	Cross validation	V-fold penalization		Conclusio
000	000000000	000000	0000	

V-fold cross-validation improved: V-fold penalization

Sylvain Arlot

¹University Paris-Sud XI, Orsay

²Inria Saclay, Projet Select

Journées Statistiques du Sud, INSA Toulouse June 18, 2008

$(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \mathcal{Y}$ i.i.d. $(X_i, Y_i) \sim P$ unknown

$Y = s(X) + \sigma(X)\epsilon$ $X \in \mathcal{X} \subset \mathbb{R}^d$, $Y \in \mathcal{Y} = [0; 1]$ or \mathbb{R}

noise ϵ : $\mathbb{E}[\epsilon|X] = 0$ noise level $\sigma(X)$

$(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \mathcal{Y}$ i.i.d. $(X_i, Y_i) \sim P$ unknown

$Y = s(X) + \sigma(X)\epsilon$ $X \in \mathcal{X} \subset \mathbb{R}^d$, $Y \in \mathcal{Y} = [0; 1]$ or \mathbb{R}

noise ϵ : $\mathbb{E}[\epsilon|X] = 0$ noise level $\sigma(X)$

$$(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \mathcal{Y}$$
 i.i.d. $(X_i, Y_i) \sim P$ unknown

$$Y = s(X) + \sigma(X)\epsilon$$
 $X \in \mathcal{X} \subset \mathbb{R}^d$, $Y \in \mathcal{Y} = [0; 1]$ or \mathbb{R}

noise ϵ : $\mathbb{E}[\epsilon|X] = 0$ noise level $\sigma(X)$

$$(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \mathcal{Y}$$
 i.i.d. $(X_i, Y_i) \sim P$ unknown

$$Y = s(X) + \sigma(X)\epsilon$$
 $X \in \mathcal{X} \subset \mathbb{R}^d$, $Y \in \mathcal{Y} = [0; 1]$ or \mathbb{R}

noise ϵ : $\mathbb{E}[\epsilon|X] = 0$ noise level $\sigma(X)$

Loss function, least-square estimator

• Least-square risk:

 $\mathbb{E}\gamma(t,(X,Y)) = P\gamma(t,\cdot)$ with $\gamma(t,(x,y)) = (t(x) - y)^2$

• Empirical risk minimizer on S_m (= model):

$$\widehat{s}_m \in rgmin_{t \in S_m} P_n \gamma(t, \cdot) = rgmin_{t \in S_m} rac{1}{n} \sum_{i=1}^n \left(t(X_i) - Y_i
ight)^2$$
.

$$\widehat{s}_m = \sum_{\lambda \in \Lambda_m} \widehat{\beta}_{\lambda} \mathbb{1}_{I_{\lambda}} \qquad \widehat{\beta}_{\lambda} = \frac{1}{\mathsf{Card}\{X_i \in I_{\lambda}\}} \sum_{X_i \in I_{\lambda}} Y$$

• Loss function:

 $\ell(s,t) = P\gamma(t,\cdot) - P\gamma(s,\cdot) = \mathbb{E}\left[(t(X) - s(X))^2\right]$ with $\gamma(t,(x,y)) = (t(x) - y)^2$

• Empirical risk minimizer on S_m (= model):

$$\widehat{s}_m \in \arg\min_{t \in S_m} P_n \gamma(t, \cdot) = \arg\min_{t \in S_m} \frac{1}{n} \sum_{i=1}^n (t(X_i) - Y_i)^2$$
.

$$\widehat{s}_m = \sum_{\lambda \in \Lambda_m} \widehat{eta}_\lambda \mathbbm{1}_{l_\lambda} \qquad \widehat{eta}_\lambda = rac{1}{\mathsf{Card}\{X_i \in I_\lambda\}} \sum_{X_i \in I_\lambda} Y_i$$

• Loss function:

$$\ell(s,t) = P\gamma(t,\cdot) - P\gamma(s,\cdot) = \mathbb{E}\left[(t(X) - s(X))^2\right]$$

with $\gamma(t,(x,y)) = (t(x) - y)^2$

• Empirical risk minimizer on S_m (= model):

$$\widehat{s}_m \in \arg\min_{t\in S_m} P_n\gamma(t,\cdot) = \arg\min_{t\in S_m} \frac{1}{n} \sum_{i=1}^n (t(X_i) - Y_i)^2$$
.

$$\widehat{s}_m = \sum_{\lambda \in \Lambda_m} \widehat{\beta}_{\lambda} \mathbb{1}_{I_{\lambda}} \qquad \widehat{\beta}_{\lambda} = \frac{1}{\operatorname{Card}\{X_i \in I_{\lambda}\}} \sum_{X_i \in I_{\lambda}} Y_i$$

• Loss function:

$$\ell(s,t) = P\gamma(t,\cdot) - P\gamma(s,\cdot) = \mathbb{E}\left[(t(X) - s(X))^2\right]$$

with $\gamma(t,(x,y)) = (t(x) - y)^2$

• Empirical risk minimizer on S_m (= model):

$$\widehat{s}_m \in \arg\min_{t\in S_m} P_n\gamma(t,\cdot) = \arg\min_{t\in S_m} \frac{1}{n} \sum_{i=1}^n (t(X_i) - Y_i)^2$$
.

$$\widehat{s}_m = \sum_{\lambda \in \Lambda_m} \widehat{eta}_\lambda \mathbbm{1}_{I_\lambda} \qquad \widehat{eta}_\lambda = rac{1}{\mathsf{Card}\{X_i \in I_\lambda\}} \sum_{X_i \in I_\lambda} Y_i \,.$$

Introduction 00●	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Model sele	ection			

$(S_m)_{m\in\mathcal{M}} \longrightarrow (\widehat{s}_m)_{m\in\mathcal{M}} \longrightarrow \widehat{s}_{\widehat{m}}$???

• Oracle inequality (in expectation, or with a large probability): $\ell(s, \widehat{s}_{\widehat{m}}) \leq C \inf_{m \in \mathcal{M}} \{\ell(s, \widehat{s}_m) + R(m, n)\}$

 Adaptivity (e.g., α if s is α-hölder, σ(X) in the heteroscedastic framework)

Introduction 00●	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Model sel	ection			

$$(S_m)_{m\in\mathcal{M}} \longrightarrow (\widehat{s}_m)_{m\in\mathcal{M}} \longrightarrow \widehat{s}_{\widehat{m}}$$
???

