Cp and V-fold may not work	Optimal procedures via resampling	Simulation study	Conclu

Optimal model selection

Sylvain Arlot

$^{1}\mathrm{C}\mathrm{NRS}$

²École Normale Supérieure (Paris), LIENS, WILLOW Team

EMS 2009, Toulouse, 23/07/2009

$(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \mathcal{Y}$ i.i.d. $(X_i, Y_i) \sim P$ unknown

$Y = s(X) + \sigma(X)\varepsilon$ $X \in \mathcal{X} \subset \mathbb{R}^d$, $Y \in \mathcal{Y} = [0; 1]$ or \mathbb{R}

noise ε : $\mathbb{E}[\varepsilon|X] = 0$ $\mathbb{E}[\varepsilon^2|X] = 1$ noise level $\sigma(X)$

$(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \mathcal{Y}$ i.i.d. $(X_i, Y_i) \sim P$ unknown

$Y = s(X) + \sigma(X)\varepsilon$ $X \in \mathcal{X} \subset \mathbb{R}^d$, $Y \in \mathcal{Y} = [0; 1]$ or \mathbb{R}

noise ε : $\mathbb{E}[\varepsilon|X] = 0$ $\mathbb{E}[\varepsilon^2|X] = 1$ noise level $\sigma(X)$

$$(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} imes \mathcal{Y}$$
 i.i.d. $(X_i, Y_i) \sim P$ unknown

$$Y = s(X) + \sigma(X)\varepsilon$$
 $X \in \mathcal{X} \subset \mathbb{R}^d$, $Y \in \mathcal{Y} = [0; 1]$ or \mathbb{R}

noise ε : $\mathbb{E}[\varepsilon|X] = 0$ $\mathbb{E}[\varepsilon^2|X] = 1$ noise level $\sigma(X)$

$$(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} imes \mathcal{Y}$$
 i.i.d. $(X_i, Y_i) \sim P$ unknown

$$Y = s(X) + \sigma(X)\varepsilon$$
 $X \in \mathcal{X} \subset \mathbb{R}^d$, $Y \in \mathcal{Y} = [0; 1]$ or \mathbb{R}

noise ε : $\mathbb{E}[\varepsilon|X] = 0$ $\mathbb{E}[\varepsilon^2|X] = 1$ noise level $\sigma(X)$

Introduction 000

Cp and V-fold may not work

Optimal procedures via resampling

Simulation study

Conclusion

Loss function, least-square estimator

• Least-square risk:

 $\mathbb{E}\gamma(t,(X,Y)) = P\gamma(t,\cdot)$ with $\gamma(t,(x,y)) = (t(x) - y)^2$

• Empirical risk minimizer on S_m (= model):

$$\widehat{s}_m \in \arg\min_{t \in S_m} P_n \gamma(t, \cdot) = \arg\min_{t \in S_m} \frac{1}{n} \sum_{i=1}^n (t(X_i) - Y_i)^2$$
.

$$\widehat{s}_m = \sum_{\lambda \in \Lambda_m} \widehat{\beta}_{\lambda} \mathbb{1}_{I_{\lambda}} \qquad \widehat{\beta}_{\lambda} = \frac{1}{\mathsf{Card}\{X_i \in I_{\lambda}\}} \sum_{X_i \in I_{\lambda}} Y_i$$

Introduction

Cp and V-fold may not work

Optimal procedures via resampling

oling Simulat

tudy Co

Conclusion

Loss function, least-square estimator

• Loss function:

 $\ell(s,t) = P\gamma(t,\cdot) - P\gamma(s,\cdot) = \mathbb{E}\left[(t(X) - s(X))^2\right]$ with $\gamma(t,(x,y)) = (t(x) - y)^2$

• Empirical risk minimizer on S_m (= model):

$$\widehat{s}_m \in rgmin_{t \in S_m} P_n \gamma(t, \cdot) = rgmin_{t \in S_m} rac{1}{n} \sum_{i=1}^n \left(t(X_i) - Y_i
ight)^2$$
.

