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1 Proofs of theoretical results

For completeness, we report here proofs (or sketch of proofs) of the theoretical results
stated in the main paper, that are coming from previous works.

1.1 Proof of Lemma 1 of the main paper

Let us first state the following lemma.

Lemma 1.
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where nλ = Card ({j | tj ∈ λ}) .

With the notation of Lemma 1, simple calculations lead to
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∑

λ∈Λm

{
1

n

n∑

i=1

(
σ(ti)

2 + E

[
s(ti) − β̂λ

]2)
1λ(ti) +

1

n

n∑

i=1

E

[
2εi

(
s(ti) − β̂λ

)]
1λ(ti)

}

=
∑

λ∈Λm

{
1

n

(
nλ (σr

λ)2 +

n∑

i=1

E

[
s(ti) − β̂λ

]2
1λ(ti)

)
− 2

n
(σr

λ)2
}

.

Moreover, by use of Lemma 1, it comes
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which enables to conclude
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n − 1
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The expectation of the loss of ŝm results from similar calculations.

1.2 Proof of Theorem 1 of the main paper

Since the proof of Theorem 1 of the main paper is quite technical, it is not reproduced
here. For the detailed calculations, we refer interested readers to the Ph.D. thesis of the
second author [6, Section 3.5.3], which is freely available online.

1.3 Proof of Proposition 1 of the main paper

On the basis of Theorem 1 of the main paper and assuming that for every λ ∈ Λm , nλ ≥ 3
and p ≤ nλ + 1, it comes that the expectation of the Lpo risk is
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Thanks to Lemma 2, it comes that

1

n − p
≤ 1

p

(
n

n − p
Vλ(1)Vλ(−1) − 1

)
≤ p

n − p
+

n

n − p

1

nλ
+ o

(
n

n − p

1

nλ

)
+ o

(
p

n − p

)
·

With the assumptions of Lemma 2 and assuming p → +∞ as n tends to infinity, one gets
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under the additional assumption (BN) that σ(ti)
2 is uniformly bounded.

Similarly, another use of Lemma 2 implies
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After some calculations, it yields
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Moreover, if one assumes (BV) that there exists M > 0 such that for evey i, (s(ti) −
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which concludes the proof.

1.4 Magnitude of Vλ(1)Vλ(−1)

Lemma 2. Let m ∈ Mn . Assume that some K ∈ (0, 1) exists such that for every λ ∈ Λm ,

nλ ≥ Kn , and nλ > p with p2/n → 0 as n tends to infinity. Then,
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Lemma 2. The lower bound comes from Jensen’s inequality, while the upper bound results
from
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2 Random frameworks

In order to assess the generality of the results of Section 5.3 of the main paper, the
procedures JERM, VF5K , JLoo, VF5K , JLpo20, VF5K , JERM, BMK, BGH, ZS, and PML
have been compared in three random settings. The following process has been repeated
N = 10 000 times. First, piecewise constant functions s and σ are randomly chosen (see
Section 2.2 for details). Then, given s and σ , a data sample (ti, Yi)1≤i≤n is generated as
described in Section 3.3.1 of the main paper, and the same collection of models is used.
Finally, each procedure P is applied to the sample (ti, Yi)1≤i≤n , and its loss ‖s − s̃P(Pn)‖2

n

is measured, as well as the loss of the oracle infm∈Mn

{
‖s − ŝm‖2

n

}
.

To summarize the results, the quality of each procedure is measured by the ratio

C(R)
or (P) =

Es,σ,ε1,...,εn

[
‖s − s̃P(Pn)‖2

n

]

Es,σ,ε1,...,εn

[
infm∈Mn

{
‖s − ŝm‖2

n

}] .

The notation C
(R)
or (P) differs from Cor(P) to emphasize that each expectation includes the

randomness of s and σ , in addition to the one of (εi)1≤i≤n .
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Framework A B C
JERM, BMK 4.68 ± 0.03 4.63 ± 0.03 7.34 ± 0.05
JERM, VF5K 4.67 ± 0.03 4.61 ± 0.03 6.49 ± 0.04
JLoo, VF5K 4.63 ± 0.03 4.52 ± 0.03 6.04 ± 0.04

JLpo20, VF5K 5.40 ± 0.03 5.25 ± 0.03 6.57 ± 0.05
JLpo50, VF5K 6.23 ± 0.03 5.94 ± 0.04 7.56 ± 0.05

BGH 4.85 ± 0.03 4.78 ± 0.03 7.70 ± 0.05
ZS 5.34 ± 0.04 5.25 ± 0.04 7.28 ± 0.05

PML 5.03 ± 0.03 4.99 ± 0.03 4.84 ± 0.04

Table 1: Performance C
(R)
or (P) of several model selection procedures P in frameworks A,

B, C with sample size n = 100 . In each framework, N = 10 000 independent samples have
been considered. Next to each value is indicated the corresponding empirical standard
deviation divided by

√
N .