• Oracle inequality (in expectation, or with a large probability): $\ell(s, \widehat{s}_{\widehat{m}}) \leq C \inf_{m \in \mathcal{M}} \left\{ \ell(s, \widehat{s}_m) + R(m, n) \right\}$

 Adaptivity (*e.g.*, α if s is α-hölder, σ(X) in the heteroscedastic framework)

Introduction 00●	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Model sele	ection			

$$(S_m)_{m\in\mathcal{M}} \longrightarrow (\widehat{s}_m)_{m\in\mathcal{M}} \longrightarrow \widehat{s}_{\widehat{m}}$$
???

• Oracle inequality (in expectation, or with a large probability):

$$\ell(s,\widehat{s}_{\widehat{m}}) \leq C \inf_{m \in \mathcal{M}} \{\ell(s,\widehat{s}_m) + R(m,n)\}$$

 Adaptivity (e.g., α if s is α-hölder, σ(X) in the heteroscedastic framework)

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Cross-valid	ation			

$$\underbrace{(X_1, Y_1), \dots, (X_q, Y_q)}_{\text{Training}}, \underbrace{(X_{q+1}, Y_{q+1}), \dots, (X_n, Y_n)}_{\text{Validation}}$$
$$\widehat{s}_m^{(t)} \in \arg\min_{t \in S_m} \left\{ \frac{1}{q} \sum_{i=1}^q \gamma(t, (X_i, Y_i)) \right\}$$
$$P_n^{(v)} = \frac{1}{n-q} \sum_{i=q+1}^n \delta_{(X_i, Y_i)} \implies P_n^{(v)} \gamma\left(\widehat{s}_m^{(t)}\right)$$

V-fold cross-validation: $(B_j)_{1 \le j \le V}$ partition of $\{1, \ldots, n\}$

$$\Rightarrow \widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{V} \sum_{j=1}^{V} P_n^{(j)} \gamma\left(\widehat{s}_m^{(-j)}\right) \right\} \qquad \widetilde{s} = \widehat{s}_{\widehat{m}}$$

V-fold cross-validation improved: V-fold penalization

5/26

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Cross-valid	ation			

$$\underbrace{(X_1, Y_1), \dots, (X_q, Y_q)}_{\text{Training}}, \underbrace{(X_{q+1}, Y_{q+1}), \dots, (X_n, Y_n)}_{\text{Validation}}$$
$$\widehat{s}_m^{(t)} \in \arg\min_{t \in S_m} \left\{ \frac{1}{q} \sum_{i=1}^q \gamma(t, (X_i, Y_i)) \right\}$$
$$P_n^{(v)} = \frac{1}{n-q} \sum_{i=q+1}^n \delta_{(X_i, Y_i)} \implies P_n^{(v)} \gamma\left(\widehat{s}_m^{(t)}\right)$$

V-fold cross-validation: $(B_j)_{1 \le j \le V}$ partition of $\{1, \ldots, n\}$

$$\Rightarrow \widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{V} \sum_{j=1}^{V} P_n^{(j)} \gamma\left(\widehat{s}_m^{(-j)}\right) \right\} \qquad \widetilde{s} = \widehat{s}_{\widehat{m}}$$

V-fold cross-validation improved: V-fold penalization

5/26

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Cross-val	idation			

$$\underbrace{(X_1, Y_1), \dots, (X_q, Y_q)}_{\text{Training}}, \underbrace{(X_{q+1}, Y_{q+1}), \dots, (X_n, Y_n)}_{\text{Validation}}$$
$$\widehat{s}_m^{(t)} \in \arg\min_{t \in S_m} \left\{ \frac{1}{q} \sum_{i=1}^q \gamma(t, (X_i, Y_i)) \right\}$$
$$P_n^{(v)} = \frac{1}{n-q} \sum_{i=q+1}^n \delta_{(X_i, Y_i)} \implies P_n^{(v)} \gamma\left(\widehat{s}_m^{(t)}\right)$$

V-fold cross-validation: $(B_j)_{1 \le j \le V}$ partition of $\{1, \ldots, n\}$

$$\Rightarrow \widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{V} \sum_{j=1}^{V} P_n^{(j)} \gamma\left(\widehat{s}_m^{(-j)}\right) \right\} \qquad \widetilde{s} = \widehat{s}_{\widehat{m}}$$

V-fold cross-validation improved: V-fold penalization

26

Ideal criterion: $P\gamma(\hat{s}_m)$

Regression on an histogram model of dimension D_m , when $\sigma(X) \equiv \sigma$: $\mathbb{E}[P\gamma(\widehat{s}_m)] \approx P\gamma(s_m) + \frac{D_m\sigma^2}{n}$

$$\mathbb{E}\left[P_n^{(j)}\gamma\left(\widehat{s}_m^{(-j)}\right)\right] = \mathbb{E}\left[P\gamma\left(\widehat{s}_m^{(-j)}\right)\right] \approx P\gamma(s_m) + \frac{V}{V-1}\frac{D_m\sigma^2}{n}$$

\Rightarrow bias if V is fixed

6/26 Sylvain Arlot

Ideal criterion: $P\gamma(\widehat{s}_m)$

Regression on an histogram model of dimension D_m , when $\sigma(X) \equiv \sigma$: $\mathbb{E}[P\gamma(\widehat{s}_m)] \approx P\gamma(s_m) + \frac{D_m\sigma^2}{r}$

$$\mathbb{E}\left[P_{n}^{(j)}\gamma\left(\widehat{s}_{m}^{(-j)}\right)\right] = \mathbb{E}\left[P\gamma\left(\widehat{s}_{m}^{(-j)}\right)\right] \approx P\gamma(s_{m}) + \frac{V}{V-1}\frac{D_{m}\sigma^{2}}{n}$$

 \Rightarrow bias if V is fixed

Suboptimality of V-fold cross-validation

- $Y = X + \sigma \epsilon$ with ϵ bounded and $\sigma > 0$
- \mathcal{M}_n : family of regular histograms on $\mathcal{X} = [0, 1]$
- V fixed

Theorem

With probability at least $1 - \Diamond n^{-2}$,

$$\ell(s,\widehat{s}_{\widehat{m}}) \geq (1+\kappa(V)) \inf_{m \in \mathcal{M}} \left\{ \ell(s,\widehat{s}_m) \right\}$$

with $\kappa(V) > 0$.

