Rightarrow q_{\alpha}^{\mathsf{conc}}(\mathbf{Y}) = \mathsf{cst} \times \sqrt{n} \mathbb{E}\left[\| \overline{\mathbf{Y}}_{W} - \overline{W} \, \overline{\mathbf{Y}} \|_{\rho} | \mathbf{Y} \right] + \mathsf{remainder}(\| \sigma \|_{\rho}, \alpha, n)$

Works well if expectations ($\propto \sqrt{\log(K)}$) are larger than fluctuations ($\propto \overline{\Phi}^{-1}(\alpha/2)$)

Introduction 000000000	Resampling ○●○	Concentration method	Quantile method 000000000	Multiple testing	Conclusion
Concent	ration me	ethod			

- $\|\overline{\mathbf{Y}} \mu\|_p$ concentrates around its expectation, standard-deviation $\leq \|\sigma\|_p n^{-1/2}$
- Estimate $\mathbb{E}\left[\|\overline{\mathbf{Y}}-\boldsymbol{\mu}\|_{\textit{P}}\right]$ by resampling

$$\Rightarrow q_{\alpha}^{\mathsf{conc}}(\mathbf{Y}) = \mathsf{cst} \times \sqrt{n} \mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W} \,\overline{\mathbf{Y}}\|_{\rho} |\mathbf{Y}\right] + \mathsf{remainder}(\|\sigma\|_{\rho}, \alpha, n)$$

Works well if expectations ($\propto \sqrt{\log(K)}$) are larger than fluctuations ($\propto \overline{\Phi}^{-1}(\alpha/2)$)

Introduction 000000000	Resampling ○○●	Concentration method	Quantile method 00000000	Multiple testing	Conclusion
Quantile	method				

Ideal threshold:
$$q_{\alpha}^{\star} = (1 - \alpha)$$
-quantile of $\mathcal{D}\left(\sqrt{n} \| \overline{\mathbf{Y}} - \mu \|_{p}\right)$

 $\Rightarrow \text{Resampling estimate of } q_{\alpha}^{\star}: \\ q_{\alpha}^{\text{quant}}(\mathbf{Y}) = (1 - \alpha) \text{-quantile of } \mathcal{D}\left(\sqrt{n} \| \overline{\mathbf{Y}}_{W} - \overline{W} \overline{\mathbf{Y}} \|_{p} | \mathbf{Y}\right)$

with
$$\overline{W} := \frac{1}{n} \sum_{i=1}^{n} W_i$$

 $\overline{\mathbf{Y}}_W := \frac{1}{n} \sum_{i=1}^n W_i Y^i$ Resampling empirical mean

 $q^{\mathsf{quant}}_{lpha}(\mathbf{Y})$ depends only on $\mathbf{Y} \Rightarrow$ can be computed with real data

Introduction 000000000	Resampling ○O●	Concentration method	Quantile method 00000000	Multiple testing	Conclusion
Quantile	method				

Ideal threshold:
$$q^\star_lpha = (1-lpha)$$
-quantile of $\mathcal{D}\left(\sqrt{n}\|\overline{\mathbf{Y}}-\mu\|_{p}
ight)$

 $\begin{array}{l} \Rightarrow \text{ Resampling estimate of } q_{\alpha}^{\star} : \\ q_{\alpha}^{\text{quant}}(\mathbf{Y}) = (1 - \alpha) \text{-quantile of } \mathcal{D}\left(\sqrt{n} \| \overline{\mathbf{Y}}_{W} - \overline{W} \, \overline{\mathbf{Y}} \|_{p} | \mathbf{Y}\right) \end{array}$

with
$$\overline{W} := \frac{1}{n} \sum_{i=1}^{n} W_i$$

$$\overline{\mathbf{Y}}_{W} := \frac{1}{n} \sum_{i=1}^{n} W_{i} Y^{i}$$
 Resampling empirical mean

 $q^{ ext{quant}}_{lpha}(\mathbf{Y})$ depends only on $\mathbf{Y} \Rightarrow$ can be computed with real data

Introduction 000000000	Resampling ○O●	Concentration method	Quantile method 00000000	Multiple testing	Conclusion
Quantile	method				