$$\widehat{s}_m = \sum_{\lambda \in \Lambda_m} \widehat{\beta}_\lambda \mathbb{1}_{I_\lambda} \qquad \widehat{\beta}_\lambda = \frac{1}{\mathsf{Card}\{X_i \in I_\lambda\}} \sum_{X_i \in I_\lambda} Y$$

 Introduction
 Cp and V-fold may not work
 Optimal procedu

 ○●○
 ○○○○○○○○○
 ○○○○○○○○○

Optimal procedures via resampling

Simulation study

Conclusion

Loss function, least-square estimator

Loss function:

$$\ell(s,t) = P\gamma(t,\cdot) - P\gamma(s,\cdot) = \mathbb{E}\left[(t(X) - s(X))^2\right]$$

with $\gamma(t,(x,y)) = (t(x) - y)^2$

• Empirical risk minimizer on S_m (= model):

$$\widehat{s}_m \in \arg\min_{t\in S_m} P_n\gamma(t,\cdot) = \arg\min_{t\in S_m} \frac{1}{n} \sum_{i=1}^n (t(X_i) - Y_i)^2$$
.

$$\widehat{s}_m = \sum_{\lambda \in \Lambda_m} \widehat{\beta}_{\lambda} \mathbb{1}_{I_{\lambda}} \qquad \widehat{\beta}_{\lambda} = \frac{1}{\operatorname{Card}\{X_i \in I_{\lambda}\}} \sum_{X_i \in I_{\lambda}} Y_i$$

Introduction

Loss function, least-square estimator

Loss function:

000

$$\ell(s,t) = P\gamma(t,\cdot) - P\gamma(s,\cdot) = \mathbb{E}\left[(t(X) - s(X))^2\right]$$

with $\gamma(t,(x,y)) = (t(x) - y)^2$

• Empirical risk minimizer on S_m (= model):

$$\widehat{s}_m \in \arg\min_{t\in S_m} P_n\gamma(t,\cdot) = \arg\min_{t\in S_m} \frac{1}{n} \sum_{i=1}^n (t(X_i) - Y_i)^2$$
.

$$\widehat{s}_m = \sum_{\lambda \in \Lambda_m} \widehat{\beta}_\lambda \mathbb{1}_{I_\lambda} \qquad \widehat{\beta}_\lambda = \frac{1}{\mathsf{Card}\{X_i \in I_\lambda\}} \sum_{X_i \in I_\lambda} Y_i \,.$$

Introduction 00●	Cp and V-fold may not work	Optimal procedure			Conclusion
Model s	selection				
variane	bias (Sm)	$m \in \mathcal{M} \longrightarrow$	$(\widehat{s}_m)_{m\in\mathcal{M}}$	$\longrightarrow \widehat{s}_{\widehat{m}}$???

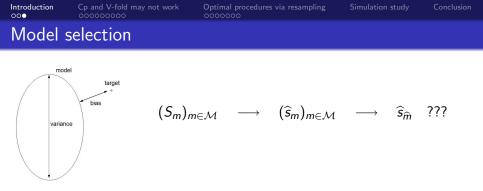
Goals:

Oracle inequality (in expectation, or with a large probability):

 $\ell(s,\widehat{s}_{\widehat{m}}) \leq C \inf_{m \in \mathcal{M}} \{\ell(s,\widehat{s}_m) + R(m,n)\}$

 Adaptivity (provided (S_m)_{m∈M_n} is well chosen), e.g., to the smoothness of s or to the variations of σ

4/23

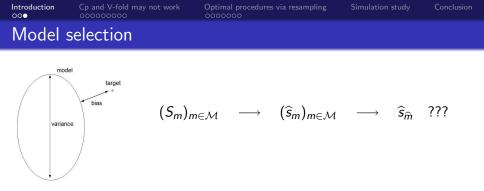


Goals:

• Oracle inequality (in expectation, or with a large probability):

 $\ell(s, \widehat{s}_{\widehat{m}}) \leq C \inf_{m \in \mathcal{M}} \{\ell(s, \widehat{s}_m) + R(m, n)\}$

