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Statistical framework: regression on a random design

(X1,Y1), . . . , (Xn,Yn) ∈ X × Y i.i.d. (Xi ,Yi ) ∼ P unknown

Y = s(X ) + σ(X )ε X ∈ X ⊂ Rd , Y ∈ Y = [0; 1] or R

noise ε : E [ε|X ] = 0 E
[
ε2|X

]
= 1 noise level σ(X )

predictor t : X 7→ Y ?
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Loss function, least-square estimator

Least-square risk:

Eγ(t, (X ,Y )) = Pγ(t, ·)
with γ(t, (x , y)) = (t(x)− y)2

Empirical risk minimizer on Sm (= model):

ŝm ∈ arg min
t∈Sm

Pnγ(t, ·) = arg min
t∈Sm

1

n

n∑
i=1

(t(Xi )− Yi )
2 .

e.g., histograms on a partition (Iλ)λ∈Λm of X .

ŝm =
∑
λ∈Λm

β̂λ1Iλ β̂λ =
1

Card{Xi ∈ Iλ}
∑
Xi∈Iλ

Yi .
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Model selection

(Sm)m∈M −→ (ŝm)m∈M −→ ŝbm ???

Goals:

Oracle inequality (in expectation, or with a large probability):

`(s, ŝbm) ≤ C inf
m∈M

{`(s, ŝm) + R(m, n)}

Adaptivity (provided (Sm)m∈Mn is well chosen), e.g., to the
smoothness of s or to the variations of σ

Data-driven penalties for model selection Sylvain Arlot
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Penalization

m̂ ∈ arg min
m∈M

{Pnγ(ŝm) + pen(m)}
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Penalization

m̂ ∈ arg min
m∈M

{Pnγ(ŝm) + pen(m)}

pen(m) =
2σ2Dm

n
(Mallows 1973)

pen(m) =
2σ̂2Dm

n
or K̂Dm

And several other penalties (global or local Rademacher
complexities, bootstrap or resampling penalties, etc.)

⇒ Ideal penalty: penid(m) = (P − Pn)(γ(ŝm, ·))
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Data-driven calibration of the penalty

Assume that we know (or have estimated) pen0 such that

K ? pen0(m) ≈ E [penid(m)] (K ? unknown)

Examples: pen0(m) = Dm, Rademacher complexity, etc.

m̂(K ) ∈ arg min
m∈Mn

{Pnγ (ŝm) + K pen0(m)}

⇒ how to choose K?
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Dimension jump
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Efficiency as a function of K
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Algorithm (Birgé, Massart 2007; A., Massart, JMLR 2009)

1 for every K > 0, compute

m̂(K ) ∈ arg min
m∈Mn

{Pnγ (ŝm) + K pen0(m)}

2 find K̂min such that Dbm(K) is “very large” when K < K̂min and

“reasonably small” when K > K̂min

3 choose the model m̂ = m̂
(

2K̂min

)
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The slope heuristics K = 0
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The slope heuristics K = 0.45K ?
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The slope heuristics K = 0.5K ?
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The slope heuristics K = 0.55K ?
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The slope heuristics K = 0.75K ?
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The slope heuristics K = K ?
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The slope heuristics: informal argument
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Two theorems

Histograms; “small” number of models (Card(Mn) ≤ ♦n♦)

Bounded data: ‖Y ‖∞ ≤ A <∞
Noise-level lower bounded: 0 < σmin ≤ σ(X )

Smooth s: non-constant, α-hölderian

Theorem (Minimal penalty; A. and Massart, JMLR 2009)

If 0 ≤ K < K ?/2, with probability at least 1− ♦n−2,

`(s, ŝbm(K)) ≥ ln(n) inf
m∈M

{`(s, ŝm)} and Dbm(K) ≥
♦n

ln(n)
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Two theorems

Theorem (Optimal penalty; A. and Massart, JMLR 2009)

If K > K ?/2, with probability at least 1− ♦n−2,

`(s, ŝbm(K)) ≤ Cn(K ) inf
m∈M

{`(s, ŝm)} and Dbm(K) ≤ n1−η

where Cn(K ) ≤ C (K ), Cn (K ?) ≤ 1 + ln(n)−1/5 and η > 0 may
depend on the smoothness of s.

