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Introduction
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Statistical framework: regression on a random design

(X1, Y1), ..., (X, Ya) € X x Y iid. (X, Y:) ~ P unknown
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Introduction
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Statistical framework: regression on a random design

(X1, Y1), ..., (X, Ya) € X x Y iid. (X, Y:) ~ P unknown

Y=5X)4+0(X)e XeXCRY YeYy=][0;1] or R

noise € : EleX]=0 E[?X] =1 noise level  o(X)

predictor t: X —Y ?
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Loss function, least-square estimator

@ Least-square risk:

Ev(t, (X, Y)) = Py(t,-)
with (¢, (x,y)) = (t(x) — y)?
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Loss function, least-square estimator

@ Loss function:

(s, t) = Py(t,) = Py(s,) = E[(t(X) - s(X))?]
with (¢, (x,y)) = (t(x) — )’
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Introduction
(o] le}

Loss function, least-square estimator

@ Loss function:

U(s, t) = Py(t,-) = Py(s,-) = E[(t(X) - s(X))?]
with (¢, (x,y)) = (t(x) - )

e Empirical risk minimizer on S,, (= model):

~ . 1
Sm € arg min P.y(t,-) = arg min ,Z; (t(X)) — Y)?.
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Introduction
(o] le}

Loss function, least-square estimator

@ Loss function:

U(s,t) = Py(t,-) = Py(s,-) = E[(t(X) - s(X))?]
with  5(t, (x,¥)) = (t(x) — y)?

e Empirical risk minimizer on S, (= model):

1

Sm € arg min Pyy(t,-) = arg min — Z (t(X) = Yi)*.

@ e.g., histograms on a partition (/))xep,, of X.

~ ~ 1
A 1 = Y;.
sm= > Bl B Card{X,-elA}g
IASION

AEAmM
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Model selection
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Goals:

@ Oracle inequality (in expectation, or with a large probability):

U(s,55) < C inf {l(s,5m)+ R(m,n)}
meM
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Introduction
ooe

Model selection

model

ST
/ (Sm)mem  —  (m)mem  —  Sm 77
\ )
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Goals:

@ Oracle inequality (in expectation, or with a large probability):

Ve ~
Us,sm) < C inf {€(s,5m) + R(m,n)}

e Adaptivity (provided (Spm)mem, is well chosen), e.g., to the
smoothness of s or to the variations of o
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Introduction
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Penalization

m € arg min {Pyy(Sm) + pen(m)}
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Introduction
[ ]

Penalization

m € arg rr?’él./r\.l/l {Pny(sm) + pen(m)}

20°D
pen(m) = 7 Zm (Mallows 1973)
n

/\2 .
:20 Dm or KDp

pen(m) p

And several other penalties (global or local Rademacher
complexities, bootstrap or resampling penalties, etc.)

= ldeal penalty: pen;q(m) = (P — Pp)(v(Sm;, "))
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Introduction
[ ]

Penalization

m € arg n'::rél./r\.l/l {Pny(sm) + pen(m)}

202D,

pen(m) = (Mallows 1973)

_ 262D,,
n

or RDm

pen(m)

And several other penalties (global or local Rademacher
complexities, bootstrap or resampling penalties, etc.)

= Ideal penalty: penig(m) = (P — Pn)(7(5m,-))
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Calibration of penalties
@000

Data-driven calibration of the penalty

Assume that we know (or have estimated) peng such that

K* peny(m) =~ E [pen;q(m)] (K™ unknown)
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Calibration of penalties
@000

Data-driven calibration of the penalty

Assume that we know (or have estimated) peng such that

K™ peng(m) ~ E [pen;q(m)] (K™ unknown)

Examples: peny(m) = D,,, Rademacher complexity, etc.
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Calibration of penalties
@000

Data-driven calibration of the penalty

Assume that we know (or have estimated) peng such that

K™ peng(m) ~ E [pen;q(m)] (K™ unknown)
Examples: peny(m) = D,,, Rademacher complexity, etc.
m(K) € arg neUCl {Pry (5m) + K peng(m)}

= how to choose K?
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Calibration of penalties
[o] le]e}

Dimension jump
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Calibration of penalties
[e]e] T}

Efficiency as a function of K
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Calibration of penalties
[e]ele] ]

Algorithm (Birgé, Massart 2007; A., Massart, JMLR 2009)