Ideal threshold:
$$q^\star_lpha = (1-lpha)$$
-quantile of $\mathcal{D}\left(\sqrt{n}\|\overline{\mathbf{Y}}-\mu\|_{p}
ight)$

 $\begin{array}{l} \Rightarrow \text{ Resampling estimate of } q_{\alpha}^{\star} : \\ q_{\alpha}^{\text{quant}}(\mathbf{Y}) = (1 - \alpha) \text{-quantile of } \mathcal{D}\left(\sqrt{n} \| \overline{\mathbf{Y}}_{W} - \overline{W} \, \overline{\mathbf{Y}} \|_{p} | \mathbf{Y}\right) \end{array}$

with
$$\overline{W} := \frac{1}{n} \sum_{i=1}^{n} W_i$$

 $\overline{\mathbf{Y}}_W := \frac{1}{n} \sum_{i=1}^n W_i Y^i$ Resampling empirical mean

 $q^{\mathsf{quant}}_{lpha}(\mathbf{Y})$ depends only on \mathbf{Y} \Rightarrow can be computed with real data

Introduction 000000000	Resampling 000	Concentration method ●0000	Quantile method	Multiple testing	Conclusion
Concen	tration th	neorem			
Theo	rem				
Assur	me (Gauss)	and W Rademac	her. For every	$lpha\in (0,1)$,	
$q_{\alpha}^{conc,}$	$^{1}(\mathbf{Y}):=rac{\sqrt{2}}{2}$	$\frac{\overline{n}\mathbb{E}\left[\ \overline{\mathbf{Y}}_{W}-\overline{W}\overline{\mathbf{Y}}\ \right]}{B_{W}}$	$\frac{ _{p} \mathbf{Y}]}{+} \ \sigma\ _{p}\overline{\Phi}$	$\int_{0}^{-1} (\alpha/2) \left[\frac{C}{\sqrt{n}} \right]$	$\frac{W}{B_W} + 1$
satisf	ïes				
]	$\mathbb{P}\left(\sqrt{n}\ \overline{\mathbf{Y}}-\mu\ _{\boldsymbol{p}}>\right.$	$q^{conc,1}_{lpha}(\mathbf{Y})ig) \leq$	α	
with	$\sigma := \left(\sqrt{va}\right)$	$\overline{r(Y_k^1)}\Big)_{1\leq k\leq {\mathcal K}}$, and	d		
	$B_W := \mathbb{E}\left(\frac{1}{n}\right)$	$\sum_{i=1}^{n} \left(W_i - \overline{W} \right)^2 \right)^{1/2}$	$= 1 - \mathcal{O}(n^{-1/2})$	and $C_W = 1$	

Main tool: Gaussian concentration theorem [Cirel'son, Ibragimov and Sudakov, 1976]

14/37

Introduction 000000000	Resampling 000	Concentration method ○●○○○	Quantile method 00000000	Multiple testing	Conclusion
Remarks					

- Valid for quite general weights (with B_W and C_W are independent of K and easy to compute).
- Similar result under assumption (SB) (with larger constants).
- $\|\cdot\|_{p}$ can be replaced by $\sup_{k} (\cdot)_{+} \Rightarrow$ one-sided multiple tests
- Almost deterministic threshold: \Rightarrow if $p = \infty$, $q_{\alpha}^{\text{conc},2}(\mathbf{Y}) \approx \min(t_{\alpha}^{\text{bonf}}, q_{\alpha}^{\text{conc},1}(\mathbf{Y}))$ still has a FWER $\leq \alpha$.

Introduction 000000000	Resampling 000	Concentration method ○●○○○	Quantile method 00000000	Multiple testing	Conclusion
Remarks					

- Valid for quite general weights (with B_W and C_W are independent of K and easy to compute).
- Similar result under assumption (SB) (with larger constants).
- $\|\cdot\|_{p}$ can be replaced by $\sup_{k} (\cdot)_{+} \Rightarrow$ one-sided multiple tests
- Almost deterministic threshold: \Rightarrow if $p = \infty$, $q_{\alpha}^{\text{conc},2}(\mathbf{Y}) \approx \min(t_{\alpha}^{\text{bonf}}, q_{\alpha}^{\text{conc},1}(\mathbf{Y}))$ still has a FWER $\leq \alpha$.