 Adaptivity (provided (S_m)_{m∈M_n} is well chosen), e.g., to the smoothness of s or to the variations of σ



Goals:

• Oracle inequality (in expectation, or with a large probability):

$$\ell(s,\widehat{s}_{\widehat{m}}) \leq C \inf_{m \in \mathcal{M}} \{\ell(s,\widehat{s}_m) + R(m,n)\}$$

Adaptivity (provided (S_m)_{m∈M_n} is well chosen), e.g., to the smoothness of s or to the variations of σ

Introd	

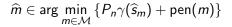
Optimal procedures via resampling

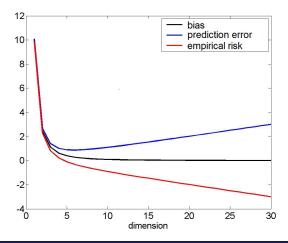
ipling S

ulation study

Conclusion

Penalization





Introduction 000	Cp and V-fold may not work ●00000000	Optimal procedures via resampling	Conclusion
Penaliza	ation		

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m) \right\}$$

Unbiased risk estimation principle

 \Rightarrow Ideal penalty: $pen_{id}(m) = (P - P_n)(\gamma(\widehat{s}_m, \cdot))$

$$pen(m) = \frac{2\sigma^2 D_m}{n} \quad (Mallows \ 1973)$$
$$pen(m) = \frac{2\widehat{\sigma}^2 D_m}{n} \quad \text{or} \quad \widehat{K} D_m$$

Introduction 000 Cp and V-fold may not work

Optimal procedures via resampling

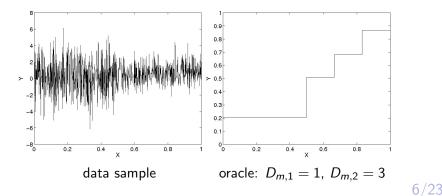
Simulation study

Conclusion

Limitations of linear penalties: illustration

$$Y = X + \left(1 + \mathbbm{1}_{X \leq 1/2}
ight)arepsilon \qquad n = 1000$$
 data points

Regular histograms on $[0; \frac{1}{2}]$ ($D_{m,1}$ bins), then regular histograms on $[\frac{1}{2}; 1]$ ($D_{m,2}$ bins).



Introduction 000 Cp and V-fold may not work 00000000

Optimal procedures via resampling

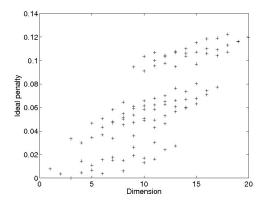
nulation study C

Conclusion

Limitations of linear penalties: illustration

$$Y = X + ig(1 + \mathbbm{1}_{X \leq 1/2}ig) arepsilon \qquad {\it n} = 1000$$
 data points

The ideal penalty is not a linear function of the dimension.

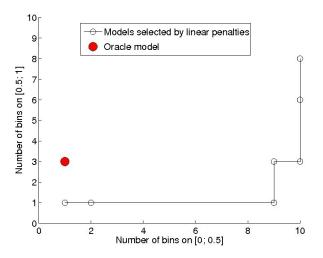


Introduction Cp and V-fold may not work Optimal procedures via resampling

Simulation stu

Conclusion

Limitations of linear penalties: illustration



7/23 Sylvain Arlot Introduction 000 Cp and V-fold may not work 000000000

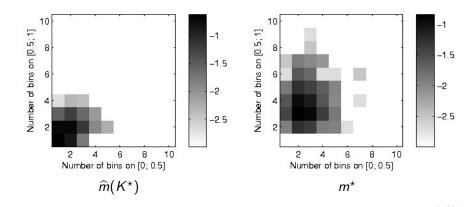
Optimal procedures via resampling

ling Simula

Conclus

Limitations of linear penalties: $\widehat{m}(K^{\star}) \neq m^{\star}$

Density of $(D_{\widehat{m}(K^{\star}),1}, D_{\widehat{m}(K^{\star}),2})$ and $(D_{m^{\star},1}, D_{m^{\star},2})$ according to N = 1000 samples