Q for every K > 0, compute

m(K) € arg min {Pny (3m) + K peng(m)}

Q find Rm;n such that Dz k) is “very large” when K < Rmin and
“reasonably small” when K > Rm;n

@ choose the model m = m (QRm;n)
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Calibration of penalties
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The slope heuristics
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The slope heuristics K = 0.45K*
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Calibration of penalties
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The slope heuristics K = 0.5K~
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Calibration of penalties
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The slope heuristics K = 0.55K*
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The slope heuristics K =0.75K*
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The slope heuristics
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Calibration of penalties
00000080000

The slope heuristics: informal argument

12

— bias
— prediction error
— empirical risk
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Calibration of penalties
00000008000

Two theorems

o Histograms; “small” number of models (Card(M,) < {n?)
@ Bounded data: ||Y]|eo <A< 0
@ Noise-level lower bounded: 0 < opmin < o(X)

@ Smooth s: non-constant, a-holderian

Theorem (Minimal penalty; A. and Massart, JMLR 2009)

If0 < K < K*/2, with probability at least 1 — {n~2,

o > . ~ N >
E(svsm(K)) == |n(n) mlg}c\/l {E(S,Sm)} and Dm(K) =
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Calibration of penalties
00000008000

Two theorems

Theorem (Optimal penalty; A. and Massart, JMLR 2009)
If K > K*/2, with probability at least 1 — {n~2,

0(s,5m(k)) < Ca(K) inf {l(s, 5 d Daky < nt"
(s,5mk)) < Cal )m'gM{ (s,5m)} an (k) < n
where C,(K) < C(K), C, (K*) <1+ In(n)"Y/% and n > 0 may
depend on the smoothness of s.

Theorem (Minimal penalty; A. and Massart, JMLR 2009)

If0 < K < K*/2, with probability at least 1 — )n~2,

o~ M = <>n
U(s,Smky) = In(n) n:g}‘vt {(s,5m)} and Dmky > In(n)

4
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Calibration of penalties
00000000800

The slope heuristics: sketch of proof

prediction error Py (5y) = Py (sm) + P (7 (5m) — 7 (sm))
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Calibration of penalties
00000000800

The slope heuristics: sketch of proof

prediction error Py (5y) = Py (sm) + P (7 (5m) — 7 (sm))

empirical risk  Ppy (5m) = Pay (sm) — (Pn (7 (5m) — 7 (5m))
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Calibration of penalties
00000000800

The slope heuristics: sketch of proof

prediction error Py (Sy) = Py (sm) + P (v (5m) — 7 (sm))

empirical risk  Ppy (Sm) = Pny (sm) — (Pn (7 (sm) — 7 (5m))

Pa (7 (sm) — v (5m)) = P (v (5m) — 7 (sm))
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Calibration of penalties
00000000800

The slope heuristics: sketch of proof

prediction error Py (5y) = Py (sm) + P (7 (5m) — 7 (sm))

empirical risk  Ppy (5m) = Pay (sm) — (Pn (7 (5m) — 7 (5m))

Pa (v (sm) — 7 (5m)) = P (v (5m) — v (5m))

Ingredients of the proof:
@ estimation of the expectations

@ concentration inequalities
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Calibration of penalties
00000000080

lllustration: s(x) = sin(7x), n =200, c =1

peny(m) = Dp,

E[é(s, 5m)]
E [inf mea {¢(s,5m)}]
computed over 1000 samples.

0 05 1
i
Model selection method | Efficiency
Mallows (o) 2.03+0.04
0 \H Mallows (5) 1.93 + 0.04
Slope (threshold) 1.88+0.03
Slope (maximal jump) 2.01+0.04
-4

) 0
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Calibration of penalties
0000000000 e

Related results

e Birgé and Massart (2007): similar theoretical results when the
noise is Gaussian homoscedastic (either polynomial or
exponential collections of models).

Successfully applied to change-point detection (Lebarbier,
2005).

@ The slope heuristics experimentally works in several other
frameworks:

mixture models (Maugis and Michel, 2008),

clustering (Baudry, 2007),

spatial statistics (Verzelen, 2008),

estimation of oil reserves (Lepez, 2002),

genomics (Villers, 2007).
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Shape of the penalty
@000

Limitations of linear penalties: illustration

Y =X+ (1+1x<ip)e  n=1000 data points

Regular histograms on [0; 3] (Dm,1 pieces), then regular
histograms on [3;1] (D2 pieces).