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Choice o	f \/			

• Bias: decreases with V (can be corrected: Burman 1989)

- Variability: large if V is small (V = 2), or sometimes when V is very large (V = n, unstable algorithms)
- Computation time: complexity proportional to ${\it V}$
- \Rightarrow trade-off
- \Rightarrow classical conclusion: "V = 10 is fine"

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Choice of V				

- Bias: decreases with V (can be corrected: Burman 1989)
- Variability: large if V is small (V = 2), or sometimes when V is very large (V = n, unstable algorithms)
- \bullet Computation time: complexity proportional to V
- \Rightarrow trade-off
- \Rightarrow classical conclusion: "V = 10 is fine"

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Choice of V	/			

- Bias: decreases with V (can be corrected: Burman 1989)
- Variability: large if V is small (V = 2), or sometimes when V is very large (V = n, unstable algorithms)
- \bullet Computation time: complexity proportional to V

 \Rightarrow trade-off

 \Rightarrow classical conclusion: "V = 10 is fine"

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Choice of \	/			

- Bias: decreases with V (can be corrected: Burman 1989)
- Variability: large if V is small (V = 2), or sometimes when V is very large (V = n, unstable algorithms)
- Computation time: complexity proportional to V

 \Rightarrow trade-off

 \Rightarrow classical conclusion: "V = 10 is fine"

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Simulatior	n framework			

$$Y_i = s(X_i) + \sigma(X_i)\epsilon_i$$
 $X_i \sim^{\text{i.i.d.}} \mathcal{U}([0;1])$ $\epsilon_i \sim^{\text{i.i.d.}} \mathcal{N}(0,1)$

$$\mathcal{M}_n = \left\{ \text{regular histograms with } D \text{ pieces, } 1 \le D \le \frac{n}{\log(n)} \right.$$

and s.t. $\min_{\lambda \in \Lambda_m} \operatorname{Card} \{ X_i \in I_\lambda \} \ge 2 \right\}$

 \Rightarrow Benchmark:

$$C_{\text{classical}} = \frac{\mathbb{E}[\ell(s, \widehat{s}_{\widehat{m}})]}{\mathbb{E}[\inf_{m \in \mathcal{M}} \ell(s, \widehat{s}_m)]}$$

computed with N = 1000 samples

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Simulatior	n framework			

$$Y_i = s(X_i) + \sigma(X_i)\epsilon_i$$
 $X_i \sim^{\text{i.i.d.}} \mathcal{U}([0;1])$ $\epsilon_i \sim^{\text{i.i.d.}} \mathcal{N}(0,1)$

$$\mathcal{M}_n = \left\{ \begin{array}{l} \mbox{regular histograms} \mbox{ with } D \mbox{ pieces}, \ 1 \leq D \leq rac{n}{\log(n)} \end{array}
ight.$$

and s.t. $\min_{\lambda \in \Lambda_m} \mbox{Card}\{X_i \in I_\lambda\} \geq 2
ight\}$

 \Rightarrow Benchmark:

$$C_{\text{classical}} = \frac{\mathbb{E}[\ell(s, \widehat{s}_{\widehat{m}})]}{\mathbb{E}[\inf_{m \in \mathcal{M}} \ell(s, \widehat{s}_m)]}$$

computed with N = 1000 samples

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
Simulation	n framework			

$$Y_i = s(X_i) + \sigma(X_i)\epsilon_i$$
 $X_i \sim^{\text{i.i.d.}} \mathcal{U}([0;1])$ $\epsilon_i \sim^{\text{i.i.d.}} \mathcal{N}(0,1)$

$$\mathcal{M}_n = \left\{ \text{regular histograms with } D \text{ pieces, } 1 \le D \le \frac{n}{\log(n)} \right.$$

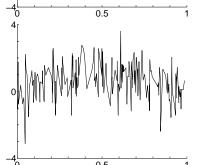
and s.t.
$$\min_{\lambda \in \Lambda_m} \operatorname{Card} \{ X_i \in I_\lambda \} \ge 2 \right\}$$

 \Rightarrow Benchmark:

$$C_{\text{classical}} = \frac{\mathbb{E}[\ell(s, \widehat{s}_{\widehat{m}})]}{\mathbb{E}[\inf_{m \in \mathcal{M}} \ell(s, \widehat{s}_m)]}$$

computed with N = 1000 samples





2-fold	2.08 ± 0.04
5-fold	2.14 ± 0.04
10-fold	2.10 ± 0.05
20-fold	2.09 ± 0.04
leave-one-out	2.08 ± 0.04

V-fold cross-validation improved: V-fold penalization

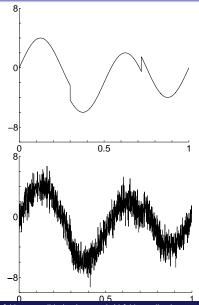
Cross validation

V-fold penalization

Simulations

Conclusion

Simulations: HeaviSine, n = 2048, $\sigma \equiv 1$



2-fold	1.002 ± 0.003
5-fold	1.014 ± 0.003
10-fold	$\begin{array}{c} 1.014 \pm 0.003 \\ 1.021 \pm 0.003 \end{array}$
20-fold	1.029 ± 0.004
leave-one-out	1.034 ± 0.004

V-fold cross-validation improved: V-fold penalization

- penalization: $\widehat{m} \in \arg\min_{m \in \mathcal{M}} \{P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m)\}$
- ideal penalty: $pen_{id}(m) = P\gamma(\widehat{s}_m) P_n\gamma(\widehat{s}_m)$
- V-fold cross-validation is overpenalizing:

$$\frac{\mathbb{E}\left[\frac{1}{V}\sum_{j=1}^{V}P_{n}^{(j)}\gamma\left(\widehat{s}_{m}^{(-j)}\right)-P_{n}\gamma\left(\widehat{s}_{m}\right)\right]}{\mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m)\right]}\approx1+\frac{1}{2(V-1)}$$

non-asymptotic phenomenon: better to overpenalize when the signal-to-noise ratio n/σ^2 is small.