Introduction 000 Cp and V-fold may not work 000000000

Optimal procedures via resampling

mulation study

Conclusion

Limitations of linear penalties: theory

$$Y = X + \sigma(X)\varepsilon \quad \text{with} \quad X \sim \mathcal{U}([0;1]) ,$$

$$\mathbb{E}\left[\varepsilon|X\right] = 0 \quad \mathbb{E}\left[\varepsilon^2|X\right] = 1 \quad \text{and} \quad \int_0^{1/2} (\sigma(x))^2 \, dx \neq \int_{1/2}^1 (\sigma(x))^2 \, dx$$

Regular histograms on $\begin{bmatrix} 0; \frac{1}{2} \end{bmatrix} (1 \le D_{m,1} \le n/(2\ln(n)^2) \text{ bins})$, then
regular histograms on $\begin{bmatrix} \frac{1}{2}; 1 \end{bmatrix} (1 \le D_{m,2} \le n/(2\ln(n)^2) \text{ bins}).$

Theorem (A. 2008, arXiv:0812.3141)

There exist constants $C, \eta > 0$ (only depending on $\sigma(\cdot)$) and an event of probability at least $1 - Cn^{-2}$ on which

$$orall K > 0, \ orall \widehat{m}(K) \in rgmin_{m \in \mathcal{M}_n} \{ P_n \gamma \left(\widehat{s}_m
ight) + K D_m \} \ ,$$

 $\ell(s, \widehat{s}_{\widehat{m}(K)}) \ge (1 + \eta) \inf_{m \in \mathcal{M}_n} \{ \ell(s, \widehat{s}_m) \} \ .$

Introduction 000	Cp and V-fold may not wor ○○○○●○○○	rk Optimal procedures via resampling 0000000	Conclusion
Cross-v	alidation		
		$(\mathbf{X}, \mathbf{Y}) (\mathbf{X}, \mathbf{z}, \mathbf{Y}, \mathbf{z})$	

$$(X_1, Y_1), \dots, (X_q, Y_q), (X_{q+1}, Y_{q+1}), \dots, (X_n, Y_n)$$

Training Validation
$$\widehat{s}_m^{(e)} \in \arg\min_{t \in S_m} \left\{ \sum_{i=1}^q \gamma(t, (X_i, Y_i)) \right\}$$
$$P_n^{(v)} = \frac{1}{n-q} \sum_{i=q+1}^n \delta_{(X_i, Y_i)} \Rightarrow P_n^{(v)} \gamma\left(\widehat{s}_m^{(e)}\right)$$

V-fold cross-validation : $(B_j)_{1 \le j \le V}$ partition of $\{1, \ldots, n\}$

$$\Rightarrow \widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{V} \sum_{j=1}^{V} P_n^j \gamma\left(\widehat{s}_m^{(-j)}\right) \right\} \qquad \widetilde{s} = \widehat{s}_{\widehat{m}}$$

10/23

Bias of cross-validation

Ideal criterion: $P\gamma(\hat{s}_m)$

Regression on a model of histograms with D_m bins ($\sigma(X) \equiv \sigma$ for simplicity):

$$\mathbb{E}\left[P\gamma(\widehat{s}_m)\right] \approx P\gamma(s_m) + \frac{D_m\sigma^2}{n}$$

$$\mathbb{E}\left[P_n^{(j)}\gamma\left(\widehat{s}_m^{(-j)}\right)\right] = \mathbb{E}\left[P\gamma\left(\widehat{s}_m^{(-j)}\right)\right] \approx P\gamma(s_m) + \frac{V}{V-1}\frac{D_m\sigma^2}{n}$$

Bias of cross-validation

Ideal criterion: $P\gamma(\hat{s}_m)$

Regression on a model of histograms with D_m bins ($\sigma(X) \equiv \sigma$ for simplicity):

$$\mathbb{E}\left[P\gamma(\widehat{s}_m)\right] \approx P\gamma(s_m) + \frac{D_m\sigma^2}{n}$$

$$\mathbb{E}\left[P_n^{(j)}\gamma\left(\widehat{s}_m^{(-j)}\right)\right] = \mathbb{E}\left[P\gamma\left(\widehat{s}_m^{(-j)}\right)\right] \approx P\gamma(s_m) + \frac{V}{V-1}\frac{D_m\sigma^2}{n}$$

