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Statistical framework: regression on a random design

(X1,Y1), . . . , (Xn,Yn) ∈ X × Y i.i.d. (Xi ,Yi ) ∼ P unknown

Y = s(X ) + σ(X )ε X ∈ X ⊂ Rd , Y ∈ Y = [0; 1] or R

noise ε : E [ε|X ] = 0 noise level σ(X )

predictor t : X 7→ Y ?
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Loss function, least-square estimator

Least-square risk:

Eγ(t, (X ,Y )) = Pγ(t, ·)
with γ(t, (x , y)) = (t(x)− y)2

Empirical risk minimizer on Sm (= model):

ŝm ∈ arg min
t∈Sm

Pnγ(t, ·) = arg min
t∈Sm

1

n

n∑
i=1

(t(Xi )− Yi )
2 .

e.g. histograms on a partition (Iλ)λ∈Λm of X .

ŝm =
∑
λ∈Λm

β̂λ1Iλ β̂λ =
1

Card{Xi ∈ Iλ}
∑
Xi∈Iλ

Yi .
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Model selection

(Sm)m∈M −→ (ŝm)m∈M −→ ŝm̂ ???

Oracle inequality (in expectation, or with a large probability):

`(s, ŝm̂) ≤ C inf
m∈M

{`(s, ŝm) + R(m, n)}

Adaptivity (e.g., α if s is α-hölder, σ(X ) in the
heteroscedastic framework)
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Cross-validation

(X1,Y1), . . . , (Xq,Yq)︸ ︷︷ ︸, (Xq+1,Yq+1), . . . , (Xn,Yn)︸ ︷︷ ︸
Training Validation

ŝ
(t)
m ∈ arg min

t∈Sm

{
1

q

q∑
i=1

γ(t, (Xi ,Yi ))

}

P
(v)
n =

1

n − q

n∑
i=q+1

δ(Xi ,Yi ) ⇒ P
(v)
n γ

(
ŝ

(t)
m

)

V -fold cross-validation: (Bj)1≤j≤V partition of {1, . . . , n}

⇒ m̂ ∈ arg min
m∈M

 1

V

V∑
j=1

P
(j)
n γ

(
ŝ

(−j)
m

) s̃ = ŝm̂
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Bias of cross-validation

Ideal criterion: Pγ(ŝm)

Regression on an histogram model of dimension Dm, when
σ(X ) ≡ σ:

E [Pγ(ŝm)] ≈ Pγ(sm) +
Dmσ

2

n

E
[
P

(j)
n γ

(
ŝ

(−j)
m

)]
= E

[
Pγ
(
ŝ

(−j)
m

)]
≈ Pγ(sm) +

V

V − 1

Dmσ
2

n

⇒ bias if V is fixed
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ŝ

(−j)
m

)]
= E

[
Pγ
(
ŝ
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Suboptimality of V -fold cross-validation

Y = X + σε with ε bounded and σ > 0

Mn: family of regular histograms on X = [0, 1]

V fixed

Theorem

With probability at least 1− ♦n−2,

`(s, ŝm̂) ≥ (1 + κ(V )) inf
m∈M

{`(s, ŝm)}

with κ(V ) > 0.
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Choice of V

Bias: decreases with V (can be corrected: Burman 1989)

Variability: large if V is small (V = 2), or sometimes when V
is very large (V = n, unstable algorithms)

Computation time: complexity proportional to V

⇒ trade-off

⇒ classical conclusion: “V = 10 is fine”
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Simulation framework

Yi = s(Xi ) + σ(Xi )εi Xi ∼i.i.d. U([0; 1]) εi ∼i.i.d. N (0, 1)

Mn =
{

regular histograms with D pieces, 1 ≤ D ≤ n

log(n)

and s.t. min
λ∈Λm

Card{Xi ∈ Iλ} ≥ 2
}

⇒ Benchmark:

Cclassical =
E[`(s, ŝm̂)]

E[infm∈M `(s, ŝm)]
computed with N = 1000 samples
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Simulations: s(x) = sin(πx), n = 200, σ ≡ 1
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2-fold 2.08± 0.04
5-fold 2.14± 0.04
10-fold 2.10± 0.05
20-fold 2.09± 0.04
leave-one-out 2.08± 0.04
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Simulations: HeaviSine, n = 2048, σ ≡ 1
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2-fold 1.002± 0.003
5-fold 1.014± 0.003
10-fold 1.021± 0.003
20-fold 1.029± 0.004
leave-one-out 1.034± 0.004
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The penalization viewpoint

penalization: m̂ ∈ arg minm∈M {Pnγ (ŝm) + pen(m)}
ideal penalty: penid(m) = Pγ (ŝm)− Pnγ (ŝm)

