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Statistical framework: regression on a random design

(X1,Y1), . . . , (Xn,Yn) ∈ X × Y i.i.d. (Xi ,Yi ) ∼ P unknown

Y = s(X ) + σ(X )ε X ∈ X ⊂ Rd , Y ∈ Y = [0; 1] or R

noise ε : E [ε|X ] = 0 E
[
ε2|X

]
= 1 noise level σ(X )

predictor t : X 7→ Y ?
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Loss function, least-square estimator

Least-square risk:

Eγ(t, (X ,Y )) = Pγ(t, ·)
with γ(t, (x , y)) = (t(x)− y)2

Empirical risk minimizer on Sm (= model):

ŝm ∈ arg min
t∈Sm

Pnγ(t, ·) = arg min
t∈Sm

1

n

n∑
i=1

(t(Xi )− Yi )
2 .

e.g., histograms on a partition (Iλ)λ∈Λm of X .

ŝm =
∑
λ∈Λm

β̂λ1Iλ β̂λ =
1

Card{Xi ∈ Iλ}
∑
Xi∈Iλ

Yi .
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ŝm ∈ arg min
t∈Sm

Pnγ(t, ·) = arg min
t∈Sm

1

n

n∑
i=1

(t(Xi )− Yi )
2 .

e.g., histograms on a partition (Iλ)λ∈Λm of X .

ŝm =
∑
λ∈Λm

β̂λ1Iλ β̂λ =
1

Card{Xi ∈ Iλ}
∑
Xi∈Iλ

Yi .

Optimal model selection Sylvain Arlot



3/23

Introduction Cp and V-fold may not work Optimal procedures via resampling Simulation study Conclusion

Loss function, least-square estimator

Loss function:

`(s, t) = Pγ(t, ·)− Pγ(s, ·) = E
[
(t(X )− s(X ))2

]
with γ(t, (x , y)) = (t(x)− y)2

Empirical risk minimizer on Sm (= model):
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Model selection

(Sm)m∈M −→ (ŝm)m∈M −→ ŝbm ???

Goals:

Oracle inequality (in expectation, or with a large probability):

`(s, ŝbm) ≤ C inf
m∈M

{`(s, ŝm) + R(m, n)}

Adaptivity (provided (Sm)m∈Mn is well chosen), e.g., to the
smoothness of s or to the variations of σ
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{`(s, ŝm) + R(m, n)}

Adaptivity (provided (Sm)m∈Mn is well chosen), e.g., to the
smoothness of s or to the variations of σ

Optimal model selection Sylvain Arlot



4/23

Introduction Cp and V-fold may not work Optimal procedures via resampling Simulation study Conclusion

Model selection
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Penalization

m̂ ∈ arg min
m∈M

{Pnγ(ŝm) + pen(m)}
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Penalization

m̂ ∈ arg min
m∈M

{Pnγ(ŝm) + pen(m)}

Unbiased risk estimation principle

⇒ Ideal penalty: penid(m) = (P − Pn)(γ(ŝm, ·))

pen(m) =
2σ2Dm

n
(Mallows 1973)

pen(m) =
2σ̂2Dm

n
or K̂Dm
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Limitations of linear penalties: illustration

Y = X +
(
1 + 1X≤1/2

)
ε n = 1000 data points

Regular histograms on
[
0; 1

2

]
(Dm,1 bins), then regular histograms

on
[

1
2 ; 1
]

(Dm,2 bins).

data sample oracle: Dm,1 = 1, Dm,2 = 3
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Limitations of linear penalties: illustration

Y = X +
(
1 + 1X≤1/2

)
ε n = 1000 data points

The ideal penalty is not a linear function of the dimension.
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Limitations of linear penalties: illustration
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Limitations of linear penalties: m̂(K ?) 6= m?

Density of (Dbm(K?),1,Dbm(K?),2) and (Dm?,1,Dm?,2) according to
N = 1000 samples

m̂(K ?) m?
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Limitations of linear penalties: theory

Y = X + σ(X )ε with X ∼ U([0; 1]) ,

E [ε|X ] = 0 E
[
ε2|X

]
= 1 and

∫ 1/2

0
(σ(x))2 dx 6=

∫ 1

1/2
(σ(x))2 dx

Regular histograms on
[
0; 1

2

]
(1 ≤ Dm,1 ≤ n/(2 ln(n)2) bins), then

regular histograms on
[

1
2 ; 1
]

(1 ≤ Dm,2 ≤ n/(2 ln(n)2) bins).