Bias of cross-validation

Ideal criterion: $P\gamma(\hat{s}_m)$

Regression on a model of histograms with D_m bins ($\sigma(X) \equiv \sigma$ for simplicity):

$$\mathbb{E}\left[P\gamma(\widehat{s}_m)\right] \approx P\gamma(s_m) + \frac{D_m\sigma^2}{n}$$

$$\mathbb{E}\left[P_n^{(j)}\gamma\left(\widehat{s}_m^{(-j)}\right)\right] = \mathbb{E}\left[P\gamma\left(\widehat{s}_m^{(-j)}\right)\right] \approx P\gamma(s_m) + \frac{V}{V-1}\frac{D_m\sigma^2}{n}$$

 \Rightarrow bias if V is fixed ("overpenalization")

Sylvain Arlot

Suboptimality of V-fold cross-validation

- $Y = X + \sigma \varepsilon$ with ε bounded and $\sigma > 0$
- $\mathcal{M}:$ family of regular histograms on $\mathcal{X}=[0,1]$
- \widehat{m} selected by V-fold cross-validation with V fixed as n grows

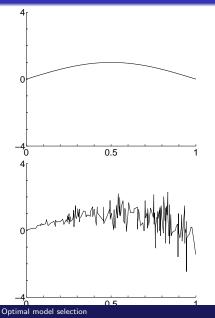
Theorem (A. 2008, arXiv:0802.0566)

With probability at least $1 - \Diamond n^{-2}$,

$$\ell(s,\widehat{s}_{\widehat{m}}) \geq (1+\kappa(V)) \inf_{m \in \mathcal{M}} \{\ell(s,\widehat{s}_m)\}$$

with $\kappa(V) > 0$.

Simulations: sin, n = 200, $\sigma(x) = x$, 2 bin sizes



Models: regular histograms on $|0; \frac{1}{2}|$, then regular histograms on $\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$.

$$\frac{\mathbb{E}\left[\ell(s,\widehat{s}_{\widehat{m}})\right]}{\mathbb{E}\left[\inf_{m\in\mathcal{M}}\left\{\ell(s,\widehat{s}_{m})\right\}\right]}$$

computed over 1000 samples.

Mallows	3.69 ± 0.07
2-fold	2.54 ± 0.05
5-fold	2.58 ± 0.06
10-fold	2.60 ± 0.06
20-fold	2.58 ± 0.06
leave-one-out	2.59 ± 0.06

13/Sylvain Arlot

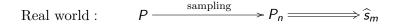
ntroduction Cp and V-fold may r

Optimal procedures via resampling ••••••

ing Simula

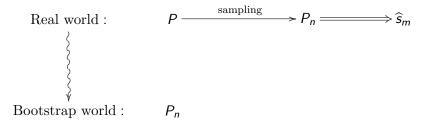
Conclus

Resampling heuristics (bootstrap, Efron 1979)

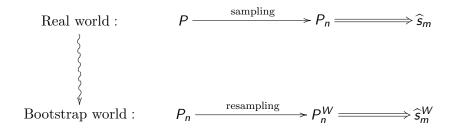


$$\operatorname{pen}_{\operatorname{id}}(m) = (P - P_n)\gamma(\widehat{s}_m) = F(P, P_n)$$

Optimal model selection



$$\operatorname{pen}_{\operatorname{id}}(m) = (P - P_n)\gamma(\widehat{s}_m) = F(P, P_n)$$



$$(P - P_n)\gamma(\widehat{s}_m) = F(P, P_n) \longrightarrow F(P_n, P_n^W) = (P_n - P_n^W)\gamma(\widehat{s}_m^W)$$

where
$$P_n^W = n^{-1} \sum_{i=1}^n W_i \delta_{(X_i, Y_i)}$$
.