2.1 Results of the simulation experiments

The results of this experiment—which are reported in Tables 1—mostly confirm the results
of Section 5.3 of the main paper (except that all the frameworks are heteroscedastic here),
that is, whatever p , JLpop, VF5K outperforms JERM, VF5K , which strongly outperforms
JERM, BMK .

Moreover, the difference between the performances of JLpop, VF5K and JERM, VF5K is
the largest in setting C and the smallest in setting A. This fact confirms the interpretation
given in Section 3 of the main paper for the failure of ERM for localizing a given number
of change-points. Indeed, the main differences between frameworks A, B and C—which
are precisely defined in Section 2.2—can be sketched as follows:

A. the partitions on which s is built is often close to regular, and σ is chosen indepen-
dently from s .

B. the partitions on which s is built are often irregular, and σ is chosen independently
from s .

C. the partitions on which s is built are often irregular, and σ depends on s , so that
the noise-level is smaller where s jumps more often.

In other words, frameworks A, B and C have been built so that for any D ∈ Dn , the
largest variations over Mn(D) of V (m) (defined by Eq. (7) of the main paper) occur
in framework C, and the smallest variations occur in framework A. As a consequence,
variations of the performance of JERM, VF5K compared to JLpop, VF5K according to the
framework certainly come from the local overfitting phenomenon presented in Section 3 of
the main paper.
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2.2 Detailed definition of the random frameworks

Let us now detail how piecewise constant functions s and σ have been generated in the
frameworks A, B and C. In each framework, s and σ are of the form

s(x) =

Ks−1∑

j=0

αj1[aj ;aj+1) + αKs
1[aKs ;aKs+1] with a0 = 0 < a1 < · · · < aKs+1 = 1

σ(x) =

Kσ−1∑

j=0

βj1[bj ;bj+1) + βKσ
1[bKσ ;bKσ+1] with b0 = 0 < b1 < · · · < bKσ+1 = 1

for some positive integers Ks, Kσ and real numbers α0, . . . , αKs
∈ R and β0, . . . , βKσ

> 0 .

Remark 1. The frameworks A, B and C depend on the sample size n , through the distri-
bution of Ks , Kσ , and of the size of the intervals [aj ; aj+1) and [bj ; bj+1) . This ensures
that the signal-to-noise ratio remains rather small, so that the quadratic risk remains an
adequate performance measure for change-point detection.

When the signal-to-noise ratio is larger (that is, when all jumps of s are much larger
than the noise-level, and the number of jumps of s is small compared to the sample size),
the change-point detection problem is of different nature. In particular, the number of
change-points would be better estimated with procedures targeting identification (such as
BIC, or even larger penalties) than efficiency (such as VFCV).

2.2.1 Framework A

In framework A, s and σ are generated as follows:

• Ks , the number of jumps of s , has uniform distribution over {3, . . . , ⌊√n⌋} .

• For 0 ≤ j ≤ Ks ,

aj+1 − aj = ∆s
min +

(1 − (Ks + 1)∆s
min)Uj∑Ks

k=0 Uk

with ∆s
min = min {5/n, 1/(Ks + 1)} and U0, . . . , UKs

are i.i.d. with uniform distri-
bution over [0; 1] .

• α0 = V0 and for 1 ≤ j ≤ Ks , αj = αj−1 + Vj where V0, . . . , VKs
are i.i.d. with

uniform distribution over [−1;−0.1] ∪ [0.1; 1] .

• Kσ , the number of jumps of σ , has uniform distribution in {5, . . . , ⌊√n⌋} .

• For 0 ≤ j ≤ Kσ ,

bj+1 − bj = ∆σ
min +

(1 − (Kσ + 1)∆σ
min)U

′
j∑Ks

k=0 U ′
k

with ∆σ
min = min {5/n, 1/(Kσ + 1)} and U ′

0, . . . , U
′
Kσ

are i.i.d. with uniform distri-
bution over [0; 1] .