Dractical	compute	tion			
Introduction 000000000	Resampling	Concentration method	Quantile method 000000000	Multiple testing	Conclusion

- Monte-Carlo approximation with W¹,..., W^B only (with an additionnal term of order B^{-1/2})
- Alternatively, V-fold cross-validation weights \Rightarrow computation time $\propto V$, accuracy $\propto C_W B_W^{-1} \approx \sqrt{n/V}$.
- Estimation of σ : under (Gauss), if

$$\widehat{\sigma_k} := \sqrt{\frac{1}{n} \sum_{i=1}^n \left(Y_k^i - \overline{\mathbf{Y}}\right)^2}$$

then for every $\delta\in(\mathsf{0},1)$,

$$\mathbb{P}\left(\|\sigma\|_{p} \leq \left(C_{n} - \frac{1}{\sqrt{n}}\overline{\Phi}^{-1}\left(\frac{\delta}{2}\right)\right)\|\widehat{\sigma}\|_{p}\right) \geq 1 - \delta$$

with $C_n = 1 - \mathcal{O}(n^{-1})$.

16/37

Practical	computa	ation			
Introduction 000000000	Resampling 000	Concentration method 00000	Quantile method	Multiple testing	Conclusion

- Monte-Carlo approximation with W¹,..., W^B only (with an additionnal term of order B^{-1/2})
- Alternatively, V-fold cross-validation weights \Rightarrow computation time $\propto V$, accuracy $\propto C_W B_W^{-1} \approx \sqrt{n/V}$.
- Estimation of σ : under (Gauss), if

$$\widehat{\sigma_k} := \sqrt{\frac{1}{n} \sum_{i=1}^n \left(Y_k^i - \overline{\mathbf{Y}}\right)^2}$$

then for every $\delta \in (0,1)$,

$$\mathbb{P}\left(\|\sigma\|_{p} \leq \left(C_{n} - \frac{1}{\sqrt{n}}\overline{\Phi}^{-1}\left(\frac{\delta}{2}\right)\right)\|\widehat{\sigma}\|_{p}\right) \geq 1 - \delta ,$$

with $C_n = 1 - O(n^{-1})$. 16/3

17/37

Introduction 000000000	Resampling 000	Concentration method	Quantile method •0000000	Multiple testing	Conclusion
Quantile	method				

• Rademacher weights only: W_i i.i.d. $\sim \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$

•
$$q_{lpha}^{\mathsf{quant}}(\mathbf{Y}) = (1 - lpha)$$
-quantile of $\mathcal{D}\left(\sqrt{n} \| \overline{\mathbf{Y}}_W - \overline{W} \, \overline{\mathbf{Y}} \|_p \big| \mathbf{Y}
ight)$

Heuristics \Rightarrow should satisfy $\mathbb{P}\left(\|\overline{\mathbf{Y}} - \mu\|_{p} > q_{\alpha}^{\mathsf{quant}}(\mathbf{Y})\right) \leq \alpha$

Theorem

Y symmetric. W Rademacher. $\alpha, \delta, \gamma \in (0, 1)$. If f is a non-negative threshold with level bounded by $\alpha\gamma$:

$$\mathbb{P}\left(\sqrt{n}\|\overline{\mathbf{Y}}-\mu\|_{\mathcal{P}}>f(\mathbf{Y})
ight)\leqlpha\gamma$$

Then,

$$q_{\alpha}^{quant+f}(\mathbf{Y}) = q_{\alpha(1-\delta)(1-\gamma)}^{quant}(\mathbf{Y}) + \sqrt{\frac{2\log(2/(\delta\alpha))}{n}}f(\mathbf{Y})$$

yields a level bounded by α :

$$\mathbb{P}\left(\sqrt{n}\|\overline{\mathbf{Y}}-\mu\|_{p} > q_{\alpha}^{quant+f}(\mathbf{Y})\right) \leq \alpha$$

Introduction 000000000	Resampling 000	Concentration method	Quantile method	Multiple testing	Conclusion
Remarks					

- Uses only the symmetry of Y around its mean
- $\|\cdot\|_p$ can be replaced by $\sup_k(\cdot)_+ \Rightarrow$ one-sided multiple tests
- The supplementary threshold *f* only appears in a second-order term.