8

s

0 02 0.4 06 0.8 1
X
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Shape of the penalty
@000

Limitations of linear penalties: illustration

Y =X+ (1 + ]1X§1/2) € n = 1000 data points

The ideal penalty is not a linear function of the dimension.
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Shape of the penalty
[e] le]e}

Limitations of linear penalties: illustration

—=—Models selected by linear penalties
@ Oracle model

Number of bins on [0.5; 1]

0 . . . . .

4 6
Number of bins on [0; 0.5]
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Shape of the penalty
[e] le]e}

Limitations of linear penalties: illustration

—&—linear penalties

7r [E penLoo
@ oracle

gr - 8- penalties proportional to penLoo ? —F
|
1
B
|
|
|
|
|
|
|

Number of bins on [0.5; 1]

0 . . . . .

4 6
Number of bins on [0; 0.5]
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Shape of the penalty
[e]e] e}

Limitations of linear penalties: m(K*) # m*

Density of (Dﬁv(K*),la Dﬁv(K*),Z) and (Dm*71, Dm*72) according to
N = 1000 samples

g
[l
iy
[ex] [}

[+2]

Number of bins on [0.5;1]
!
% ra B
Number of bins on [0.5;1]
|
ra

2 4 g g 10 2 4 g g 10
Number of bins on [0; 0.5] Mumber of bins on [0; 0.5]

m(K*) m*
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Shape of the penalty
[e]e]e] }

Limitations of linear penalties: theory

Y=X+0o(X)e with X~U([0;1]) ,
_ &2 _ an 1/2O'X2X 1()'X2X
Bl0X] =0 E[EX] =1 and [ (o0 # [ (o)

Regular histograms on [0; 3] (1 < Dm;1 < n/(2In(n)?) pieces),
then regular histograms on [1;1] (1 < Dp» < n/(2In(n)?) pieces).

Theorem (A. 2008, arXiv:0812.3141)

There exist absolute constants C,n > 0 and an event of probability
at least 1 — Cn—2 on which

VK >0, Vm(K) € arg rgj\r/]l {Pry (5m) + KDm}

Us,sm(k)) = (L+n) inf {€(s,5m)} -

v
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Shape of the penalty
o

Resampling heuristics (bootstrap, Efron 1979)

sampling ~
Real world : P P,=—=75,

pen;g(m) = (P — Pn)y (5m) = F(P, Pp)
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Shape of the penalty
o

Resampling heuristics (bootstrap, Efron 1979)

1i ~
Real world : P e P, =—3%,
.
.
!
!
§
v
Bootstrap world : P,

penia(m) = (P — Pp)y (sm) = F(P, Pn)
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Shape of the penalty
o

Resampling heuristics (bootstrap, Efron 1979)

sampling N
Real world : P Pp=——7,
{
{
{
{
{
§
\ .
Bootstrap world : P, fesampng PW o= W

(P = Pa)y m) = F(P.Py) ~~ F(Pa. PY) = (Py = PV} (31

n
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Shape of the penalty
o

Resampling heuristics (bootstrap, Efron 1979)

sampling N
Real world : P Py=—————=75,
!
!
!
!
!
é
b 1i
Bootstrap world : P, Stbsampne P,\7/V :>§’\7/1V

(P_Pn)'Y(gm):F(PJDn)MF(PnaPW):(Pn*PrW)’Y(/S\W)

n m

1
. w _ .
VAol P = T Erd(B)) .¢§B S(x.yy with J~U(L,..., V)
IEDy
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Shape of the penalty
e0

V-fold penalization

@ Ideal penalty:
(P = Pn)(7v(5m))
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Shape of the penalty
e0

V-fold penalization

@ ldeal penalty:
(P = Pn)(v(5m))

e V-fold penalty:
C & -
pen(m) = VZ (P = PE)((357)

?,(,,71) € arg min P,(fj)ﬁ/(t)
teSm

with C > V — 1 to be chosen
C =V —1 for estimating (almost) unbiasedly the ideal
penalty
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Shape of the penalty
e0