- penalization: $\widehat{m} \in \arg\min_{m \in \mathcal{M}} \{ P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m) \}$
- ideal penalty: $pen_{id}(m) = P\gamma(\widehat{s}_m) P_n\gamma(\widehat{s}_m)$
- V-fold cross-validation is overpenalizing:

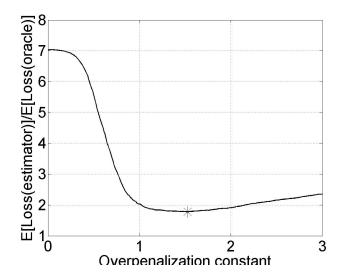
$$\frac{\mathbb{E}\left[\frac{1}{V}\sum_{j=1}^{V}P_{n}^{(j)}\gamma\left(\widehat{s}_{m}^{(-j)}\right)-P_{n}\gamma\left(\widehat{s}_{m}\right)\right]}{\mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m)\right]}\approx1+\frac{1}{2(V-1)}$$

• non-asymptotic phenomenon: better to overpenalize when the signal-to-noise ratio n/σ^2 i small.

- penalization: $\widehat{m} \in \arg\min_{m \in \mathcal{M}} \{P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m)\}$
- ideal penalty: $pen_{id}(m) = P\gamma(\widehat{s}_m) P_n\gamma(\widehat{s}_m)$
- V-fold cross-validation is overpenalizing:

$$\frac{\mathbb{E}\left[\frac{1}{V}\sum_{j=1}^{V}P_{n}^{(j)}\gamma\left(\widehat{s}_{m}^{(-j)}\right)-P_{n}\gamma\left(\widehat{s}_{m}\right)\right]}{\mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m)\right]}\approx1+\frac{1}{2(V-1)}$$

• non-asymptotic phenomenon: better to overpenalize when the signal-to-noise ratio n/σ^2 is small.



Sylvain Arlot

13/26

Conclusions on V-fold cross-validation

- asymptotically suboptimal if V fixed
- optimal V^* : trade-off variability-overpenalization
- $V^{\star} = 2$ can happen for prediction
- difficult to find V^* from the data (+ complexity issue)
- low signal-to-noise ratio $\Rightarrow V^*$ unsatisfactory (highly variable)
- large signal-to-noise ratio $\Rightarrow V^*$ too large (computation time)

Conclusions on V-fold cross-validation

- asymptotically suboptimal if V fixed
- optimal V^* : trade-off variability-overpenalization
- $V^{\star} = 2$ can happen for prediction
- difficult to find V^* from the data (+ complexity issue)
- low signal-to-noise ratio $\Rightarrow V^*$ unsatisfactory (highly variable)
- large signal-to-noise ratio \Rightarrow V^{*} too large (computation time)

Introduction 000	Cross validation	V-fold penalization ●000000	Simulations 0000	Conclusion
Penalizat	ion			

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m) \right\}$$

Ideal penalty: $pen_{id}(m) = (P - P_n)(\gamma(\widehat{s}_m, \cdot))$

pen
$$(m) = \frac{2\sigma^2 D_m}{n}$$
 (Mallows 1973) pen $(m) = \frac{2\widehat{\sigma}^2 D_m}{n}$

Introduction 000	Cross validation	V-fold penalization ●000000	Simulations 0000	Conclusion
Penalizat	ion			

$$\widehat{m} \in \arg \min_{m \in \mathcal{M}} \{P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m)\}$$

Ideal penalty: $\operatorname{pen}_{\mathrm{id}}(m) = (P - P_n)(\gamma(\widehat{s}_m, \cdot))$

$$pen(m) = \frac{2\sigma^2 D_m}{n}$$
 (Mallows 1973) $pen(m) = \frac{2\widehat{\sigma}^2 D_m}{n}$

V-fold cross-validation improved: V-fold penalization

Introduction 000	Cross validation	V-fold penalization ●000000	Simulations 0000	Conclusion
Penalizatio	on			

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \{P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m)\}$$

Ideal penalty:
$$\mathsf{pen}_{\mathrm{id}}(m) = (P - P_n)(\gamma(\widehat{s}_m, \cdot))$$

Theorem (Suboptimality of linear penalties, A., 2008)

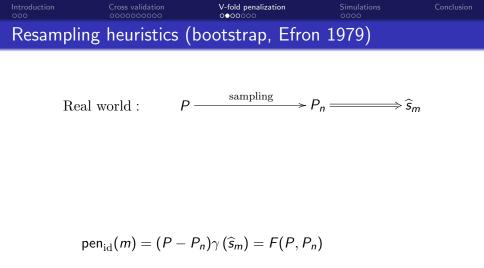
$$\mathcal{X} = [0, 1], \ Y = X + \sigma(X)\epsilon, \ \sigma(x) = \mathbb{1}_{x \le 1/2} + 3\mathbb{1}_{x > 1/2}$$

 \mathcal{M}_n : Regular histograms on $[0; 1/2]$ and $[1/2; 1]$
With a probability at least $1 - \Diamond n^{-2}$, for every $K \ge 0$ and

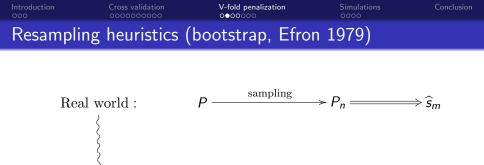
$$\widehat{m}(K) \in \arg \min_{m \in \mathcal{M}_n} \{ P_n \gamma \left(\widehat{s}_m \right) + K D_m \} ,$$

$$\ell(s, \widehat{s}_{\widehat{m}(K)}) \ge (1 + \kappa) \inf_{m \in \mathcal{M}_n} \{ \ell(s, \widehat{s}_m) \} \quad \text{with } \kappa > 0 .$$

15/26



V-fold:
$$P_n^W = \frac{1}{n - \operatorname{Card}(B_J)} \sum_{i \notin B_J} \delta_{(X_i, Y_i)}$$
 with $J \sim \mathcal{U}(1, \dots, V)$



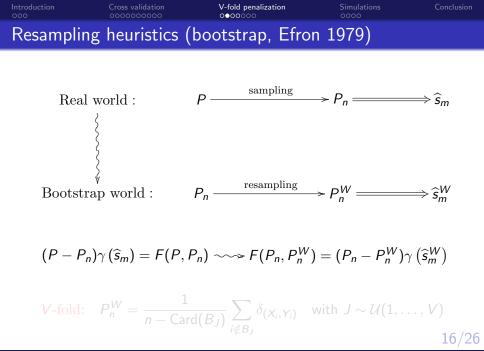
$$\operatorname{pen}_{\operatorname{id}}(m) = (P - P_n)\gamma\left(\widehat{s}_m\right) = F(P, P_n)$$