(**Gauss** $) \Rightarrow$ three thresholds: take f among $q_{\alpha\gamma}^{\text{Bonf}}$ (if $p = +\infty$), $q_{\alpha\gamma}^{\text{conc},1}$ and $q_{\alpha\gamma}^{\text{conc},2}$ (**SB** $) \Rightarrow f = q_{\alpha\gamma}^{\text{conc},\text{SB}}$

- In simulation experiments, *f* is almost unnecessary.
- $q_{\alpha(1-\delta)(1-\gamma)}^{\text{quant}}(\mathbf{Y})$ can be replaced by a Monte-Carlo estimated quantile (i.e., simulate only W^1, \ldots, W^B) \Rightarrow loose at most $(B+1)^{-1}$ in the level, nothing if $\alpha(1-\delta)(1-\gamma)(B+1) \in \mathbb{N}$.

Introduction 000000000	Resampling 000	Concentration method	Quantile method	Multiple testing	Conclusion
Remarks					

- Uses only the symmetry of Y around its mean
- $\|\cdot\|_{p}$ can be replaced by $\sup_{k}(\cdot)_{+}$ \Rightarrow one-sided multiple tests
- The supplementary threshold *f* only appears in a second-order term.

 $(Gauss) \Rightarrow$ three thresholds: take f among $q_{\alpha\gamma}^{Bonf}$ (if $p = +\infty$), $q_{\alpha\gamma}^{conc,1}$ and $q_{\alpha\gamma}^{conc,2}$ $(SB) \Rightarrow f = q_{\alpha\gamma}^{conc,SB}$

- In simulation experiments, *f* is almost unnecessary.
- $q_{\alpha(1-\delta)(1-\gamma)}^{\text{quant}}(\mathbf{Y})$ can be replaced by a Monte-Carlo estimated quantile (i.e., simulate only W^1, \ldots, W^B) \Rightarrow loose at most $(B+1)^{-1}$ in the level, nothing if $\alpha(1-\delta)(1-\gamma)(B+1) \in \mathbb{N}$.

Introduction 000000000	Resampling 000	Concentration method	Quantile method	Multiple testing	Conclusion
Remarks					

- Uses only the symmetry of Y around its mean
- $\|\cdot\|_{p}$ can be replaced by $\sup_{k}(\cdot)_{+}$ \Rightarrow one-sided multiple tests
- The supplementary threshold *f* only appears in a second-order term.

(**Gauss** $) \Rightarrow$ three thresholds: take f among $q_{\alpha\gamma}^{\text{Bonf}}$ (if $p = +\infty$), $q_{\alpha\gamma}^{\text{conc},1}$ and $q_{\alpha\gamma}^{\text{conc},2}$ (**SB** $) \Rightarrow f = q_{\alpha\gamma}^{\text{conc},\text{SB}}$

- In simulation experiments, f is almost unnecessary.
- $q_{\alpha(1-\delta)(1-\gamma)}^{\text{quant}}(\mathbf{Y})$ can be replaced by a Monte-Carlo estimated quantile (i.e., simulate only W^1, \ldots, W^B) \Rightarrow loose at most $(B+1)^{-1}$ in the level, nothing if $\alpha(1-\delta)(1-\gamma)(B+1) \in \mathbb{N}$.