V-fold penalization

@ ldeal penalty:
(P = Pn)(v(5m))

o V-fold penalty:

pen(m

<m

v
> [P = PS5
j=1

5 e arg min P,(,fj)'y(t)
teESm

with C > V — 1 to be chosen
C = V — 1 for estimating (almost) unbiasedly the ideal
penalty

@ The final estimator is 55 with

m € arg min {Pyy(5m) + pen(m)}
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Shape of the penalty
Non-asymptotic pathwise oracle inequality

Theorem (A. 2008, arXiv:0802.0566)

Under a “reasonable” set of assumptions on P, with probability at
least 1 — On~2,

U(s,57) < (1+n(n)7Y%) inf {0(s,5m)}

v
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Shape of the penalty
Non-asymptotic pathwise oracle inequality

@ Fixed VorV =n

Theorem (A. 2008, arXiv:0802.0566)

Under a “reasonable” set of assumptions on P, with probability at
least 1 — $n—2,

U(s,35) < (1 + |n(n)—1/5) inf {0(s,5m)}

v
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Shape of the penalty
Non-asymptotic pathwise oracle inequality

@ Fixed VorV =n
e Cr~V-1

Theorem (A. 2008, arXiv:0802.0566)

Under a “reasonable” set of assumptions on P, with probability at
least 1 — $n—2,

U(s,35) < (1 + |n(n)—1/5) inf {0(s,5m)}

v
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Shape of the penalty
Non-asymptotic pathwise oracle inequality

@ Fixed VorV=n

o CrV-1

e Histograms; “small” number of models (Card(M,) < {n?)
@ Bounded data: ||Y]|oo <A< 0

@ Noise-level lower bounded: 0 < opmin < o(X)

@ Smooth s: non-constant, a-holderian

Theorem (A. 2008, arXiv:0802.0566)

Under a “reasonable” set of assumptions on P, with probability at
least 1 — Gn—2,

U(s,35) < (1 + |n(n)—1/5) inf {0(s,5m)}

v
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Shape of the penalty
Simulation framework

Yi=s(X)+o(X)ei X~ y([0;1]) e~ A(0,1)

M, histograms regular on [0,1/2] (D; pieces), and on [1/2,1]

(D, pieces), with 1 < Dy, Dy < Ty
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Shape of the penalty
Simulation framework

Yi=s(X)+o(X)ei X~ y([0;1]) e~ A(0,1)

M, histograms regular on [0,1/2] (D; pieces), and on [1/2,1]
(D, pieces), with 1 < Dy, Dy < Ty
= Benchmark:

E[(s,55)] |
: ted with N =
E[infme g 05, 3m)] computed with N = 1000 samples

C(:lassi(:al -
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Shape of the penalty
oe

Simulations: sin, n = 200, o(x) = x, 2 bin sizes

0 0.5

-4

0 0
Data-driven penalties for model selection

Mallows 3.69 £ 0.07
2-fold 2.54 £0.05
5-fold 2.58 +0.06
10-fold 2.60 +0.06
20-fold 2.58 +0.06
leave-one-out 2.59 + 0.06
pen 2-f 3.06 £+ 0.07
pen 5-f 2.75 £ 0.06
pen 10-f 2.65 4+ 0.06
pen Loo 2.59 £ 0.06
Mallows x1.25 | 3.17 +0.07
pen 2-f x1.25 | 2.75+ 0.06
pen 5-f x1.25 | 2.38+0.06
pen 10-f x1.25 | 2.28 + 0.05
pen Loo x1.25 | 2.21 +0.05

Sylvain Arlot



Shape of the penalty
L o)

Other resampling-based penalties

e Efron’s bootstrap penalties (Efron 1983, Shibata 1997):

pen(m) = E [(Ps — PY)(Y G )| (Xi: Yorsic)

General resampling penalties (A. 2008, hal-00262478)

Rademacher complexities (Koltchinskii 2001 ; Bartlett,
Boucheron, Lugosi 2002): subsampling

pen;q(m) < penty’(m) = SUSP(P — P (t,)
tESm

idem with general exchangeable weights (Fromont 2004)

Local Rademacher complexities (Bartlett, Bousquet,
Mendelson 2004 ; Koltchinskii 2004)
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Shape of the penalty
oe

Cross-validation procedures

@ Hold-out, Cross-validation, Leave-one-out, V-fold
cross-validation:

I C {1,...,n} random sub-sample of size g (VFCV:
— n(VV—l))
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Shape of the penalty
oe