• β0, . . . , βKσ
are i.i.d. with uniform distribution over [0.05; 0.5] .

Two examples of a function s and a sample (ti, Yi) generated in framework A are plotted
on Figure 1.
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Figure 1: Random framework A: two examples of a sample (ti, Yi)1≤i≤100 and the corre-
sponding regression function s .

2.2.2 Framework B

The only difference with framework A is that U0, . . . , UKs
are i.i.d. with the same distri-

bution as Z = |10Z1 + Z2| where Z1 has Bernoulli distribution with parameter 1/2 and Z2

has a standard Gaussian distribution. Two examples of a function s and a sample (ti, Yi)
generated in framework B are plotted on Figure 2.

2.2.3 Framework C

The main difference between frameworks C and B is that [0; 1] is split into two regions:
aKs,1+1 = 1/2 and Ks = Ks,1 + Ks,2 + 1 for some positive integers Ks,1, Ks,2 , and the
bounds of the distribution of βj are larger when bj ≥ 1/2 and smaller when bj < 1/2 . Two
examples of a function s and a sample (ti, Yi) generated in framework C are plotted on
Figure 3. More precisely, s and σ are generated as follows:

• Ks,1 has uniform distribution over {2, . . . , Kmax,1} with Kmax,1 = ⌊√n⌋−1−⌊(⌊√n−
1⌋)/3⌋ .

• Ks,2 has uniform distribution over {0, . . . , Kmax,2} with Kmax,2 = ⌊(⌊√n − 1⌋)/3⌋ .

• Let U0, . . . , UKs
be i.i.d. random variables with the same distribution as Z =

|10Z1 + Z2| where Z1 has Bernoulli distribution with parameter 1/2 and Z2 has
a standard Gaussian distribution.

• For 0 ≤ j ≤ Ks,1 ,

aj+1 − aj = ∆s,1
min +

(1 − (Ks,1 + 1)∆s,1
min)Uj

∑Ks,1

k=0 Uk

with ∆s,1
min = min {5/n, 1/(Ks,1 + 1)} .
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Figure 2: Random framework B: two examples of a sample (ti, Yi)1≤i≤100 and the corre-
sponding regression function s .

• For Ks,1 + 1 ≤ j ≤ Ks ,

aj+1 − aj = ∆s,2
min +

(1 − (Ks,2 + 1)∆s,2
min)Uj∑Ks

k=Ks,1+1 Uk

with ∆s,2
min = min {5/n, 1/(Ks,2 + 1)} .

• α0 = V0 and for 1 ≤ j ≤ Ks , αj = αj−1 + Vj where V0, . . . , VKs
are i.i.d. with

uniform distribution over [−1;−0.1] ∪ [0.1; 1] .

• Kσ , (bj+1 − bj)0≤j≤Kσ
are distributed as in frameworks A and B.

• β0, . . . , βKσ
are independent.

When bj < 1/2 , βj has uniform distribution over [0.025; 0.2] .
When bj ≥ 1/2 , βj has uniform distribution over [0.1; 0.8] .

3 Restrictions on the model collection with cross-validation

The use of CV induces some restrictions on the collection of models we consider.
First, when used for choosing the best segmentation of each dimension (Section 3 of

the main paper), CV estimators require that each interval of the considered segmentation
contains at least two observations: one belonging to the training sample, and the other to
the validation sample. This implies a first constraint of the largest dimension: D ≤ n/2 .
Note that there is only one possible segmentation with two points in each interval (with n
even).

Second, when the estimation of the number D−1 of change-points is addressed in Sec-
tion 4 of the main paper, critVFV

(D) is computed by considering the models S̃D((ti)i/∈Bk
)

for k = 1, . . . , V , which are non-empty only when D ≤ (n − maxk {Card(Bk)})/2 ≈
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Figure 3: Random framework C: two examples of a sample (ti, Yi)1≤i≤100 and the corre-
sponding regression function s .

n(V − 1)/(2V ) . Indeed, at each round of the V-fold process, maxk {Card(Bk)} points are
removed from the whole sample. Since, moreover, Lpo is used at each round to choose the
best segmentations, the largest possible dimension is n(V − 1)/(2V ) .