22/37

Simulations: role of p (n = 1000, p = 16)

Simulations: role of p (n = 1000, p = 10)

Simulations: role of p (n = 1000, p = 2)

- Define $q_{\alpha}^{\text{sym}}(\mathbf{Y}, p)$ as the (1α) -quantile of $\mathcal{D}\left(\sqrt{n} \|\overline{\mathbf{Y}}_{W}\|_{p} |\mathbf{Y}\right)$
- Symmetrization argument: if **Y** symmetric and *W* Rademacher, then

$$\mathbb{P}\left(\|\overline{\mathbf{Y}} - \mu\|_{p} > q_{\alpha}^{\text{sym}}(\mathbf{Y} - \mu, p)\right) \leq \alpha$$

since

$$\overline{(\mathbf{Y}-\mu)}_W = \frac{1}{n} \sum_{i=1}^n W_i(Y^i-\mu) \sim \frac{1}{n} \sum_{i=1}^n (Y^i-\mu) = \overline{\mathbf{Y}}-\mu \ .$$

• $q_{\alpha}^{\text{sym}}(\mathbf{Y} - \mu, p)$ unknown \Rightarrow replacing μ by $\overline{\mathbf{Y}}$ leads to

$$q^{ ext{quant}}_{lpha}(\mathbf{Y},p)=q^{ ext{sym}}_{lpha}(\mathbf{Y}-\overline{\mathbf{Y}},p)$$

• Define $q^{\mathsf{sym}}_{lpha}(\mathbf{Y},p)$ as the (1-lpha)-quantile of

$$\mathcal{D}\left(\sqrt{n}\|\overline{\mathbf{Y}}_W\|_p \big| \mathbf{Y}\right)$$

• Symmetrization argument: if **Y** symmetric and *W* Rademacher, then

$$\mathbb{P}\left(\|\overline{\mathbf{Y}} - \mu\|_{\boldsymbol{p}} > \boldsymbol{q}^{\mathsf{sym}}_{\alpha}(\mathbf{Y} - \mu, \boldsymbol{p})\right) \leq \alpha$$

since

$$\overline{(\mathbf{Y}-\mu)}_W = \frac{1}{n} \sum_{i=1}^n W_i(Y^i-\mu) \sim \frac{1}{n} \sum_{i=1}^n (Y^i-\mu) = \overline{\mathbf{Y}}-\mu \ .$$

• $q_{\alpha}^{\text{sym}}(\mathbf{Y} - \mu, p)$ unknown \Rightarrow replacing μ by $\overline{\mathbf{Y}}$ leads to

$$q^{ ext{quant}}_{lpha}(\mathbf{Y},p)=q^{ ext{sym}}_{lpha}(\mathbf{Y}-\overline{\mathbf{Y}},p)$$

• Define $q^{\mathrm{sym}}_{lpha}(\mathbf{Y},p)$ as the (1-lpha)-quantile of

$$\mathcal{D}\left(\sqrt{n}\|\overline{\mathbf{Y}}_{W}\|_{p}\big|\mathbf{Y}\right)$$

• Symmetrization argument: if **Y** symmetric and *W* Rademacher, then

$$\mathbb{P}\left(\|\overline{\mathbf{Y}} - \mu\|_{p} > q_{\alpha}^{\mathsf{sym}}(\mathbf{Y} - \mu, p)\right) \leq \alpha$$

since

$$\overline{(\mathbf{Y}-\mu)}_{W} = \frac{1}{n} \sum_{i=1}^{n} W_{i}(Y^{i}-\mu) \sim \frac{1}{n} \sum_{i=1}^{n} (Y^{i}-\mu) = \overline{\mathbf{Y}}-\mu$$

• $q_{\alpha}^{\text{sym}}(\mathbf{Y} - \mu, p)$ unknown \Rightarrow replacing μ by $\overline{\mathbf{Y}}$ leads to

$$q^{ ext{quant}}_lpha(\mathbf{Y},p)=q^{ ext{sym}}_lpha(\mathbf{Y}-\overline{\mathbf{Y}},p)$$

If
$$t \ge q_{\alpha}^{\text{sym}}((\mathbf{Y}_k)_{k \text{ s.t. } \mu_k=0}, +\infty)$$
, then

$$FWER(R) = \mathbb{P}(\exists k \quad \text{s.t.} \quad \mu_k = 0 \text{ and } \sqrt{n}|\overline{\mathbf{Y}}_k| > t)$$

$$= \mathbb{P}(\sqrt{n} \sup_{k \text{ s.t. } \mu_k=0} |\overline{\mathbf{Y}}_k| > t) \le \alpha$$

by symmetry of \boldsymbol{Y} .