Cross-validation procedures

@ Hold-out, Cross-validation, Leave-one-out, V-fold
cross-validation:
I c {1,...,n} random sub-sample of size g (VFCV:

q — n(VV—l))

@ V-fold cross-validation is biased
= suboptimal model selection when V is fixed as n — oo (A.
2008, arXiv:0802.0566)
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Shape of the penalty
oe

Cross-validation procedures

@ Hold-out, Cross-validation, Leave-one-out, V-fold
cross-validation:
I c {1,...,n} random sub-sample of size g (VFCV:

q — n(VV—l))

e V-fold cross-validation is biased
= suboptimal model selection when V is fixed as n — oo (A.
2008, arXiv:0802.0566)

e V-fold penalization with C =V — 1
< Burman'’s corrected V-fold cross-validation (1989).

Data-driven penalties for model selection Sylvain Arlot



Conclusion

Conclusion

@ Shape of the penalty: estimated by resampling (V-fold,
bootstrap, exchangeable bootstrap...)
= adaptation to unknown variations of the noise-level
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Conclusion

Conclusion

@ Shape of the penalty: estimated by resampling (V-fold,
bootstrap, exchangeable bootstrap...)
= adaptation to unknown variations of the noise-level

e Multiplying constant: estimated thanks to the slope heuristics
(model-selection based estimator)
= oracle inequalities with constant 1 + €,
even when peng(m) is a V-fold or resampling penalty, inside
the slope heuristics algorithm
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Conclusion

Conclusion

@ Shape of the penalty: estimated by resampling (V-fold,
bootstrap, exchangeable bootstrap...)
= adaptation to unknown variations of the noise-level

e Multiplying constant: estimated thanks to the slope heuristics
(model-selection based estimator)
= oracle inequalities with constant 1 + ¢,
even when peng(m) is a V-fold or resampling penalty, inside
the slope heuristics algorithm

@ Cross-validation and resampling penalties can also be used for
change-point detection, i.e., for detecting changes in the
mean of an heteroscedastic sequence (joint work with A.
Celisse, arXiv:0902.3977)
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Change-point detection
[ ]

Change-point detection via cross-validation

V1<i<n, Yi =s(t)+o(t)e;  with E[g]=0 E[e] =1

o Goal: detect changes in the mean s of the signal Y
= model selection

o No assumption on the variance o(t;)?
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Change-point detection
[ ]

Change-point detection via cross-validation

V1<i<n, Yi =s(t)+o(t)e;  with E[g]=0 E[e] =1

o Goal: detect changes in the mean s of the signal Y
= model selection

o No assumption on the variance o(t;)?

@ Birgé and Massart's penalty (assumes o(t;) = 0):

pen(m) = % <5+2|og (D”m>)
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Change-point detection
[ Jelele]e]

Fixed D, Homoscedastic data; n = 100, 0 = 0.25, D = 4
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Change-point detection
0@000

Fixed D, Heteroscedastic; n = 100, ||o|| = 0.30, D =6

1
o
o !
o1
b
o
-1
-1
o
g e
11 °
° 1!
—-0.5- 14 °
!
!
19!
-1t '.: : . Y
1
---ERM
° - Oracle
_15 I I I T )
0 0.2 0.4 0.6 0.8 1

t

Data-driven penalties for model selection Sylvain Arlot



Change-point detection
(e]e] le]e]

Fixed D, Heteroscedastic; n = 100, ||o|| = 0.30, D =6

0’
ol .
° 11
-0.5r 16 L]
1!
1! o Y.
I.: ° i
1t :_, —Loo
---ERM
° - Oracle
-1.5 : ;
0 0.2 0.4 0.6 0.8 1
t

Data-driven penalties for model selection Sylvain Arlot



Change-point detection
(e]e]e] Jo]

Homoscedastic data: loss as a function of D
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Change-point detection
0000e

Heteroscedastic data: loss as a function of D
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Change-point detection
@000

Homoscedastic data: estimation of the loss for every D
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Change-point detection
lo] le]e}

Heteroscedastic data: estimation of the loss for every D
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Change-point detection
lo]e] e}