From a pratical point of view, the blocks (Bk)1≤k≤V are always chosen such that ∀i, k ,
{ti , ti+1} ∩ Bc

k 6= ∅ , so that S̃D((ti)i/∈Bk
) is not too different from S̃D((ti)1≤i≤n) . Despite

this careful choice of (Bk)1≤k≤V , S̃D((ti)i/∈Bk
) is still much smaller than S̃D((ti)1≤i≤n)

when D is close to n(V − 1)/(2V ) . Since the curves on Figure 4 of the main paper
reflect the maximum estimation error over all the segmentations in S̃D (up to the bias),
the smaller S̃D((ti)i/∈Bk

), the lower the value of the curve. This explains why critVFV
(D)

decreases for the largest values of D on Figure 4 of the main paper.
In practical applications, since this artefact could lead critVFV

(D) to underestimate
‖s − ŝbm(D)‖2

n for values of D close to n(V − 1)/(2V ) , we suggest to discard values of
D > 9n(V − 1)/(20V ) . This restriction of the collection of models has been made, for all
procedures, in the main paper. Since we took V = 5 and n = 100 in all our experiments,
this leads to the choice

Dn =

{
1, . . . ,

9n(V − 1)

20V

}
= {1, . . . , 36}

instead of Dn = {1, . . . , 40} .

4 Calibration of Birgé and Massart’s penalization

Birgé and Massart’s penalization makes use of the penalty

penBM(D) :=
ĈD

n

(
5 + 2 log

( n

D

))
.

In a previous version of this work [6, Chapter 7], Ĉ was defined as suggested in [7, 8],
that is, Ĉ = 2K̂max.jump with the notation below. This yielded poor performances, which
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seemed related to the definition of Ĉ . Therefore, alternative definitions for Ĉ have been
investigated, leading to the choice Ĉ = σ̂2 defined by (1) below. The present section
intends to motivate this choice.

Two main approaches have been considered in the literature for defining Ĉ in the
penalty penBM :

• Use Ĉ = σ̂2 any estimate of the (average) noise-level, for instance,

σ̂2 :=
1

n

n/2∑

i=1

(Y2i − Y2i−1)
2 , (1)

assuming n is even and t1 < · · · < tn .

• Use Birgé and Massart’s slope heuristics, that is, compute the sequence

D̂(K) := arg min
D∈Dn

{
Pnγ( ŝ bmERM(D)) +

KD

n

(
5 + 2 log

( n

D

))}
,

find the (unique) K = K̂jump at which D̂(K) jumps from large to small values, and
define Ĉ = 2K̂jump .

The first approach follows from theoretical and experimental results [4, 8] which show
that Ĉ should be close to σ2 when the noise-level is constant; (1) is a classical estimator
of the variance used for instance by Baraud [3] for model selection in a different setting.

The optimality (in terms of oracle inequalities) of the second approach has been proved
for regression with homoscedastic Gaussian noise and possibly exponential collections of
models [5], as well as in a heteroscedastic framework with polynomial collections of models
[2]. In the context of change-point detection with homoscedastic data, Lavielle [7] and
Lebarbier [8] showed that Ĉ = 2K̂max.jump can even perform better than Ĉ = σ2 when
K̂max.jump corresponds to the highest jump of D̂(K) .

Alternatively, it was proposed in [2] to define Ĉ = 2K̂thresh. where

K̂thresh. := min

{
K s.t. D̂(K) ≤ Dthresh. :=

⌊
n

ln(n)

⌋}
. (2)

These three definitions of Ĉ have been compared with Ĉ = σ2
true := n−1

∑n
i=1 σ(ti)

2 in
the settings of the paper. The results are reported in Table 2. The main conclusions are
the following.

• 2K̂thresh. almost always beats 2K̂max.jump , even in homoscedastic settings. This con-
firms some simulation results reported in [2].

• σ2
true almost always beats slope heuristics-based definitions of Ĉ , but not always,

as previously noticed by Lebarbier [8]. Differences of performance can be huge (in
particular when σ = σs), but not always in favour of σ2

true (for instance, when s = s3).