Optimal procedures via resampling 000000

Resampling penalization

• Ideal penalty:

$$(P-P_n)(\gamma(\widehat{s}_m))$$

$$pen(m) = C\mathbb{E}\left[(P_n - P_n^W)\gamma\left(\widehat{s}_m^W\right)|(X_i, Y_i)_{1 \le i \le n}\right]$$
$$\widehat{s}_m^W \in \arg\min_{t \in S_m} P_n^W\gamma(t)$$
th $C \ge C_W$ to be chosen (no bias if $C = C_W$)
ne final estimator is $\widehat{s}_{\widehat{m}}$ with

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m) \right\}$$

Optimal procedures via resampling 000000

Resampling penalization

• Ideal penalty:

$$(P-P_n)(\gamma(\widehat{s}_m))$$

• Resampling penalty:

$$pen(m) = C\mathbb{E}\left[(P_n - P_n^W)\gamma\left(\widehat{s}_m^W\right)|(X_i, Y_i)_{1 \le i \le n}\right]$$
$$\widehat{s}_m^W \in \arg\min_{t \in S_m} P_n^W\gamma(t)$$
with $C \ge C_W$ to be chosen (no bias if $C = C_W$)
The final estimator is $\widehat{s}_{\widehat{m}}$ with

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \{P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m)\}$$

Optimal procedures via resampling 000000

Resampling penalization

Ideal penalty:

$$(P-P_n)(\gamma(\widehat{s}_m))$$

Resampling penalty:

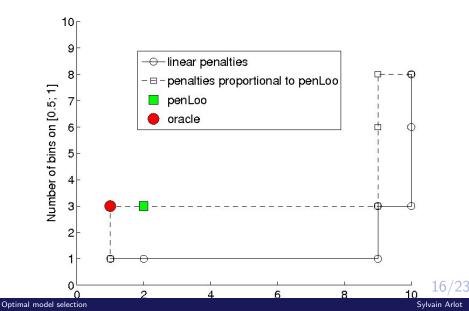
$$pen(m) = C\mathbb{E}\left[(P_n - P_n^W)\gamma\left(\widehat{s}_m^W\right) | (X_i, Y_i)_{1 \le i \le n} \right]$$
$$\widehat{s}_m^W \in \arg\min_{t \in S_m} P_n^W\gamma(t)$$

with $C \geq C_W$ to be chosen (no bias if $C = C_W$)

• The final estimator is $\hat{s}_{\hat{m}}$ with

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m) \right\}$$

Resampling penalization with heteroscedastic data



• Efron's bootstrap penalties (Efron, 1983; Shibata, 1997):

$$\mathsf{pen}(m) = \mathbb{E}\left[(\mathsf{P}_n - \mathsf{P}_n^W)(\gamma(\widehat{s}_m^W)) \middle| (X_i, Y_i)_{1 \le i \le n}\right]$$

 Rademacher complexities (Koltchinskii 2001; Bartlett, Boucheron and Lugosi, 2002): subsampling

$$\mathsf{pen}_{\mathrm{id}}(m) \leq \mathsf{pen}_{\mathrm{id}}^{\mathrm{glo}}(m) = \sup_{t \in S_m} (P - P_n) \gamma(t, \cdot)$$

- idem with general exchangeable weights (Fromont, 2004)
- Local Rademacher complexities (Bartlett, Bousquet and Mendelson, 2004; Koltchinskii, 2006)
- . . .

- W exchangeable (e.g., bootstrap or subsampling)
- $C \approx C_W$
- Histograms; "small" number of models (Card $(\mathcal{M}_n) \leq \Diamond n^{\Diamond}$)
- Bounded data: $||Y||_{\infty} \leq A < \infty$
- Noise-level lower bounded: $0 < \sigma_{\min} \leq \sigma(X)$
- Smooth s: non-constant, α-hölderian

Theorem (A. 2009, EJS)

Under a "reasonable" set of assumptions on P, with probability at least $1-\Diamond n^{-2},$

$$\ell(s,\widehat{s}_{\widehat{m}}) \leq \left(1 + \ln(n)^{-1/5}\right) \inf_{m \in \mathcal{M}} \left\{\ell(s,\widehat{s}_m)\right\}$$