V -fold cross-validation is overpenalizing:

E
[

1
V

∑V
j=1 P

(j)
n γ

(
ŝ

(−j)
m

)
− Pnγ (ŝm)

]
E [penid(m)]

≈ 1 +
1

2(V − 1)

non-asymptotic phenomenon:
better to overpenalize when the signal-to-noise ratio n/σ2 is
small.
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ideal penalty: penid(m) = Pγ (ŝm)− Pnγ (ŝm)
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Overpenalization (s = sin, σ ≡ 1, n = 200, Mallows’ Cp)
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Conclusions on V -fold cross-validation

asymptotically suboptimal if V fixed

optimal V ?: trade-off variability–overpenalization

V ? = 2 can happen for prediction

difficult to find V ? from the data (+ complexity issue)

low signal-to-noise ratio ⇒ V ? unsatisfactory (highly variable)

large signal-to-noise ratio ⇒ V ? too large (computation time)
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Penalization

m̂ ∈ arg min
m∈M

{Pnγ(ŝm) + pen(m)}

Ideal penalty: penid(m) = (P − Pn)(γ(ŝm, ·))

pen(m) =
2σ2Dm

n
(Mallows 1973) pen(m) =

2σ̂2Dm

n
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Penalization

m̂ ∈ arg min
m∈M

{Pnγ(ŝm) + pen(m)}

Ideal penalty: penid(m) = (P − Pn)(γ(ŝm, ·))

Theorem (Suboptimality of linear penalties, A., 2008)

X = [0, 1], Y = X + σ(X )ε, σ(x) = 1x≤1/2 + 31x>1/2

Mn: Regular histograms on [0; 1/2] and [1/2; 1]
With a probability at least 1− ♦n−2, for every K ≥ 0 and

m̂(K ) ∈ arg min
m∈Mn

{Pnγ (ŝm) + KDm} ,

`(s, ŝm̂(K)) ≥ (1 + κ) inf
m∈Mn

{`(s, ŝm)} with κ > 0 .
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Resampling heuristics (bootstrap, Efron 1979)

Real world : P
sampling // Pn

+3 ŝm

penid(m) = (P − Pn)γ (ŝm) = F (P,Pn)

V -fold: PW
n =

1

n − Card(BJ)

∑
i /∈BJ

δ(Xi ,Yi ) with J ∼ U(1, . . . ,V )
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Real world :

��
�O
�O
�O
�O
�O
�O
�O

P
sampling // Pn

+3 ŝm
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V -fold penalization

Ideal penalty:
(P − Pn)(γ(ŝm))

V -fold penalty:

pen(m) =
C

V

V∑
j=1

[
(Pn − P

(−j)
n )(γ(ŝ

(−j)
m ))

]
ŝ

(−j)
m ∈ arg min

t∈Sm

P
(−j)
n γ(t)

with C ≥ V − 1 to be chosen
(C = V − 1 ⇒ we recover Burman’s corrected V -fold, 1989)

The final estimator is ŝm̂ with

m̂ ∈ arg min
m∈M

{Pnγ(ŝm) + pen(m)}
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V -fold penalization

Ideal penalty:
(P − Pn)(γ(ŝm))

V -fold penalty:

pen(m) =
C

V

V∑
j=1

[
(Pn − P

(−j)
n )(γ(ŝ

(−j)
m ))

]
ŝ

(−j)
m ∈ arg min

t∈Sm

P
(−j)
n γ(t)

with C ≥ V − 1 to be chosen
(C = V − 1 ⇒ we recover Burman’s corrected V -fold, 1989)

The final estimator is ŝm̂ with

m̂ ∈ arg min
m∈M

{Pnγ(ŝm) + pen(m)}
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Some references on model selection and resampling

Hold-out, Cross-validation, Leave-one-out, V -fold
cross-validation:
I ⊂ {1, . . . , n} random sub-sample of size q (VFCV:

q = n(V−1)
V ).