• σ̂2 yields significantly better performance than σ2
true in most settings (but not all),

with huge margins in some heteroscedastic settings.
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s
·

σ
·

2K̂max.jump 2K̂thresh. σ̂2 σ2
true

1 c 17.12 ± 0.27 5.87 ± 0.03 1.70 ± 0.02 1.97 ± 0.02

pc,1 134.35 ± 1.50 11.00 ± 0.03 1.24 ± 0.02 7.24 ± 0.04

pc,2 35.60 ± 0.33 11.20 ± 0.03 3.10 ± 0.03 7.63 ± 0.04

pc,3 23.60 ± 0.20 11.28 ± 0.03 3.81 ± 0.04 7.67 ± 0.04

s 46.36 ± 0.48 10.14 ± 0.03 2.08 ± 0.02 1.63 ± 0.02

2 c 6.34 ± 0.04 6.97 ± 0.03 3.58 ± 0.02 3.54 ± 0.02

pc,1 15.01 ± 0.08 17.63 ± 0.05 6.87 ± 0.06 11.74 ± 0.06

pc,2 15.25 ± 0.07 17.94 ± 0.05 9.25 ± 0.06 13.00 ± 0.06

pc,3 15.13 ± 0.07 17.59 ± 0.05 8.79 ± 0.06 12.66 ± 0.07

s 8.80 ± 0.04 10.05 ± 0.03 4.76 ± 0.03 11.00 ± 0.02

3 c 5.17 ± 0.03 4.68 ± 0.01 4.67 ± 0.01 4.19 ± 0.01

pc,1 7.37 ± 0.11 5.98 ± 0.02 4.55 ± 0.02 5.09 ± 0.02

pc,2 7.15 ± 0.03 6.83 ± 0.02 5.90 ± 0.02 5.95 ± 0.02

pc,3 7.16 ± 0.02 7.19 ± 0.02 6.24 ± 0.02 6.31 ± 0.02

s 8.81 ± 0.08 7.38 ± 0.02 5.64 ± 0.02 15.13 ± 0.04

4 c 17.73 ± 0.28 5.92 ± 0.03 2.05 ± 0.02 1.97 ± 0.02

pc,2 35.50 ± 0.34 11.40 ± 0.03 5.54 ± 0.04 7.77 ± 0.04

A 7.13 ± 0.04 7.34 ± 0.03 4.68 ± 0.03 4.84 ± 0.03

B 6.84 ± 0.04 7.16 ± 0.03 4.63 ± 0.03 4.74 ± 0.03

C 10.43 ± 0.06 12.25 ± 0.06 7.34 ± 0.05 8.92 ± 0.05

Table 2: Performance Cor(BM) with four different definitions of Ĉ (see text), in some of
the simulation settings considered in the paper. See the text for the definition of s4 . In
each setting, N = 10 000 independent samples have been generated. Next to each value is
indicated the corresponding empirical standard deviation divided by

√
N , measuring the

uncertainty of the estimated performance.
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The latter result actually comes from an artefact, which can be explained by the bias
of σ̂2 as an estimator of σ2

true . Indeed,

E

[
σ̂2
]

=
1

n

n∑

i=1

σ(ti)
2 +

1

n

n/2∑

i=1

(s(t2i) − s(t2i−1))
2 ≥ 1

n

n∑

i=1

σ(ti)
2 = σ2

true . (3)

The difference between these expectations is not negligible in all the settings of the paper.
For instance, when n = 100 , ti = i/n and s = s1 , n−1

∑n
i=1(s(t2i) − s(t2i−1))

2 = 0.04
whereas σ2

true varies between 0.015 (when σ = σpc,1) and 0.093 (when σ = σpc,3). To stress
the influence of the bias on the performance, we introduced s4, which is based on s1 with
its four jumps shifted by 1/200 to the right (that is, with jumps at 0.205, 0.405, 0.605 and

0.805). When s = s4, σ̂2 is an unbiased estimator of σ2
true , which significantly deteriorates

the performances of BM (see Table 2), while the performances of other procedures do not
change.

The reason for this change of performance is that overpenalization improves the results
of BM in most of the considered heteroscedastic settings, as shown by the right panel of
Figure 4 of the main paper. Indeed, penBM is a poor penalty when data are heteroscedastic,
underpenalizing dimensions close to the oracle but overpenalizing the largest dimensions.
Then, in a setting like (s2, σpc,3) multiplying penBM by a factor Cover > 1 helps decreasing
the selected dimension; the same cause has opposite consequences in other settings, such as
(s1, σs) or (s3, σc) . Nevertheless, even choosing Ĉ using both Pn and s , (critBM(D))D>0

remains a poor estimate of
(∥∥s − ŝbmERM(D)

∥∥2

n

)

D>0
in most heteroscedastic settings (even

up to an additive constant). Choosing the overpenalization factor from data is a diffi-
cult problem, especially without knowing a priori whether the signal is homoscedastic or
heteroscedastic. This question deserves a specific extensive simulation experiment. To
be completely fair with CV methods, such an experiment should also compare BM with
overpenalization to V -fold penalization [1] with overpenalization, for choosing the number
of change-points.