Theorem (A. 2008, arXiv:0812.3141)

There exist constants C , η > 0 (only depending on σ(·)) and an
event of probability at least 1− Cn−2 on which

∀K > 0, ∀m̂(K ) ∈ arg min
m∈Mn

{Pnγ (ŝm) + KDm} ,

`(s, ŝbm(K)) ≥ (1 + η) inf
m∈Mn

{`(s, ŝm)} .
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Cross-validation

(X1,Y1), . . . , (Xq,Yq)︸ ︷︷ ︸,(Xq+1,Yq+1), . . . , (Xn,Yn)︸ ︷︷ ︸
Training Validation

ŝ
(e)
m ∈ arg min

t∈Sm

{
q∑

i=1

γ(t, (Xi ,Yi ))

}

P
(v)
n =

1

n − q

n∑
i=q+1

δ(Xi ,Yi ) ⇒ P
(v)
n γ

(
ŝ

(e)
m

)

V -fold cross-validation : (Bj)1≤j≤V partition of {1, . . . , n}

⇒ m̂ ∈ arg min
m∈M

 1

V

V∑
j=1

P j
nγ
(
ŝ

(−j)
m

) s̃ = ŝbm
Optimal model selection Sylvain Arlot
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Bias of cross-validation

Ideal criterion: Pγ(ŝm)

Regression on a model of histograms with Dm bins (σ(X ) ≡ σ for
simplicity):

E [Pγ(ŝm)] ≈ Pγ(sm) +
Dmσ

2

n

E
[
P

(j)
n γ

(
ŝ

(−j)
m

)]
= E

[
Pγ
(
ŝ

(−j)
m

)]
≈ Pγ(sm) +

V

V − 1

Dmσ
2

n

⇒ bias if V is fixed (“overpenalization”)
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Suboptimality of V -fold cross-validation

Y = X + σε with ε bounded and σ > 0

M: family of regular histograms on X = [0, 1]

m̂ selected by V -fold cross-validation with V fixed as n grows

Theorem (A. 2008, arXiv:0802.0566)

With probability at least 1− ♦n−2,

`(s, ŝbm) ≥ (1 + κ(V )) inf
m∈M

{`(s, ŝm)}

with κ(V ) > 0.

Optimal model selection Sylvain Arlot
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Simulations: sin, n = 200, σ(x) = x , 2 bin sizes
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Models: regular histograms on
[
0; 1

2

]
,

then regular histograms on
[

1
2 ; 1
]
.

E [`(s, ŝbm)]

E [infm∈M {`(s, ŝm)}]
computed over 1000 samples.

Mallows 3.69± 0.07

2-fold 2.54± 0.05
5-fold 2.58± 0.06
10-fold 2.60± 0.06
20-fold 2.58± 0.06
leave-one-out 2.59± 0.06
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Resampling heuristics (bootstrap, Efron 1979)

Real world : P
sampling // Pn

+3 ŝm

penid(m) = (P − Pn)γ (ŝm) = F (P,Pn)
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Optimal model selection Sylvain Arlot



14/23

Introduction Cp and V-fold may not work Optimal procedures via resampling Simulation study Conclusion

Resampling heuristics (bootstrap, Efron 1979)

Real world :

��
�O
�O
�O
�O
�O
�O
�O

P
sampling // Pn

+3 ŝm

Bootstrap world : Pn
resampling // PW

n
+3 ŝW

m

(P − Pn)γ (ŝm) = F (P,Pn) ///o/o/o F (Pn,P
W
n ) = (Pn − PW

n )γ
(
ŝW
m

)
where PW

n = n−1
n∑

i=1

Wiδ(Xi ,Yi ) .
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Resampling penalization

Ideal penalty:
(P − Pn)(γ(ŝm))

Resampling penalty:

pen(m) = CE
[
(Pn − PW

n )γ
(
ŝW
m

)
|(Xi ,Yi )1≤i≤n

]
ŝW
m ∈ arg min

t∈Sm

PW
n γ(t)

with C ≥ CW to be chosen (no bias if C = CW )

The final estimator is ŝbm with

m̂ ∈ arg min
m∈M

{Pnγ(ŝm) + pen(m)}
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Resampling penalty:

pen(m) = CE
[
(Pn − PW

n )γ
(
ŝW
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Resampling penalization with heteroscedastic data
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Other resampling-based penalties

Efron’s bootstrap penalties (Efron, 1983; Shibata, 1997):

pen(m) = E
[
(Pn − PW

n )(γ(ŝW
m ))

∣∣∣(Xi ,Yi )1≤i≤n

]
Rademacher complexities (Koltchinskii 2001; Bartlett,
Boucheron and Lugosi, 2002): subsampling

penid(m) ≤ penglo
id (m) = sup

t∈Sm

(P − Pn)γ(t, ·)

idem with general exchangeable weights (Fromont, 2004)

Local Rademacher complexities (Bartlett, Bousquet and
Mendelson, 2004; Koltchinskii, 2006)

. . .