Efron’s bootstrap penalties (Efron 1983, Shibata 1997):

pen(m) = E
[
(Pn − PW

n )(γ(ŝW
m ))

∣∣∣(Xi ,Yi )1≤i≤n

]
Rademacher complexities (Koltchinskii 2001 ; Bartlett,
Boucheron, Lugosi 2002): subsampling

penid(m) ≤ penglo
id (m) = sup

t∈Sm

(P − Pn)γ(t, ·)

idem with general exchangeable weights (Fromont 2004)

Local Rademacher complexities (Bartlett, Bousquet,
Mendelson 2004 ; Koltchinskii 2004)
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Non-asymptotic pathwise oracle inequality

C ≈ V − 1

Histogram regression on a random design

Small number of models (at most polynomial in n)

Model pre-selection: remove m when

min
λ∈Λm

{Card {Xi ∈ Iλ}} ≤ 1

Fixed V or V = n

Theorem

Under a “reasonable” set of assumptions on P, with probability at
least 1− ♦n−2,

`(s, ŝm̂) ≤
(

1 + ln(n)−1/5
)

inf
m∈M

{`(s, ŝm)}
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Sufficient assumptions

Reminder: the procedure does not use any of these assumptions.

Bounded data: ‖Y ‖∞ ≤ A <∞
Minimal noise-level:

0 < σmin ≤ σ(X )

Smoothness of the regression function s: non-constant,
belongs to some hölderian ball Hα(R)

Regularity of the partition: minλ P(X ∈ Iλ) ≥ ♦D−1
m

and they can be relaxed...
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Corollaries

Classical oracle inequality:

E [`(s, ŝm̂)] ≤
(

1 + ln(n)−1/5
)

E
[

inf
m∈M

{`(s, ŝm)}
]

+ ♦n−2

Asymptotic optimality if C ∼n→+∞ V − 1 :

`(s, ŝm̂)

infm∈M {`(s, ŝm)}
a.s.−−−−→

n→+∞
1

Adaptation to hölderian regularity in an heteroscedastic
framework (regular histograms):
s ∈ H(α,R), α ∈ (0, 1], X ⊂ Rk , (· · · ) Y bounded

⇒ rate ‖σ‖
4α

2α+k

L2(Leb)
R

2k
2α+k n

−2α
2α+k .
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Simulation framework

Yi = s(Xi ) + σ(Xi )εi Xi ∼i.i.d. U([0; 1]) εi ∼i.i.d. N (0, 1)

Mn =
{

regular histograms with D pieces, 1 ≤ D ≤ n

log(n)

and s.t. min
λ∈Λm

Card{Xi ∈ Iλ} ≥ 2
}

⇒ Benchmark:

Cclassical =
E[`(s, ŝm̂)]

E[infm∈M `(s, ŝm)]
computed with N = 1000 samples
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Model selection methods

Mallows:
pen(m) = 2σ̂2Dmn−1

“Classical” V -fold cross-validation (V ∈ {2, 5, 10, 20, n}):

m̂ ∈ arg min
m∈M

 1

V

V∑
j=1

P j
nγ
(
ŝ

(−j)
m , ·

) s̃ = ŝm̂

V -fold penalties (V ∈ {2, 5, 10, n}), C = V − 1
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Simulations: s(x) = sin(πx), n = 200, σ ≡ 1
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Mallows 1.93± 0.04
2-fold 2.08± 0.04
5-fold 2.14± 0.04
10-fold 2.10± 0.05
20-fold 2.09± 0.04
leave-one-out 2.08± 0.04

pen 2-f 2.58± 0.06
pen 5-f 2.22± 0.05
pen 10-f 2.12± 0.05
pen Loo 2.08± 0.05
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pen 5-f 2.22± 0.05
pen 10-f 2.12± 0.05
pen Loo 2.08± 0.05

Mallows ×1.25 1.80± 0.03
pen 2-f ×1.25 2.17± 0.05
pen 5-f ×1.25 1.91± 0.05
pen 10-f ×1.25 1.87± 0.03
pen Loo ×1.25 1.84± 0.03
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Simulations: sin, n = 200, σ(x) = x , 2 bin sizes
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Mallows 3.69± 0.07
2-fold 2.54± 0.05
5-fold 2.58± 0.06
10-fold 2.60± 0.06
20-fold 2.58± 0.06
leave-one-out 2.59± 0.06