Theorem (Minimal penalty; A. and Massart, JMLR 2009)

If 0 ≤ K < K ?/2, with probability at least 1− ♦n−2,

`(s, ŝbm(K)) ≥ ln(n) inf
m∈M

{`(s, ŝm)} and Dbm(K) ≥
♦n

ln(n)
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The slope heuristics: sketch of proof

prediction error Pγ (ŝm) = Pγ (sm) + P (γ (ŝm)− γ (sm))

empirical risk Pnγ (ŝm) = Pnγ (sm)− (Pn (γ (sm)− γ (ŝm))

Pn (γ (sm)− γ (ŝm)) ≈ P (γ (ŝm)− γ (sm))

Ingredients of the proof:

estimation of the expectations

concentration inequalities

Data-driven penalties for model selection Sylvain Arlot
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Illustration: s(x) = sin(πx), n = 200, σ ≡ 1

0     0.5     1
−4

 

 

 

0

 

 

 

4

pen0(m) = Dm

E [`(s, ŝbm)]

E [infm∈M {`(s, ŝm)}]
computed over 1000 samples.

Model selection method Efficiency

Mallows (σ) 2.03± 0.04
Mallows (σ̂) 1.93± 0.04

Slope (threshold) 1.88± 0.03
Slope (maximal jump) 2.01± 0.04

Data-driven penalties for model selection Sylvain Arlot



20/32

Introduction Calibration of penalties Shape of the penalty Conclusion

Related results

Birgé and Massart (2007): similar theoretical results when the
noise is Gaussian homoscedastic (either polynomial or
exponential collections of models).
Successfully applied to change-point detection (Lebarbier,
2005).

The slope heuristics experimentally works in several other
frameworks:

mixture models (Maugis and Michel, 2008),
clustering (Baudry, 2007),
spatial statistics (Verzelen, 2008),
estimation of oil reserves (Lepez, 2002),
genomics (Villers, 2007).

Data-driven penalties for model selection Sylvain Arlot
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Limitations of linear penalties: illustration

Y = X +
(
1 + 1X≤1/2

)
ε n = 1000 data points

Regular histograms on
[
0; 1

2

]
(Dm,1 pieces), then regular

histograms on
[

1
2 ; 1
]

(Dm,2 pieces).

Data-driven penalties for model selection Sylvain Arlot
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Limitations of linear penalties: illustration

Y = X +
(
1 + 1X≤1/2

)
ε n = 1000 data points

The ideal penalty is not a linear function of the dimension.
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Limitations of linear penalties: m̂(K ?) 6= m?

Density of (Dbm(K?),1,Dbm(K?),2) and (Dm?,1,Dm?,2) according to
N = 1000 samples

m̂(K ?) m?

Data-driven penalties for model selection Sylvain Arlot
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Limitations of linear penalties: theory

Y = X + σ(X )ε with X ∼ U([0; 1]) ,

E [ε|X ] = 0 E
[
ε2|X

]
= 1 and

∫ 1/2

0
(σ(x))2 dx 6=

∫ 1

1/2
(σ(x))2 dx

Regular histograms on
[
0; 1

2

]
(1 ≤ Dm,1 ≤ n/(2 ln(n)2) pieces),

then regular histograms on
[

1
2 ; 1
]

(1 ≤ Dm,2 ≤ n/(2 ln(n)2) pieces).

Theorem (A. 2008, arXiv:0812.3141)

There exist absolute constants C , η > 0 and an event of probability
at least 1− Cn−2 on which

∀K > 0, ∀m̂(K ) ∈ arg min
m∈Mn

{Pnγ (ŝm) + KDm} ,

`(s, ŝbm(K)) ≥ (1 + η) inf
m∈Mn

{`(s, ŝm)} .

Data-driven penalties for model selection Sylvain Arlot
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Resampling heuristics (bootstrap, Efron 1979)

Real world : P
sampling // Pn

+3 ŝm

penid(m) = (P − Pn)γ (ŝm) = F (P,Pn)

Data-driven penalties for model selection Sylvain Arlot
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Resampling heuristics (bootstrap, Efron 1979)

Real world :

��
�O
�O
�O
�O
�O
�O
�O

P
sampling // Pn

+3 ŝm

Bootstrap world : Pn
resampling // PW

n
+3 ŝW

m

(P − Pn)γ (ŝm) = F (P,Pn) ///o/o/o F (Pn,P
W
n ) = (Pn − PW

n )γ
(
ŝW
m

)
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Resampling heuristics (bootstrap, Efron 1979)

Real world :

��
�O
�O
�O
�O
�O
�O
�O

P
sampling // Pn

+3 ŝm

Bootstrap world : Pn
subsampling // PW

n
+3 ŝW

m

(P − Pn)γ (ŝm) = F (P,Pn) ///o/o/o F (Pn,P
W
n ) = (Pn − PW

n )γ
(
ŝW
m

)
V -fold: PW

n =
1

n − Card(BJ)

