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Introduction
@00

Statistical framework: regression on a random design

(X1, Y1), ..., (Xn, Ya) € X x Y iid. (X, Y:) ~ P unknown
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Statistical framework: regression on a random design

(X1, Y1), ..., (Xn, Ya) € X x Y iid. (X, Y:) ~ P unknown

Y=5(X)+0(X)e XecXcRY YecY=[01 or R

noise ¢ : E[e|X]=0 E[?X] =1 noise level  o(X)

predictor t: X —Y ?
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Introduction
(o] le}

Loss function, least-square estimator

@ Least-square risk:

Ev(t, (X, Y)) = Py(t,-)
with (¢, (x,y)) = (t(x) — y)?
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Introduction
(o] le}

Loss function, least-square estimator

@ Loss function:

U(s, t) = Py(t,-) = Py(s,-) = E[(t(X) - s(X))?]
with (¢, (x,y)) = (t(x) - )’

e Empirical risk minimizer on S,, (= model):

~ : 1
Sm € arg min P.y(t,-) = arg min ,Z; (t(X)) — Y;)?.
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Introduction
(o] le}

Loss function, least-square estimator

@ Loss function:

U(s,t) = Py(t,-) = Py(s,-) = E[(t(X) - s(X))?]
with  5(t, (x,¥)) = (t(x) — y)?

e Empirical risk minimizer on S, (= model):

1

Sm € arg min Pyy(t,-) = arg min — Z (t(X) = Yi)*.

@ e.g., histograms on a partition (/))xep,, of X.

~ ~ 1
5. = 1 = Y;.
sm= > Bl B Card{X,-elA}g
IASION

AEAmM
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Goals:

@ Oracle inequality (in expectation, or with a large probability):

U(s,55) < C inf {{(s,5m)+ R(m,n)}
meM
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Introduction
ooe

Model selection

model

ST
/ (Sm)mem  —  (m)mem  —  Sm 77
\ )

NG 4

Goals:

@ Oracle inequality (in expectation, or with a large probability):

Ve ~
Us,sm) < C inf {l(s,5m) + R(m,n)}

e Adaptivity (provided (Spm)mem, is well chosen), e.g., to the
smoothness of s or to the variations of o
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Cp and V-fold may not work
[ eJele]e]

Penalization

m € arg min {Pyy(Sm) + pen(m)}

12 : T . : :

— bias

10k —— prediction error
— empirical risk
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Cp and V-fold may not work
[ eJele]e]

Penalization

m € arg min {Pp,y(5n) + pen(m)}
meM
Unbiased risk estimation principle

= ldeal penalty: pen;y(m) = (P — Pp)(v(Sm, "))

202D,
pen(m) = Un (Mallows 1973)

_ 262D,
n

pen(m) or KDp,
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Cp and V-fold may not work
(o] lele]e]

Limitations of linear penalties: illustration

Y =X+ (1 + ]lxgl/2) € n = 1000 data points

Regular histograms on [0; %] (Dm,1 bins), then regular histograms
on [3:1] (Dm bins).
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Cp and V-fold may not work
(o] lele]e]

Limitations of linear penalties: illustration

Y =X+ (1 + ]lxgl/z) € n = 1000 data points

The ideal penalty is not a linear function of the dimension.
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Cp and V-fold may not work
[e]e] lele]

Limitations of linear penalties: illustration

—=—Models selected by linear penalties
@ Oracle model

Number of bins on [0.5; 1]

0 . . . . .

4 6
Number of bins on [0; 0.5]
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Cp and V-fold may not work
[e]e]e] o]

Limitations of linear penalties: m(K*) # m*

Density of (Dﬁv(K*),la Dﬁv(K*),Z) and (Dm*71, Dm*72) according to
N = 1000 samples

10 10

Number of bins on [0.5;1]
!
% ra B
Number of bins on [0.5;1]
|
ra

2 4 g g 10 2 4 g g 10
Number of bins on [0; 0.5] Mumber of bins on [0; 0.5]

m(K*) m*
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Cp and V-fold may not work
[ee]e]e] ]

Limitations of linear penalties: theory

Y =X+ 0(X)e with X ~ U([0;1]) ,
1/2 1
E[e[X]=0 E[}X] =1 and /0 (o(x))? dx # /1/2 (o(x))? dx

Regular histograms on

%] 1<Dmp;1 < n/(2|n(n) ) bins), then
regular histograms on [3; 1]

0;
% (1 < Dm2 < n/(21n(n)?) bins).