pen 2-f 3.06± 0.07
pen 5-f 2.75± 0.06
pen 10-f 2.65± 0.06
pen Loo 2.59± 0.06

Mallows ×1.25 3.17± 0.07
pen 2-f ×1.25 2.75± 0.06
pen 5-f ×1.25 2.38± 0.06
pen 10-f ×1.25 2.28± 0.05
pen Loo ×1.25 2.21± 0.05
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Conclusions on V -fold penalization

asymptotically optimal, even if V fixed
optimal V ?: the largest possible one
⇒ easier to balance with the computational cost
low signal-to-noise ratio ⇒ easy to overpenalize and decrease
variability (keep V large)
large signal-to-noise ratio ⇒ possible to stay unbiased with a
small V (for computational reasons)

flexibility improves V -fold cross-validation (according to both
theoretical results and simulations)
theory can be extended to exchangeable weighted bootstrap
penalties (e.g. bootstrap, i.i.d. Rademacher, leave-one-out,
leave-p-out with p = αn).
Some open problems: consistency when C � V − 1,
prediction in a general framework, automatic choice of the
overpenalization constant.
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Thank you for your attention !

Preprint: arXiv:0802.0566
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Part I

Appendix
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Appendix

Limitations of a linear penalty
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pieces).

⇒ penid(m) is not a linear
function of Dm.
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Appendix

Limitations of a linear penalty: m̂(K ) 6= m?
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Appendix

Sketch of the proof

For each m ∈Mn,

penid(m) ≈ E[penid(m)] ∝ E[pen(m)] ≈ pen(m)

with remainders � `(s, ŝm) when Dm → +∞:

Explicit computation of penid and pen

Comparison of expectations: E(penid) ∝ E(pen) (if
minλ∈Λm{nP(X ∈ Iλ)} → +∞)

Moment inequalities (Boucheron, Bousquet, Lugosi, Massart
2003)
⇒ concentration inequalities (for penid and pen)

Assumptions ⇒ control of the remainders in terms of `(s, ŝm).
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Appendix

Overpenalization (HeaviSine, n = 2048, σ ≡ 1)
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Appendix

Simulations: HeaviSine, n = 2048, σ ≡ 1
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5-fold 1.014± 0.003
10-fold 1.021± 0.003
20-fold 1.029± 0.004
leave-one-out 1.034± 0.004

pen 2-f 1.038± 0.004
pen 5-f 1.037± 0.004
pen 10-f 1.034± 0.004
pen Loo 1.034± 0.004

Mallows ×1.25 1.002± 0.003
pen 2-f ×1.25 1.011± 0.003
pen 5-f ×1.25 1.006± 0.003
pen 10-f ×1.25 1.005± 0.003
pen Loo ×1.25 1.004± 0.003
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Appendix

Simulations: HeaviSine, n = 2048, σ(x) = x , 2 bin sizes
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5-fold 1.115± 0.005
10-fold 1.109± 0.004
20-fold 1.105± 0.004
leave-one-out 1.105± 0.004

pen 2-f 1.103± 0.005
pen 5-f 1.104± 0.004
pen 10-f 1.104± 0.004
pen Loo 1.105± 0.004

Mallows ×1.25 1.411± 0.008
pen 2-f ×1.25 1.106± 0.004
pen 5-f ×1.25 1.102± 0.004
pen 10-f ×1.25 1.098± 0.004
pen Loo ×1.25 1.096± 0.004
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Simulations: sin, variable n and σ, regular histograms

n 200 1000 200
σ 1 1 0.1

Mallows (K = 2) 1.93± 0.04 1.67± 0.04 1.40± 0.02
2-fold 2.08± 0.04 1.67± 0.04 1.39± 0.02
10-fold 2.10± 0.05 1.75± 0.04 1.38± 0.02

pen 10-fold 2.12± 0.05 1.78± 0.05 1.37± 0.02
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Simulations: sin, variable n and σ, regular histograms

n 200 1000 200
σ 1 1 0.1

Mallows (K = 2) 1.93± 0.04 1.67± 0.04 1.40± 0.02
2-fold 2.08± 0.04 1.67± 0.04 1.39± 0.02
10-fold 2.10± 0.05 1.75± 0.04 1.38± 0.02

pen 10-fold 2.12± 0.05 1.78± 0.05 1.37± 0.02

Mallows (K = 2.5) 1.80± 0.03 1.62± 0.03 1.43± 0.02
pen 10-fold ×1.25 1.87± 0.03 1.63± 0.04 1.38± 0.02
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