This holds in particular for

$$q^{\mathsf{quant. uncent.}}_{\alpha}(\mathbf{Y}) := q^{\mathsf{sym}}_{\alpha}(\mathbf{Y}, +\infty) \geq q^{\mathsf{sym}}_{\alpha}((\mathbf{Y})_{k\,\mathsf{s.t.}\,\mu_k=0}, +\infty)$$

 \Rightarrow can be used for multiple testing, but more conservative, especially when the signal μ is strong

 \Rightarrow this procedure has a FWER controlled by α if each t_k has (use that $t_{\mathcal{K}} = t((\mathbf{Y}_k)_{k \in \mathcal{K}})$ is a non-decreasing function of \mathcal{K}).

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{Resampling} & \mbox{Concentration method} & \mbox{Quantile method} & \mbox{Multiple testing} & \mbox{Conclusion} \\ \hline \mbox{Simulations: power} (0 \leq \mu_k \leq 2.9) \end{array}$

- Idea: (centered) quantile better when the signal is strong, uncentered quantile better for weak signals
- First step: use q^{quant+Bonf}_α(Υ) to reject a first set of hypotheses.
- Second step: apply the step-down procedure associated with $q_{\alpha(1-\gamma)}^{\text{quant. uncent.}}(\mathbf{Y})$ to the remaining hypotheses.
- Goal: reduce the computational cost / increase the power for a given number of iterations

- Idea: (centered) quantile better when the signal is strong, uncentered quantile better for weak signals
- First step: use q^{quant+Bonf}_α(Υ) to reject a first set of hypotheses.
- Second step: apply the step-down procedure associated with $q^{\text{quant. uncent.}}_{\alpha(1-\gamma)}(\mathbf{Y})$ to the remaining hypotheses.
- Goal: reduce the computational cost / increase the power for a given number of iterations

- Idea: (centered) quantile better when the signal is strong, uncentered quantile better for weak signals
- First step: use q^{quant+Bonf}_α(Υ) to reject a first set of hypotheses.
- Second step: apply the step-down procedure associated with $q^{\text{quant. uncent.}}_{\alpha(1-\gamma)}(\mathbf{Y})$ to the remaining hypotheses.
- Goal: reduce the computational cost / increase the power for a given number of iterations

 Introduction
 Resampling
 Concentration method
 Quantile method
 Multiple testing
 Conclusion

 Hybrid approach:
 average number of iterations
 Conclusion
 <

Introduction 000000000	Resampling 000	Concentration method	Quantile method 000000000	Multiple testing	Conclusion
Conclusi	ion				

Two resampling-based procedures:

- concentration (almost deterministic threshold)
- quantile (related to symmetrization techniques)
- \Rightarrow Multiple testing + Confidence regions
 - FWER / level control (non-asymptotic, K may be $\gg n$)
 - very general correlation structures allowed
 - Simulations: efficient in presence of correlations
 - step-down procedures are possible

 Open problems: quantile threshold without *f*? with other weights? with non-symmetric **Y**?

Introduction 000000000	Resampling 000	Concentration method	Quantile method	Multiple testing	Conclusion
Conclusi	on				

Two resampling-based procedures:

- concentration (almost deterministic threshold)
- quantile (related to symmetrization techniques)
- \Rightarrow Multiple testing + Confidence regions
 - FWER / level control (non-asymptotic, K may be $\gg n$)
 - very general correlation structures allowed
 - Simulations: efficient in presence of correlations
 - step-down procedures are possible

 Open problems: quantile threshold without f with other weights? with non-symmetric Y?

Introduction 000000000	Resampling 000	Concentration method	Quantile method	Multiple testing	Conclusion
Conclusion					

Two resampling-based procedures:

- concentration (almost deterministic threshold)
- quantile (related to symmetrization techniques)
- \Rightarrow Multiple testing + Confidence regions
 - FWER / level control (non-asymptotic, K may be $\gg n$)
 - very general correlation structures allowed
 - Simulations: efficient in presence of correlations
 - step-down procedures are possible
 - Open problems: quantile threshold without f? with other weights? with non-symmetric Y?