∑
i /∈BJ

δ(Xi ,Yi ) with J ∼ U(1, . . . ,V )
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V -fold penalization

Ideal penalty:
(P − Pn)(γ(ŝm))

V -fold penalty:

pen(m) =
C

V

V∑
j=1

[
(Pn − P

(−j)
n )(γ(ŝ

(−j)
m ))

]
ŝ

(−j)
m ∈ arg min

t∈Sm

P
(−j)
n γ(t)

with C ≥ V − 1 to be chosen
C = V − 1 for estimating (almost) unbiasedly the ideal
penalty

The final estimator is ŝbm with

m̂ ∈ arg min
m∈M

{Pnγ(ŝm) + pen(m)}
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Non-asymptotic pathwise oracle inequality

Fixed V or V = n

C ≈ V − 1

Histograms; “small” number of models (Card(Mn) ≤ ♦n♦)

Bounded data: ‖Y ‖∞ ≤ A <∞
Noise-level lower bounded: 0 < σmin ≤ σ(X )

Smooth s: non-constant, α-hölderian

Theorem (A. 2008, arXiv:0802.0566)

Under a “reasonable” set of assumptions on P, with probability at
least 1− ♦n−2,

`(s, ŝbm) ≤
(

1 + ln(n)−1/5
)

inf
m∈M

{`(s, ŝm)}
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Simulation framework

Yi = s(Xi ) + σ(Xi )εi Xi ∼i.i.d. U([0; 1]) εi ∼i.i.d. N (0, 1)

Mn: histograms regular on [0, 1/2] (D1 pieces), and on [1/2, 1]
(D2 pieces), with 1 ≤ D1, D2 ≤ n

2 log(n) .

⇒ Benchmark:

Cclassical =
E[`(s, ŝbm)]

E[infm∈M `(s, ŝm)]
computed with N = 1000 samples
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Simulations: sin, n = 200, σ(x) = x , 2 bin sizes
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Mallows 3.69± 0.07
2-fold 2.54± 0.05
5-fold 2.58± 0.06
10-fold 2.60± 0.06
20-fold 2.58± 0.06
leave-one-out 2.59± 0.06

pen 2-f 3.06± 0.07
pen 5-f 2.75± 0.06
pen 10-f 2.65± 0.06
pen Loo 2.59± 0.06

Mallows ×1.25 3.17± 0.07
pen 2-f ×1.25 2.75± 0.06
pen 5-f ×1.25 2.38± 0.06
pen 10-f ×1.25 2.28± 0.05
pen Loo ×1.25 2.21± 0.05
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Other resampling-based penalties

Efron’s bootstrap penalties (Efron 1983, Shibata 1997):

pen(m) = E
[
(Pn − PW

n )(γ(ŝW
m ))

∣∣∣(Xi ,Yi )1≤i≤n

]
General resampling penalties (A. 2008, hal-00262478)

Rademacher complexities (Koltchinskii 2001 ; Bartlett,
Boucheron, Lugosi 2002): subsampling

penid(m) ≤ penglo
id (m) = sup

t∈Sm

(P − Pn)γ(t, ·)

idem with general exchangeable weights (Fromont 2004)

Local Rademacher complexities (Bartlett, Bousquet,
Mendelson 2004 ; Koltchinskii 2004)
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Cross-validation procedures

Hold-out, Cross-validation, Leave-one-out, V -fold
cross-validation:
I ⊂ {1, . . . , n} random sub-sample of size q (VFCV:

q = n(V−1)
V ).

V -fold cross-validation is biased
⇒ suboptimal model selection when V is fixed as n→∞ (A.
2008, arXiv:0802.0566)

V -fold penalization with C = V − 1
⇔ Burman’s corrected V -fold cross-validation (1989).
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Conclusion

Shape of the penalty: estimated by resampling (V -fold,
bootstrap, exchangeable bootstrap...)
⇒ adaptation to unknown variations of the noise-level

Multiplying constant: estimated thanks to the slope heuristics
(model-selection based estimator)
⇒ oracle inequalities with constant 1 + εn,
even when pen0(m) is a V -fold or resampling penalty, inside
the slope heuristics algorithm

Cross-validation and resampling penalties can also be used for
change-point detection, i.e., for detecting changes in the
mean of an heteroscedastic sequence (joint work with A.
Celisse, arXiv:0902.3977)
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Change-point detection Cross-validation