Theorem (A. 2008, arXiv:0812.3141)

There exist constants C,n > 0 (only depending on o(-)) and an
event of probability at least 1 — Cn™2 on which

VK >0, Vm(K) € arg TQJI\I'/][ {Pny (Sm) + KD} ,
m n

g(svgﬁv(K)) > (1 + 77) mien,/f/( {[(5,/‘5\,77)} :

v
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Cp and V-fold may not work
[ le]e}

Cross-validation

(le Y1)7 A (Xq7 YC?)?(XCH-L YCI-‘rl)? SRR (Xm Yn)

Training Validation

q
() X: Y
Eargtrgg;{gv(tv( 3 /))}
n

O, Y )y (59)

i=q+1

V-fold cross-validation : (Bj)1<j<v partition of {1,...,n}

v
= i € arg min Z ( ) 5 =75
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Cp and V-fold may not work
(o] e}

Bias of cross-validation

Ideal criterion: Py(Sp)

Regression on a model of histograms with Dy, bins (o(X) = o for
simplicity):
D,,02

E[Py(Sm)] = Py(sm) + —
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Cp and V-fold may not work
(o] e}

Bias of cross-validation

Ideal criterion: Py(Sp)

Regression on a model of histograms with Dy, bins (o(X) = o for
simplicity):
D,,02

E[Py(Sm)] = Py(sm) + —

5[0 (6)] =2 [ ()] =+ 2
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Cp and V-fold may not work
(o] e}

Bias of cross-validation

Ideal criterion: Py(Sp)

Regression on a model of histograms with Dy, bins (o(X) = o for
simplicity):
D,,02

E[Py(Sm)] = Py(sm) + —

V D02
V-1 n

E[PPy (367)] =E [Py (357)] = Py(sm) +

= bias if V is fixed (“overpenalization™)
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Cp and V-fold may not work
[efe] ]

Suboptimality of V-fold cross-validation

@ Y = X + oe with € bounded and o > 0
e M: family of regular histograms on X' = [0, 1]

e m selected by V-fold cross-validation with V fixed as n grows

Theorem (A. 2008, arXiv:0802.0566)

With probability at least 1 — On—2,

Us,5m) 2 (1+s(V)) inf {6s,5m)}

with (V) > 0.
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Cp and V-fold may not work
L ]

Simulations: sin, n = 200, o(x) = x, 2 bin sizes

Models: regular histograms on [0; 3],

/—\ then regular histograms on [% 1].
0

E [¢(s, 5m)]
E [inf e {€(s,5m)}]

40 0.5 1 computed over 1000 samples.
Mallows 3.69 £ 0.07
2-fold 2.54 +0.05

. 5-fold 2.58 +0.06
10-fold 2.60 +0.06
20-fold 2.58 +0.06
leave-one-out | 2.59 4 0.06

_4 L L L L L
0 0
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Optimal procedures via resampling
[ ]

Resampling heuristics (bootstrap, Efron 1979)

sampling -
Real world : P Py———=75,

pen;g(m) = (P — Pn)y (5m) = F(P, Pp)
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Optimal procedures via resampling
[ ]

Resampling heuristics (bootstrap, Efron 1979)

li —~
Real world : P L p——5,
!
l
4
{
;
v
Bootstrap world : P,

penia(m) = (P — Pp)y (sm) = F(P, Pn)
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Optimal procedures via resampling
[ ]

Resampling heuristics (bootstrap, Efron 1979)

sampling

Real world : P Pp=——=75,
;
!
!
!
é

.
Bootstrap world : P, i PV ——==3W

(P_Pn)FY(/S\m):F(Pvpn)W\>F(PH7PI‘7/V):(PH_PI‘7/V)7(/S\I‘7/1V)

where PW — p~1 Z Wid(x,v;) -
i=1
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Optimal procedures via resampling
L o]

Resampling penalization

@ ldeal penalty:
(P = Pn)(7v(5m))
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Optimal procedures via resampling
L o]

Resampling penalization

@ ldeal penalty:
(P = Pn)(v(5m))

@ Resampling penalty:
pen(m) = CE (P, — P}¥)y (Enqu) [(Xi, Yi)i<i<n
~W : w
P t
sm € arg min Pyt(t)

with C > Cp to be chosen (no bias if C = Cy)
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Optimal procedures via resampling
L o]

Resampling penalization

@ ldeal penalty:
(P = Pn)(v(5m))

@ Resampling penalty:
pen(m) = CE (P, — Py (3 ) 10X Yiueiss)
~W . w
PW~(t
sm € arg min Pyt(t)

with C > Cp to be chosen (no bias if C = Cy)

@ The final estimator is 55 with

m & arg min {Pyy(Sm) + pen(m)}
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Optimal procedures via resampling
oe

Resampling penalization with heteroscedastic data

—&—linear penalties

-8 -penalties propartional to penLoo
7r B penLoc

@ oracle

Number of bins on [0.5; 1]

L 1 1 1 I
0 = & 8 D
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Optimal procedures via resampling
@000

Other resampling-based penalties

e Efron’s bootstrap penalties (Efron, 1983; Shibata, 1997):

pen(m) = E [(P, = P)(1(5))|(Xi: Yia<i<a)

Rademacher complexities (Koltchinskii 2001; Bartlett,
Boucheron and Lugosi, 2002): subsampling

pen;q(m) < penf®(m) = sup (P = Pa)y(t,")
tESm

idem with general exchangeable weights (Fromont, 2004)

Local Rademacher complexities (Bartlett, Bousquet and
Mendelson, 2004; Koltchinskii, 2006)
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Optimal procedures via resampling
0e00

Non-asymptotic pathwise oracle inequality

Theorem (A. 2009, EJS)