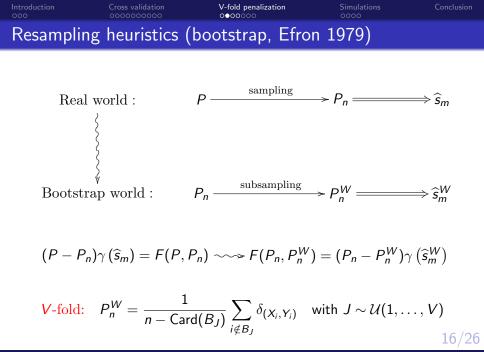
 P_n

V-fold:
$$P_n^W = \frac{1}{n - \operatorname{Card}(B_J)} \sum_{i \notin B_J} \delta_{(X_i, Y_i)}$$
 with $J \sim \mathcal{U}(1, \dots, V)$
16

Bootstrap world :

Sylvain Arlot





Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
V-fold pe	nalization			

• Ideal penalty:

 $(P-P_n)(\gamma(\widehat{s}_m))$

• V-fold penalty:

$$\operatorname{pen}(m) = \frac{C}{V} \sum_{j=1}^{V} \left[(P_n - P_n^{(-j)})(\gamma(\widehat{s}_m^{(-j)})) \right]$$

$$\widehat{s}_m^{(-j)} \in \arg\min_{t\in S_m} P_n^{(-j)}\gamma(t)$$

with $C \ge V - 1$ to be chosen ($C = V - 1 \Rightarrow$ we recover Burman's corrected V-fold, 1989) • The final estimator is $\hat{s}_{\hat{m}}$ with

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \{P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m)\}$$

17/26

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
V-fold pe	nalization			

• Ideal penalty:

$$(P-P_n)(\gamma(\widehat{s}_m))$$

• *V*-fold penalty:

$$pen(m) = \frac{C}{V} \sum_{j=1}^{V} \left[(P_n - P_n^{(-j)})(\gamma(\widehat{s}_m^{(-j)})) \right]$$
$$\widehat{s}_m^{(-j)} \in \arg\min_{t \in S_m} P_n^{(-j)} \gamma(t)$$

with $C \ge V - 1$ to be chosen ($C = V - 1 \Rightarrow$ we recover Burman's corrected V-fold, 1989) • The final estimator is $\widehat{s}_{\widehat{m}}$ with

 $\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m) \right\}$

Introduction 000	Cross validation	V-fold penalization	Simulations 0000	Conclusion
V-fold pe	nalization			

• Ideal penalty:

$$(P-P_n)(\gamma(\widehat{s}_m))$$

• *V*-fold penalty:

$$pen(m) = \frac{C}{V} \sum_{j=1}^{V} \left[(P_n - P_n^{(-j)})(\gamma(\widehat{s}_m^{(-j)})) \right]$$
$$\widehat{s}_m^{(-j)} \in \arg\min_{t \in S_m} P_n^{(-j)} \gamma(t)$$

with $C \ge V - 1$ to be chosen ($C = V - 1 \Rightarrow$ we recover Burman's corrected V-fold, 1989)

• The final estimator is $\widehat{s}_{\widehat{m}}$ with

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m) \right\}$$

• Hold-out, Cross-validation, Leave-one-out, V-fold cross-validation:

$$I \subset \{1, \dots, n\}$$
 random sub-sample of size q (VFCV:
 $q = \frac{n(V-1)}{V}$).

• Efron's bootstrap penalties (Efron 1983, Shibata 1997):

$$\mathsf{pen}(m) = \mathbb{E}\left[(P_n - P_n^W)(\gamma(\widehat{s}_m^W)) \middle| (X_i, Y_i)_{1 \le i \le n}\right]$$

• Rademacher complexities (Koltchinskii 2001 ; Bartlett, Boucheron, Lugosi 2002): subsampling

$$\operatorname{\mathsf{pen}}_{\operatorname{id}}(m) \le \operatorname{\mathsf{pen}}_{\operatorname{id}}^{\operatorname{glo}}(m) = \sup_{t \in S_m} (P - P_n) \gamma(t, \cdot)$$

- idem with general exchangeable weights (Fromont 2004)
- Local Rademacher complexities (Bartlett, Bousquet, Mendelson 2004 ; Koltchinskii 2004)

• $C \approx V - 1$

- Histogram regression on a random design
- Small number of models (at most polynomial in *n*)
- Model pre-selection: remove *m* when

$$\min_{\lambda \in \Lambda_m} \left\{ \mathsf{Card} \left\{ X_i \in I_\lambda \right\} \right\} \le 1$$

• Fixed V or
$$V = n$$

Theorem

Under a "reasonable" set of assumptions on P, with probability at least $1 - \Diamond n^{-2}$,

$$\ell(s,\widehat{s}_{\widehat{m}}) \leq \left(1 + \ln(n)^{-1/5}\right) \inf_{m \in \mathcal{M}} \left\{\ell(s,\widehat{s}_m)\right\}$$

• $C \approx V - 1$

- Histogram regression on a random design
- Small number of models (at most polynomial in *n*)
- Model pre-selection: remove *m* when

$$\min_{\lambda \in \Lambda_m} \left\{ \mathsf{Card} \left\{ X_i \in I_\lambda \right\} \right\} \le 1$$

• Fixed V or
$$V = n$$

Theorem

Under a "reasonable" set of assumptions on P, with probability at least $1 - \Diamond n^{-2}$,

$$\ell(s,\widehat{s}_{\widehat{m}}) \leq \left(1 + \ln(n)^{-1/5}\right) \inf_{m \in \mathcal{M}} \left\{\ell(s,\widehat{s}_m)\right\}$$

Reminder: the procedure *does not use* any of these assumptions.

- Bounded data: $\|Y\|_{\infty} \le A < \infty$
- Minimal noise-level:

$$0 < \sigma_{\min} \leq \sigma(X)$$

- Smoothness of the regression function s: non-constant, belongs to some hölderian ball $\mathcal{H}_{\alpha}(R)$
- Regularity of the partition: $\min_{\lambda} \mathbb{P}(X \in I_{\lambda}) \ge \Diamond D_m^{-1}$

and they can be relaxed...

Reminder: the procedure *does not use* any of these assumptions.

- Bounded data: $\|Y\|_{\infty} \leq A < \infty$
- Minimal noise-level:

$$0 < \sigma_{\min} \leq \sigma(X)$$

- Smoothness of the regression function s: non-constant, belongs to some hölderian ball $\mathcal{H}_{\alpha}(R)$
- Regularity of the partition: $\min_{\lambda} \mathbb{P}(X \in I_{\lambda}) \ge \Diamond D_m^{-1}$

and they can be relaxed...