Similar result in density estimation recently (Lerasle, 2009

18/23

- W exchangeable (e.g., bootstrap or subsampling)
- $C \approx C_W$
- Histograms; "small" number of models $(Card(\mathcal{M}_n) \leq \Diamond n^{\Diamond})$
- Bounded data: $||Y||_{\infty} \le A < \infty$
- Noise-level lower bounded: $0 < \sigma_{\min} \leq \sigma(X)$
- Smooth s: non-constant, α-hölderian

Theorem (A. 2009, EJS)

Under a "reasonable" set of assumptions on P, with probability at least $1 - \Diamond n^{-2}$,

$$\ell(s,\widehat{s}_{\widehat{m}}) \leq \left(1 + \ln(n)^{-1/5}\right) \inf_{m \in \mathcal{M}} \left\{\ell(s,\widehat{s}_m)\right\}$$

Similar result in density estimation recently (Lerasle, 2009

- W exchangeable (e.g., bootstrap or subsampling)
- $C \approx C_W$
- Histograms; "small" number of models $(Card(\mathcal{M}_n) \leq \Diamond n^{\Diamond})$
- Bounded data: $||Y||_{\infty} \le A < \infty$
- Noise-level lower bounded: $0 < \sigma_{\min} \leq \sigma(X)$
- Smooth s: non-constant, α-hölderian

Theorem (A. 2009, EJS)

Under a "reasonable" set of assumptions on P, with probability at least $1 - \Diamond n^{-2}$,

$$\ell(s,\widehat{s}_{\widehat{m}}) \leq \left(1 + \ln(n)^{-1/5}\right) \inf_{m \in \mathcal{M}} \left\{\ell(s,\widehat{s}_m)\right\}$$

Similar result in density estimation recently (Lerasle, 2009

troduction Cp ai

p and V-fold may not work

Optimal procedures via resampling

ng Simulat

y Conc

Non-asymptotic pathwise oracle inequality

- W exchangeable (e.g., bootstrap or subsampling)
- $C \approx C_W$
- Histograms; "small" number of models $(Card(\mathcal{M}_n) \leq \Diamond n^{\Diamond})$
- Bounded data: $\|Y\|_{\infty} \leq A < \infty$
- Noise-level lower bounded: $0 < \sigma_{\min} \leq \sigma(X)$
- Smooth s: non-constant, α -hölderian

Theorem (A. 2009, EJS)

Under a "reasonable" set of assumptions on P, with probability at least $1-\Diamond n^{-2},$

$$\ell(s,\widehat{s}_{\widehat{m}}) \leq \left(1 + \ln(n)^{-1/5}\right) \inf_{m \in \mathcal{M}} \left\{\ell(s,\widehat{s}_m)\right\}$$

Similar result in density estimation recently (Lerasle, 2009

- W exchangeable (e.g., bootstrap or subsampling)
- $C \approx C_W$
- Histograms; "small" number of models $(Card(\mathcal{M}_n) \leq \Diamond n^{\Diamond})$
- Bounded data: $\|Y\|_{\infty} \leq A < \infty$
- Noise-level lower bounded: $0 < \sigma_{\min} \leq \sigma(X)$
- Smooth s: non-constant, α -hölderian

Theorem (A. 2009, EJS)

Under a "reasonable" set of assumptions on P, with probability at least $1-\Diamond n^{-2},$

$$\ell(s,\widehat{s}_{\widehat{m}}) \leq \left(1 + \ln(n)^{-1/5}\right) \inf_{m \in \mathcal{M}} \left\{\ell(s,\widehat{s}_m)\right\}$$

Similar result in density estimation recently (Lerasle, 2009)

18/23

Optimal procedures via resampling

npling S

ulation study

Conclusion

V-fold penalization

• *V*-fold penalty:

$$\operatorname{pen}_{VF}(m) = \frac{C}{V} \sum_{j=1}^{V} \left[(P_n - P_n^{(-j)})(\gamma(\widehat{s}_m^{(-j)})) \right]$$
$$\widehat{s}_m^{(-j)} \in \arg\min_{t \in S_m} P_n^{(-j)} \gamma(t)$$

with $C \ge V - 1$ to be chosen (no bias if C = V - 1, see also Burman, 1989)