Under a “reasonable” set of assumptions on P, with probability at
least 1 — On~2,

((s,35) < (1+In(n)/*) inf {0(s,5m)}
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Optimal procedures via resampling
0e00

Non-asymptotic pathwise oracle inequality

@ W exchangeable (e.g., bootstrap or subsampling)

Theorem (A. 2009, EJS)

Under a “reasonable” set of assumptions on P, with probability at
least 1 — On2,

(s,37) < (1 + |n(n)—1/5) inf {0(s,5m)}
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Optimal procedures via resampling
0e00

Non-asymptotic pathwise oracle inequality

@ W exchangeable (e.g., bootstrap or subsampling)
o C~Cy

Theorem (A. 2009, EJS)

Under a “reasonable” set of assumptions on P, with probability at
least 1 — On2,

(s,37) < (1 + |n(n)—1/5) inf {0(s,5m)}
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Optimal procedures via resampling
0e00

Non-asymptotic pathwise oracle inequality

W exchangeable (e.g., bootstrap or subsampling)

C~ CW

Histograms; “small” number of models (Card(M,) < On®)
Bounded data: || Y|lcc <A< 0

Noise-level lower bounded: 0 < iy < o(X)

Smooth s: non-constant, a-hdlderian

Theorem (A. 2009, EJS)

Under a “reasonable” set of assumptions on P, with probability at
least 1 — On2,

(s,37) < (1 + |n(n)—1/5) inf {0(s,5m)}
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Optimal procedures via resampling
0e00

Non-asymptotic pathwise oracle inequality

W exchangeable (e.g., bootstrap or subsampling)

C~ CW

Histograms; “small” number of models (Card(M,) < On®)
Bounded data: ||Y||oc <A< 00

Noise-level lower bounded: 0 < omin < o(X)

Smooth s: non-constant, a-hdlderian

Theorem (A. 2009, EJS)

Under a “reasonable” set of assumptions on P, with probability at
least 1 — On2,

(s,37) < (1 + |n(n)—1/5) inf {0(s,5m)}

Similar result in density estimation recently (Lerasle, 2009)



Optimal procedures via resampling
[e]e] e}

V-fold penalization

o V-fold penalty:
v
C (=]
penyp(m Ry E { V(Sr(n J)))

(J)Garg min P( 7) ~(t)

teSny

with C > V — 1 to be chosen (no bias if C = V — 1, see also
Burman, 1989)

@ The final estimator is 55 with

m € arg nr%I/T/( {Pny(5m) + penyp(m)}

= oracle inequality with constant 1 + In(n)~1/5 if V = O(1) or
V = n (A. 2008, arXiv:0802.0566)
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Optimal procedures via resampling
oooe

V-fold penalization in the general framework

@ Resampling and V-fold penalization are well-defined in the
general framework

o Constant Cyy or V — 1: could be estimated with the slope
heuristics (A. and Massart, JMLR 2009)

@ Constant V — 1 for V-fold penalization:

penyp(m, n) = < (P,(,j) — P,(,_j)) ~ (’s\,(n_j)>

%4
CE {penid (m, "(Vi\;l)ﬂ
~  Efpenyi(m.n)] = V
_ CE[peniy(m, n)] . _, a(m)
= CEPemalm ] e g oy (m. ) ~ 21
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Simulation study

Simulations: sin, n = 200, o(x) = x, 2 bin sizes

y Mallows 3.69 + 0.07

& 2-fold 2.54 4+ 0.05
) /\ 5-fold 2.58 +0.06
"o 10-fold 2.60 + 0.06
- 20-fold 2.58 & 0.06
leave-one-out 2.59 £0.06
I pen 2-f 3.06 £ 0.07
pen 5-f 2.75+0.06

pen 10-f 2.65 £ 0.06

pen Loo 2.59 + 0.06

5 Mallows x1.25 | 3.17 4+ 0.07
== “ngh pen 2-f x1.25 | 2.754+0.06

- " W pen 5-f x1.25 | 2.38+0.06
i o pen 10-f x1.25 | 2.28 + 0.05
ST T T pen Loo x1.25 | 2.21 +0.05
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Simulation study

Simulations: change-point detection, n = 200

— N = 5000 samples generated

o L 5-fold 1.436 + 0.008
’ 10-fold 1.400 + 0.008
_— 20-fold 1.372 +0.008
. ' pen 5-f 1.615 £ 0.011

" - pen 10-f 1.444 3 0.009
) pen 20-f 1.390 + 0.008
pen 5-f x1.25 | 1.462 + 0.008

o pen 10-f x1.25 | 1.379 + 0.008
pen 20-f x1.25 | 1.315 + 0.007

0.2 04 0:6 08 1
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Conclusion

Conclusion

@ Usual model selection procedures (C,, V-fold cross-validation)
are suboptimal in some realistic frameworks

@ Resampling and V-fold penalties are (first order) optimal and
robust to unknown variations of the noise-level

@ Theoretical results for regressograms (and recently in density
estimation by Lerasle, see CPS 49),
but these procedures are well-defined in the general
framework, rely on a widely valid heuristics, and
experimentally perform well.
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