A family of two-steps change-point detection algorithms

@ VD € {1,...,Dmnax}, select a model m(D) of dimension D:

m(D) € arg  min
me

ny Um=—

5 {erita(m; (ti, Yi)i)}

Examples of crit;: empirical risk, leave-p-out or V-fold
estimators of the risk

@ Select D

BeargD min  {crita(D; (67, Yi)j; crity(4)}

{ y+++sDmax

Examples of crity: penalized empirical criterion, V-fold
cross-validation estimator of the risk
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Change-point detection
oooe

Simulation results

Deterministic (s, o):

o ‘ [Emp, VFs]  [Loo, VFs]  [Lpox, VFs] [Emp, BM]
cst | 441 +0.02 454 +0.02 4624002 4.39+0.01
p-c | 6.32 £0.02 5.74 £0.02 5.81 +0.02 8.47 £ 0.03
sine | 597 £ 0.02 5.72 +£0.02 5.86 + 0.02 7.59 + 0.03

Random (s, 0):

o | [Emp,VFs]  [Loo, VFs] [Lpox,VFs] [Emp, BM]

A | 478 £0.03 4.65+003 478+0.03 6.82+0.03
B |509+003 488 +003 491+003 7.21+0.04
C| 717 +£0.05 6.61+0.05 6.49 +0.05 13.49 + 0.07
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Cross-validation

Bias of cross-validation

Ideal criterion: Py(5n)

Regression on a model of histograms with Dp, pieces (o(X) = o
for simplicity):

D,,0?

E[Py(sm)] = Py(sm) +
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Cross-validation

Bias of cross-validation

Ideal criterion: Py(5sy)

Regression on a model of histograms with Dp, pieces (o(X) = o
for simplicity):

D,,0?

E[Py(sm)] = Py(sm) +

S 70 667)] =2 [ (7)) <+ 2
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Cross-validation

Bias of cross-validation

Ideal criterion: Py(5sy)

Regression on a model of histograms with Dp, pieces (o(X) = o
for simplicity):

D,,0?

E[Py(sm)] = Py(sm) +

S 70 667)] =2 [ (7)) <+ 2

= bias if V is fixed (“overpenalization™)
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Cross-validation

Suboptimality of V-fold cross-validation

@ Y = X + o€ with € bounded and ¢ > 0
e M: family of regular histograms on X’ = [0, 1]
o V fixed

Theorem (A. 2008)
With probability at least 1 — {n~2,

(s,33) = (1+5(V)) inf {{(s,3m)}

with k(V) > 0.

Data-driven penalties for model selection Sylvain Arlot



Cross-validation
@00

Simulations: sin, n = 200, o(x) = x, 2 bin sizes

0 0.5
4
0

_4 L L L L \

Data-driven penalties for model selection

Mallows 3.69 £+ 0.07
2-fold 2.54 +0.05
5-fold 2.58 + 0.06
10-fold 2.60 £ 0.06
20-fold 2.58 +0.06
leave-one-out | 2.59 4 0.06

Sylvain Arlot



Cross-validation
oeo

Simulations: HeaviSine, n = 2048, 0 =1

0
Models: dyadic regular histograms

-8
& 05 1 2-fold 1.002 4+ 0.003
— 5-fold 1.014 +0.003
10-fold 1.021 +0.003
d 20-fold 1.029 + 0.004
a leave-one-out | 1.034 + 0.004

-8
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Cross-validation
ooe

Choice of V

@ optimal performance when V = V*: trade-off variability—bias
(difficult to find V* from the data)
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Cross-validation
ooe

Choice of V

@ optimal performance when V = V*: trade-off variability—bias
(difficult to find V* from the data)

@ SNR large:
= V* — oo when n — oo (suboptimality result if V fixed)
= V* too large for computations
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Cross-validation
ooe

Choice of V

@ optimal performance when V = V*: trade-off variability—bias
(difficult to find V* from the data)

@ SNR large:
= V* — oo when n — oo (suboptimality result if V fixed)
= V* too large for computations

@ SNR small:

= V* =2 is possible
= unsatisfactory (highly variable)
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Cross-validation
ooe

Choice of V

@ optimal performance when V = V*: trade-off variability—bias
(difficult to find V* from the data)

@ SNR large:
= V* — oo when n — oo (suboptimality result if V fixed)
= V* too large for computations

@ SNR small:

= V* =2 is possible
= unsatisfactory (highly variable)

@ V should be chosen according to computation time also

Data-driven penalties for model selection Sylvain Arlot
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