Introduction 000	Cross validation	V-fold penalization ○○○○○●	Simulations 0000	Conclusion
Corollaries				

• Classical oracle inequality:

$$\mathbb{E}\left[\ell(s,\widehat{s}_{\widehat{m}})\right] \leq \left(1 + \ln(n)^{-1/5}\right) \mathbb{E}\left[\inf_{m \in \mathcal{M}} \left\{\ell(s,\widehat{s}_m)\right\}\right] + \Diamond n^{-2}$$

• Asymptotic optimality if $C \sim_{n \to +\infty} V - 1$:

$$\frac{\ell(s,\widehat{s}_{\widehat{m}})}{\inf_{m\in\mathcal{M}}\left\{\ell(s,\widehat{s}_m)\right\}}\xrightarrow[n\to+\infty]{a.s.}1$$

Adaptation to hölderian regularity in an heteroscedastic framework (regular histograms):
 s ∈ H(α, R), α ∈ (0, 1], X ⊂ ℝ^k, (···) Y bounded

$$\Rightarrow \mathsf{rate} \|\sigma\|_{L^2(\mathrm{Leb})}^{\frac{4\alpha}{2\alpha+k}} R^{\frac{2k}{2\alpha+k}} n^{\frac{-2\alpha}{2\alpha+k}}$$

Introduction 000	Cross validation 0000000000	V-fold penalization	Simulations ●000	Conclusion
Simulatio	n framework			

$$Y_{i} = s(X_{i}) + \sigma(X_{i})\epsilon_{i} \qquad X_{i} \sim^{\text{i.i.d.}} \mathcal{U}([0;1]) \qquad \epsilon_{i} \sim^{\text{i.i.d.}} \mathcal{N}(0,1)$$
$$\mathcal{M}_{n} = \left\{ \text{regular histograms with } D \text{ pieces, } 1 \leq D \leq \frac{n}{\log(n)} \\ \text{and s.t. } \min_{\lambda \in \Lambda_{m}} \operatorname{Card} \{X_{i} \in I_{\lambda}\} \geq 2 \right\}$$

 \Rightarrow Benchmark:

$$C_{\text{classical}} = \frac{\mathbb{E}[\ell(s, \widehat{s}_{\widehat{m}})]}{\mathbb{E}[\inf_{m \in \mathcal{M}} \ell(s, \widehat{s}_m)]}$$

computed with N = 1000 samples

Mallows:

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{V} \sum_{j=1}^{V} P_n^j \gamma\left(\widehat{s}_m^{(-j)}, \cdot\right) \right\} \qquad \widetilde{s} = \widehat{s}_{\widehat{m}}$$

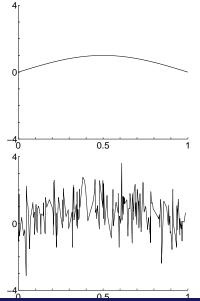
 $pen(m) = 2\widehat{\sigma}^2 D_m n^{-1}$

• "Classical" V-fold cross-validation ($V \in \{2, 5, 10, 20, n\}$):

• *V*-fold penalties ($V \in \{2, 5, 10, n\}$), C = V - 1

Introduction Cross validation V-fold penalization Simulations Conclusion

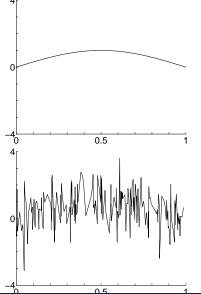
Simulations: $s(x) = \sin(\pi x)$, $n = \overline{200}$, $\sigma \equiv 1$



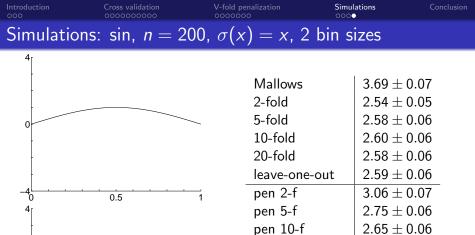
Mallows	1.93 ± 0.04
2-fold	2.08 ± 0.04
5-fold	2.14 ± 0.04
10-fold	2.10 ± 0.05
20-fold	2.09 ± 0.04
leave-one-out	2.08 ± 0.04
pen 2-f	2.58 ± 0.06
pen 5-f	2.22 ± 0.05
pen 10-f	2.12 ± 0.05
pen Loo	2.08 ± 0.05

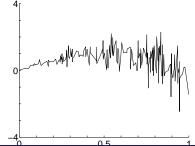
24/26 Sylvain Arlot

V-fold cross-validation improved: V-fold penalization



Mallows	1.93 ± 0.04
2-fold	2.08 ± 0.04
5-fold	2.14 ± 0.04
10-fold	2.10 ± 0.05
20-fold	2.09 ± 0.04
leave-one-out	2.08 ± 0.04
pen 2-f	2.58 ± 0.06
pen 5-f	2.22 ± 0.05
pen 10-f	2.12 ± 0.05
pen Loo	2.08 ± 0.05
Mallows $\times 1.25$	1.80 ± 0.03
pen 2-f $ imes$ 1.25	2.17 ± 0.05
pen 5-f $ imes$ 1.25	1.91 ± 0.05
pen 10-f $ imes$ 1.25	1.87 ± 0.03
pen Loo $\times 1.25$	$1.84 \pm 0.03 \; 24/26$





IVIAIIOWS	5.09 ± 0.07
2-fold	2.54 ± 0.05
5-fold	2.58 ± 0.06
10-fold	2.60 ± 0.06
20-fold	2.58 ± 0.06
leave-one-out	2.59 ± 0.06
pen 2-f	3.06 ± 0.07
pen 5-f	2.75 ± 0.06
pen 10-f	2.65 ± 0.06
pen Loo	2.59 ± 0.06
Mallows $\times 1.25$	3.17 ± 0.07
pen 2-f $\times 1.25$	2.75 ± 0.06
pen 5-f $ imes$ 1.25	2.38 ± 0.06
pen 10-f $\times 1.25$	2.28 ± 0.05
pen Loo $\times 1.25$	$2.21 \pm 0.05 \; 25/26$

- asymptotically optimal, even if V fixed
- optimal V^* : the largest possible one
 - \Rightarrow easier to balance with the computational cost
- low signal-to-noise ratio ⇒ easy to overpenalize and decrease variability (keep V large)
- large signal-to-noise ratio ⇒ possible to stay unbiased with a small V (for computational reasons)
- flexibility improves V-fold cross-validation (according to both theoretical results and simulations)
- theory can be extended to exchangeable weighted bootstrap penalties (e.g. bootstrap, i.i.d. Rademacher, leave-one-out, leave-p-out with p = αn).
- Some open problems: consistency when C ≫ V − 1, prediction in a general framework, automatic choice of the overpenalization constant.