Change-point detection via cross-validation

∀1 ≤ i ≤ n, Yi = s(ti )+σ(ti )εi with E [εi ] = 0 E
[
ε2
i

]
= 1

Goal: detect changes in the mean s of the signal Y
⇒ model selection

No assumption on the variance σ(ti )
2

Birgé and Massart’s penalty (assumes σ(ti ) ≡ σ):

pen(m) =
CDm

n

(
5 + 2 log

(
n

Dm

))
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Change-point detection Cross-validation

Fixed D, Homoscedastic data; n = 100, σ = 0.25, D = 4
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Change-point detection Cross-validation

Fixed D, Heteroscedastic; n = 100, ‖σ‖ = 0.30, D = 6
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Change-point detection Cross-validation

Fixed D, Heteroscedastic; n = 100, ‖σ‖ = 0.30, D = 6
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Change-point detection Cross-validation

Homoscedastic data: loss as a function of D
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Change-point detection Cross-validation

Heteroscedastic data: loss as a function of D
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Change-point detection Cross-validation

Homoscedastic data: estimation of the loss for every D
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Change-point detection Cross-validation

Heteroscedastic data: estimation of the loss for every D
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Change-point detection Cross-validation

A family of two-steps change-point detection algorithms

1 ∀D ∈ {1, . . . ,Dmax}, select a model m̂(D) of dimension D:

m̂(D) ∈ arg min
m∈Mn,Dm=D

{crit1(m; (ti ,Yi )i )}

Examples of crit1: empirical risk, leave-p-out or V -fold
estimators of the risk

2 Select D̂

D̂ ∈ arg min
D∈{1,...,Dmax}

{crit2(D; (ti ,Yi )i ; crit1(·))}

Examples of crit2: penalized empirical criterion, V -fold
cross-validation estimator of the risk
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Change-point detection Cross-validation

Simulation results

Deterministic (s, σ):

σ [Emp,VF5] [Loo,VF5] [Lpo20,VF5] [Emp,BM]

cst 4.41 ± 0.02 4.54 ± 0.02 4.62 ± 0.02 4.39 ± 0.01
p-c 6.32 ± 0.02 5.74 ± 0.02 5.81 ± 0.02 8.47 ± 0.03
sine 5.97 ± 0.02 5.72 ± 0.02 5.86 ± 0.02 7.59 ± 0.03

Random (s, σ):

σ [Emp,VF5] [Loo,VF5] [Lpo20,VF5] [Emp,BM]

A 4.78 ± 0.03 4.65 ± 0.03 4.78 ± 0.03 6.82 ± 0.03
B 5.09 ± 0.03 4.88 ± 0.03 4.91 ± 0.03 7.21 ± 0.04
C 7.17 ± 0.05 6.61 ± 0.05 6.49 ± 0.05 13.49 ± 0.07
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Change-point detection Cross-validation

Bias of cross-validation

Ideal criterion: Pγ(ŝm)

Regression on a model of histograms with Dm pieces (σ(X ) ≡ σ
for simplicity):

E [Pγ(ŝm)] ≈ Pγ(sm) +
Dmσ

2

n

E
[
P

(j)
n γ

(
ŝ

(−j)
m

)]
= E

[
Pγ
(
ŝ

(−j)
m

)]
≈ Pγ(sm) +

V

V − 1

Dmσ
2

n

⇒ bias if V is fixed (“overpenalization”)
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Change-point detection Cross-validation

Suboptimality of V -fold cross-validation

Y = X + σε with ε bounded and σ > 0

M: family of regular histograms on X = [0, 1]

V fixed

Theorem (A. 2008)

With probability at least 1− ♦n−2,

`(s, ŝbm) ≥ (1 + κ(V )) inf
m∈M

{`(s, ŝm)}

with κ(V ) > 0.
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Change-point detection Cross-validation

Simulations: sin, n = 200, σ(x) = x , 2 bin sizes
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Mallows 3.69± 0.07

2-fold 2.54± 0.05
5-fold 2.58± 0.06
10-fold 2.60± 0.06
20-fold 2.58± 0.06
leave-one-out 2.59± 0.06
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Change-point detection Cross-validation

Simulations: HeaviSine, n = 2048, σ ≡ 1
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Models: dyadic regular histograms

2-fold 1.002± 0.003
5-fold 1.014± 0.003
10-fold 1.021± 0.003
20-fold 1.029± 0.004
leave-one-out 1.034± 0.004
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Change-point detection Cross-validation

Choice of V

optimal performance when V = V ?: trade-off variability–bias
(difficult to find V ? from the data)

SNR large:
⇒ V ? →∞ when n→∞ (suboptimality result if V fixed)
⇒ V ? too large for computations

SNR small:
⇒ V ? = 2 is possible
⇒ unsatisfactory (highly variable)

V should be chosen according to computation time also
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