• The final estimator is $\widehat{s}_{\widehat{m}}$ with

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \{P_n \gamma(\widehat{s}_m) + \operatorname{pen}_{VF}(m)\}$$

⇒ oracle inequality with constant $1 + \ln(n)^{-1/5}$ if V = O(1) or V = n (A. 2008, arXiv:0802.0566)

19/23

ction Cp and V-fold may not

V-fold penalization in the general framework

- Resampling and V-fold penalization are well-defined in the general framework
- Constant C_W or V 1: could be estimated with the slope heuristics (A. and Massart, JMLR 2009)
- Constant V 1 for V-fold penalization:

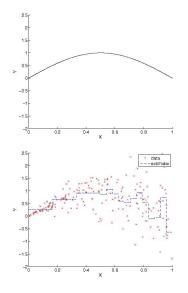
$$pen_{VF}(m, n) = \frac{C}{V} \left(P_n^{(j)} - P_n^{(-j)} \right) \gamma \left(\widehat{s}_m^{(-j)} \right)$$

$$\Rightarrow \quad \mathbb{E} \left[pen_{VF}(m, n) \right] = \frac{C\mathbb{E} \left[pen_{id} \left(m, \frac{n(V-1)}{V} \right) \right]}{V}$$

$$= \frac{C\mathbb{E} \left[pen_{id}(m, n) \right]}{V-1} \quad \text{if} \quad \mathbb{E} \left[pen_{id}(m, n) \right] \approx \frac{\alpha(m)}{n}$$

Introduction 000	Cp and V-fold may not work	Optimal procedures via resampling 0000000	Simulation study	C

Simulations: sin, n = 200, $\sigma(x) = x$, 2 bin sizes



Mallows	3.69 ± 0.07
2-fold	2.54 ± 0.05
5-fold	2.58 ± 0.06
10-fold	2.60 ± 0.06
20-fold	2.58 ± 0.06
leave-one-out	2.59 ± 0.06
pen 2-f	3.06 ± 0.07
pen 5-f	2.75 ± 0.06
pen 10-f	2.65 ± 0.06
pen Loo	2.59 ± 0.06
Mallows $\times 1.25$	3.17 ± 0.07
pen 2-f $ imes$ 1.25	2.75 ± 0.06
pen 5-f $ imes$ 1.25	2.38 ± 0.06
pen 10-f $\times 1.25$	2.28 ± 0.05
pen Loo $\times 1.25$	$2.21 \pm 0.05 \frac{1}{21/23}$

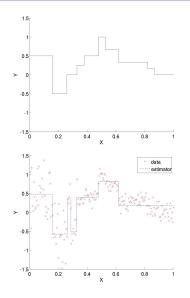
Introduction 000 Cp and V-fold may not work

Optimal procedures via resampling

Simulation study

Conclusion

Simulations: change-point detection, n = 200



Ν	=	5000	samples	generated
---	---	------	---------	-----------

5-fold	1.436 ± 0.008
10-fold	1.400 ± 0.008
20-fold	1.372 ± 0.008
pen 5-f	1.615 ± 0.011
pen 10-f	1.444 ± 0.009
pen 20-f	1.390 ± 0.008
pen 5-f ×1.25	1.462 ± 0.008
pen 10-f $ imes$ 1.25	1.379 ± 0.008
pen 20-f $ imes$ 1.25	1.315 ± 0.007

22/23

Introduction 000	Cp and V-fold may not work	Optimal procedures via resampling 0000000	Conclusion
Conclus	sion		

- Usual model selection procedures (C_p , V-fold cross-validation) are suboptimal in some realistic frameworks
- Resampling and V-fold penalties are (first order) optimal and robust to unknown variations of the noise-level
- Theoretical results for regressograms (and recently in density estimation by Lerasle, see CPS 49), but these procedures are well-defined in the general framework, rely on a widely valid heuristics, and experimentally perform well.