- asymptotically optimal, even if V fixed
- optimal V^* : the largest possible one
 - \Rightarrow easier to balance with the computational cost
- low signal-to-noise ratio ⇒ easy to overpenalize and decrease variability (keep V large)
- large signal-to-noise ratio ⇒ possible to stay unbiased with a small V (for computational reasons)
- flexibility improves V-fold cross-validation (according to both theoretical results and simulations)
- theory can be extended to exchangeable weighted bootstrap penalties (e.g. bootstrap, i.i.d. Rademacher, leave-one-out, leave-p-out with p = αn).
- Some open problems: consistency when C ≫ V − 1, prediction in a general framework, automatic choice of the overpenalization constant.

Sylvain Arlot

- asymptotically optimal, even if V fixed
- optimal V^* : the largest possible one
 - \Rightarrow easier to balance with the computational cost
- low signal-to-noise ratio ⇒ easy to overpenalize and decrease variability (keep V large)
- large signal-to-noise ratio ⇒ possible to stay unbiased with a small V (for computational reasons)
- flexibility improves V-fold cross-validation (according to both theoretical results and simulations)
- theory can be extended to exchangeable weighted bootstrap penalties (e.g. bootstrap, i.i.d. Rademacher, leave-one-out, leave-p-out with p = αn).
- Some open problems: consistency when C ≫ V − 1, prediction in a general framework, automatic choice of the overpenalization constant.

- asymptotically optimal, even if V fixed
- optimal V^* : the largest possible one
 - \Rightarrow easier to balance with the computational cost
- low signal-to-noise ratio ⇒ easy to overpenalize and decrease variability (keep V large)
- large signal-to-noise ratio ⇒ possible to stay unbiased with a small V (for computational reasons)
- flexibility improves V-fold cross-validation (according to both theoretical results and simulations)
- theory can be extended to exchangeable weighted bootstrap penalties (e.g. bootstrap, i.i.d. Rademacher, leave-one-out, leave-p-out with p = αn).
- Some open problems: consistency when C ≫ V − 1, prediction in a general framework, automatic choice of the overpenalization constant.

Cross validation	V-fold penalization	Conclusion

Thank you for your attention !

Preprint: arXiv:0802.0566

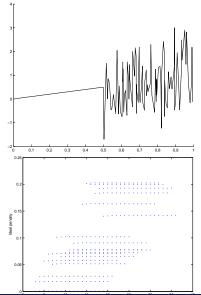
S

Part I

Appendix

Appendix ••••••

Limitations of a linear penalty

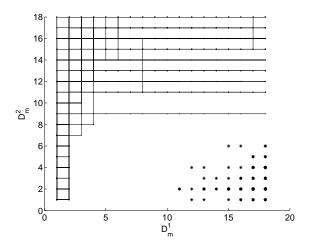


$$Y = X + \sigma(X)\epsilon$$
$$\sigma(X) = \mathbb{1}_{X \ge \frac{1}{2}} \qquad \epsilon \sim \mathcal{N}(0, 1)$$

Regular histograms on $[0; \frac{1}{2}]$ ($D_{m,1}$ pieces), then regular histograms on $[\frac{1}{2}; 1]$ ($D_{m,2}$ pieces).

 $\Rightarrow \operatorname{pen}_{\mathrm{id}}(m)$ is not a linear function of D_m .

Limitations of a linear penalty: $\widehat{m}(K) \neq m^*$



For each $m \in \mathcal{M}_n$,

 $\mathsf{pen}_{\mathrm{id}}(m) \approx \mathbb{E}[\mathsf{pen}_{\mathrm{id}}(m)] \propto \mathbb{E}[\mathsf{pen}(m)] \approx \mathsf{pen}(m)$

with remainders $\ll \ell(s, \widehat{s}_m)$ when $D_m \to +\infty$:

- Explicit computation of pen_{id} and pen
- Comparison of expectations: E(pen_{id}) ∝ E(pen) (if min_{λ∈Λm} {nP(X ∈ I_λ)} → +∞)
- Moment inequalities (Boucheron, Bousquet, Lugosi, Massart 2003)
 - \Rightarrow concentration inequalities (for pen $_{
 m id}$ and pen)
- Assumptions \Rightarrow control of the remainders in terms of $\ell(s, \widehat{s}_m)$

For each $m \in \mathcal{M}_n$,

 $\mathsf{pen}_{\mathrm{id}}(m) \approx \mathbb{E}[\mathsf{pen}_{\mathrm{id}}(m)] \propto \mathbb{E}[\mathsf{pen}(m)] \approx \mathsf{pen}(m)$

with remainders $\ll \ell(s, \hat{s}_m)$ when $D_m \to +\infty$:

- \bullet Explicit computation of $\mathsf{pen}_{\mathrm{id}}$ and pen
- Comparison of expectations: E(pen_{id}) ∝ E(pen) (if min_{λ∈Λm} {nP(X ∈ I_λ)} → +∞)
- Moment inequalities (Boucheron, Bousquet, Lugosi, Massart 2003)

 \Rightarrow concentration inequalities (for pen $_{
m id}$ and pen)

• Assumptions \Rightarrow control of the remainders in terms of $\ell(s, \hat{s}_m)$.

For each $m \in \mathcal{M}_n$,

 $\mathsf{pen}_{\mathrm{id}}(m) \approx \mathbb{E}[\mathsf{pen}_{\mathrm{id}}(m)] \propto \mathbb{E}[\mathsf{pen}(m)] \approx \mathsf{pen}(m)$

with remainders $\ll \ell(s, \hat{s}_m)$ when $D_m \to +\infty$:

- $\bullet\,$ Explicit computation of pen_{id} and pen
- Comparison of expectations: E(pen_{id}) ∝ E(pen) (if min_{λ∈Λm} {nP(X ∈ I_λ)} → +∞)
- Moment inequalities (Boucheron, Bousquet, Lugosi, Massart 2003)

 \Rightarrow concentration inequalities (for pen $_{
m id}$ and pen)

• Assumptions \Rightarrow control of the remainders in terms of $\ell(s, \hat{s}_m)$.