Optimal model selection Sylvain Arlot
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Non-asymptotic pathwise oracle inequality

W exchangeable (e.g., bootstrap or subsampling)

C ≈ CW

Histograms; “small” number of models (Card(Mn) ≤ ♦n♦)

Bounded data: ‖Y ‖∞ ≤ A <∞
Noise-level lower bounded: 0 < σmin ≤ σ(X )

Smooth s: non-constant, α-hölderian

Theorem (A. 2009, EJS)

Under a “reasonable” set of assumptions on P, with probability at
least 1− ♦n−2,

`(s, ŝbm) ≤
(

1 + ln(n)−1/5
)

inf
m∈M

{`(s, ŝm)}

Similar result in density estimation recently (Lerasle, 2009)
Optimal model selection Sylvain Arlot
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Similar result in density estimation recently (Lerasle, 2009)
Optimal model selection Sylvain Arlot



18/23

Introduction Cp and V-fold may not work Optimal procedures via resampling Simulation study Conclusion

Non-asymptotic pathwise oracle inequality

W exchangeable (e.g., bootstrap or subsampling)

C ≈ CW

Histograms; “small” number of models (Card(Mn) ≤ ♦n♦)

Bounded data: ‖Y ‖∞ ≤ A <∞
Noise-level lower bounded: 0 < σmin ≤ σ(X )

Smooth s: non-constant, α-hölderian
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Similar result in density estimation recently (Lerasle, 2009)
Optimal model selection Sylvain Arlot



18/23

Introduction Cp and V-fold may not work Optimal procedures via resampling Simulation study Conclusion

Non-asymptotic pathwise oracle inequality

W exchangeable (e.g., bootstrap or subsampling)

C ≈ CW

Histograms; “small” number of models (Card(Mn) ≤ ♦n♦)

Bounded data: ‖Y ‖∞ ≤ A <∞
Noise-level lower bounded: 0 < σmin ≤ σ(X )

Smooth s: non-constant, α-hölderian
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Similar result in density estimation recently (Lerasle, 2009)
Optimal model selection Sylvain Arlot



19/23

Introduction Cp and V-fold may not work Optimal procedures via resampling Simulation study Conclusion

V -fold penalization

V -fold penalty:

penVF(m) =
C

V

V∑
j=1

[
(Pn − P

(−j)
n )(γ(ŝ

(−j)
m ))

]

ŝ
(−j)
m ∈ arg min

t∈Sm

P
(−j)
n γ(t)

with C ≥ V − 1 to be chosen (no bias if C = V − 1, see also
Burman, 1989)

The final estimator is ŝbm with

m̂ ∈ arg min
m∈M

{Pnγ(ŝm) + penVF(m)}

⇒ oracle inequality with constant 1 + ln(n)−1/5 if V = O(1) or
V = n (A. 2008, arXiv:0802.0566)
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V -fold penalization in the general framework

Resampling and V -fold penalization are well-defined in the
general framework

Constant CW or V − 1: could be estimated with the slope
heuristics (A. and Massart, JMLR 2009)

Constant V − 1 for V -fold penalization:

penVF(m, n) =
C

V

(
P

(j)
n − P

(−j)
n

)
γ
(
ŝ

(−j)
m

)
⇒ E [penVF(m, n)] =

CE
[
penid

(
m, n(V−1)

V

)]
V

=
CE [penid(m, n)]

V − 1
if E [penid(m, n)] ≈ α(m)

n

Optimal model selection Sylvain Arlot
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Simulations: sin, n = 200, σ(x) = x , 2 bin sizes

Mallows 3.69± 0.07
2-fold 2.54± 0.05
5-fold 2.58± 0.06
10-fold 2.60± 0.06
20-fold 2.58± 0.06
leave-one-out 2.59± 0.06

pen 2-f 3.06± 0.07
pen 5-f 2.75± 0.06
pen 10-f 2.65± 0.06
pen Loo 2.59± 0.06

Mallows ×1.25 3.17± 0.07
pen 2-f ×1.25 2.75± 0.06
pen 5-f ×1.25 2.38± 0.06
pen 10-f ×1.25 2.28± 0.05
pen Loo ×1.25 2.21± 0.05

Optimal model selection Sylvain Arlot
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Simulations: change-point detection, n = 200

N = 5000 samples generated

5-fold 1.436± 0.008
10-fold 1.400± 0.008
20-fold 1.372± 0.008

pen 5-f 1.615± 0.011
pen 10-f 1.444± 0.009
pen 20-f 1.390± 0.008

pen 5-f ×1.25 1.462± 0.008
pen 10-f ×1.25 1.379± 0.008
pen 20-f ×1.25 1.315± 0.007

Optimal model selection Sylvain Arlot
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Conclusion

Usual model selection procedures (Cp, V -fold cross-validation)
are suboptimal in some realistic frameworks

Resampling and V -fold penalties are (first order) optimal and
robust to unknown variations of the noise-level

Theoretical results for regressograms (and recently in density
estimation by Lerasle, see CPS 49),
but these procedures are well-defined in the general
framework, rely on a widely valid heuristics, and
experimentally perform well.

Optimal model selection Sylvain Arlot
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