For each $m \in \mathcal{M}_n$,

 $\mathsf{pen}_{\mathrm{id}}(m) \approx \mathbb{E}[\mathsf{pen}_{\mathrm{id}}(m)] \propto \mathbb{E}[\mathsf{pen}(m)] \approx \mathsf{pen}(m)$

with remainders $\ll \ell(s, \hat{s}_m)$ when $D_m \to +\infty$:

- $\bullet\,$ Explicit computation of pen_{id} and pen
- Comparison of expectations: E(pen_{id}) ∝ E(pen) (if min_{λ∈Λm} {nP(X ∈ I_λ)} → +∞)
- Moment inequalities (Boucheron, Bousquet, Lugosi, Massart 2003)
 - \Rightarrow concentration inequalities (for pen_{\rm id} and pen)
- Assumptions \Rightarrow control of the remainders in terms of $\ell(s, \hat{s}_m)$.

For each $m \in \mathcal{M}_n$,

 $\mathsf{pen}_{\mathrm{id}}(m) \approx \mathbb{E}[\mathsf{pen}_{\mathrm{id}}(m)] \propto \mathbb{E}[\mathsf{pen}(m)] \approx \mathsf{pen}(m)$

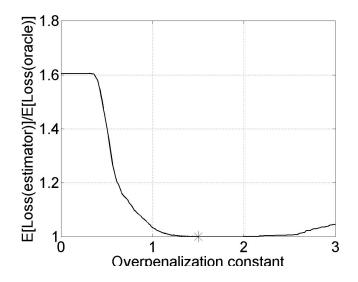
with remainders $\ll \ell(s, \hat{s}_m)$ when $D_m \to +\infty$:

- $\bullet~\mbox{Explicit}$ computation of $\mbox{pen}_{\rm id}$ and \mbox{pen}
- Comparison of expectations: $\mathbb{E}(\text{pen}_{id}) \propto \mathbb{E}(\text{pen})$ (if $\min_{\lambda \in \Lambda_m} \{ n \mathbb{P}(X \in I_{\lambda}) \} \to +\infty)$
- Moment inequalities (Boucheron, Bousquet, Lugosi, Massart 2003)

 \Rightarrow concentration inequalities (for pen_{id} and pen)

• Assumptions \Rightarrow control of the remainders in terms of $\ell(s, \hat{s}_m)$.

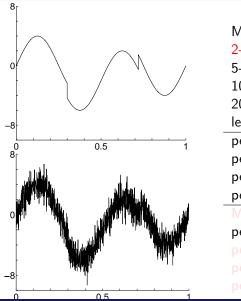
Overpenalization (HeaviSine, n = 2048, $\sigma \equiv 1$)



Sylvain Arlot

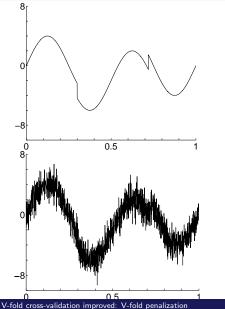
32/26

Simulations: HeaviSine, n = 2048, $\sigma \equiv 1$



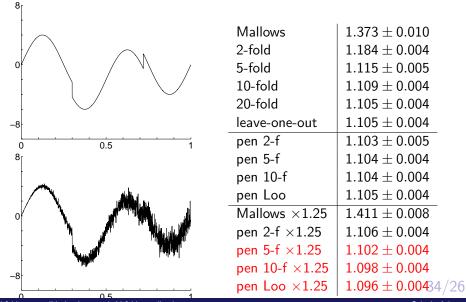
Mallows	1.015 ± 0.003
2-fold	1.002 ± 0.003
5-fold	1.014 ± 0.003
10-fold	1.021 ± 0.003
20-fold	1.029 ± 0.004
leave-one-out	1.034 ± 0.004
pen 2-f	1.038 ± 0.004
pen 5-f	1.037 ± 0.004
pen 10-f	1.034 ± 0.004
pen Loo	1.034 ± 0.004
Mallows $\times 1.25$	1.002 ± 0.003
pen 2-f $ imes$ 1.25	1.011 ± 0.003
	1.006 ± 0.003
	1.005 ± 0.003
	$1.004 \pm 0.00333/26$

Simulations: HeaviSine, n = 2048, $\sigma \equiv 1$



Mallows	1.015 ± 0.003
2-fold	1.002 ± 0.003
5-fold	1.014 ± 0.003
10-fold	1.021 ± 0.003
20-fold	1.029 ± 0.004
leave-one-out	1.034 ± 0.004
pen 2-f	1.038 ± 0.004
pen 5-f	1.037 ± 0.004
pen 10-f	1.034 ± 0.004
pen Loo	1.034 ± 0.004
Mallows $\times 1.25$	1.002 ± 0.003
pen 2-f $ imes$ 1.25	1.011 ± 0.003
pen 5-f $ imes$ 1.25	1.006 ± 0.003
pen 10-f $ imes$ 1.25	1.005 ± 0.003
pen Loo $\times 1.25$	$1.004 \pm 0.003_3$

Simulations: HeaviSine, n = 2048, $\sigma(x) = x$, 2 bin sizes



V-fold cross-validation improved: V-fold penalization

Simulations: sin, variable n and σ , regular histograms

п	200	1000	200
σ	1	1	0.1
Mallows $(K = 2)$	1.93 ± 0.04	1.67 ± 0.04	1.40 ± 0.02
2-fold	2.08 ± 0.04	1.67 ± 0.04	1.39 ± 0.02
10-fold	2.10 ± 0.05	1.75 ± 0.04	1.38 ± 0.02
pen 10-fold	2.12 ± 0.05	1.78 ± 0.05	1.37 ± 0.02

Simulations: sin, variable n and σ , regular histograms

п	200	1000	200
σ	1	1	0.1
Mallows $(K = 2)$	1.93 ± 0.04	1.67 ± 0.04	1.40 ± 0.02
2-fold	2.08 ± 0.04	1.67 ± 0.04	1.39 ± 0.02
10-fold	2.10 ± 0.05	1.75 ± 0.04	1.38 ± 0.02
pen 10-fold	2.12 ± 0.05	1.78 ± 0.05	1.37 ± 0.02
Mallows ($K = 2.5$)	1.80 ± 0.03	1.62 ± 0.03	1.43 ± 0.02
pen 10-fold $ imes$ 1.25	1.87 ± 0.03	1.63 ± 0.04	1.38 ± 0.02