To conclude, penBM with Ĉ = σ̂2 is not a reliable change-point detection procedure,
and the apparently good performances observed in Table 2 could be misleading.

Results of Table 2 for Ĉ = σ2
true indicate how far the performances of BM could be

improved without overpenalization. According to Tables 5 and 1, BM with Ĉ = σ2
true

only has significantly better performances than JERM, VF5K or JLoo, VF5K in the three
homoscedastic settings and in setting (s1, σs) .

5 Additional results from the simulation study

In the next pages are presented extended versions of the Tables of the main paper, and
two additional Figures.
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s
·

σ
·

ERM Loo Lpo20 Lpo50 PML
1 c 1.56 ± 0.01 1.56 ± 0.01 1.56 ± 0.01 1.55 ± 0.01 1.57 ± 0.01

pc,1 1.12 ± 0.01 1.14 ± 0.02 1.14 ± 0.02 1.13 ± 0.01 1.14 ± 0.01

pc,2 1.82 ± 0.02 1.81 ± 0.02 1.82 ± 0.02 1.80 ± 0.02 1.85 ± 0.02

pc,3 2.07 ± 0.02 2.07 ± 0.02 2.07 ± 0.02 2.07 ± 0.02 2.19 ± 0.02

s 1.51 ± 0.02 1.51 ± 0.02 1.51 ± 0.02 1.50 ± 0.02 1.56 ± 0.02

2 c 2.87 ± 0.01 2.89 ± 0.01 2.90 ± 0.01 2.96 ± 0.01 3.02 ± 0.01

pc,1 1.33 ± 0.02 1.15 ± 0.02 1.14 ± 0.01 1.11 ± 0.01 1.04 ± 0.01

pc,2 2.91 ± 0.02 2.21 ± 0.02 2.15 ± 0.02 2.02 ± 0.02 1.28 ± 0.01

pc,3 3.14 ± 0.03 2.52 ± 0.02 2.47 ± 0.02 2.36 ± 0.02 1.44 ± 0.01

s 2.98 ± 0.01 2.98 ± 0.01 3.00 ± 0.01 3.08 ± 0.01 3.17 ± 0.01

3 c 3.18 ± 0.01 3.25 ± 0.01 3.29 ± 0.01 3.44 ± 0.01 3.71 ± 0.01

pc,1 3.04 ± 0.02 2.70 ± 0.02 2.71 ± 0.02 2.79 ± 0.02 2.29 ± 0.02

pc,2 4.14 ± 0.02 3.69 ± 0.02 3.72 ± 0.02 3.86 ± 0.02 3.12 ± 0.01

pc,3 4.44 ± 0.02 3.98 ± 0.02 4.00 ± 0.02 4.14 ± 0.02 3.24 ± 0.01

s 3.92 ± 0.01 3.72 ± 0.01 3.75 ± 0.01 3.88 ± 0.01 3.81 ± 0.01

A 3.28 ± 0.02 3.25 ± 0.02 3.28 ± 0.02 3.39 ± 0.02 3.42 ± 0.02

B 3.21 ± 0.02 3.15 ± 0.02 3.18 ± 0.02 3.28 ± 0.02 3.38 ± 0.02

C 4.27 ± 0.03 3.79 ± 0.03 3.79 ± 0.03 3.78 ± 0.03 3.14 ± 0.02

Table 3: Average performance Cor (JP, IdK) for change-point detection procedures P among
ERM , Loo and Lpop with p = 20 and p = 50 . Several regression functions s and noise-
level functions σ have been considered, each time with N = 10 000 independent samples.
Next to each value is indicated the corresponding empirical standard deviation divided by√

N , measuring the uncertainty of the estimated performance.

10 20 30 40
0

0.5

1

[Loo,VF
5
]

dimension

fr
eq

ue
nc

y

10 20 30 40
0

0.5

1
BGH

dimension

fr
eq

ue
nc

y

10 20 30 40
0

0.5

1
ZS

dimension

fr
eq

ue
nc

y

10 20 30 40
0

0.5

1
PML

dimension

fr
eq

ue
nc

y

Figure 4: Empirical distribution of the selected dimension D̂ over N = 10 000 independent
samples, for 4 procedures, in setting (s1, σpc,3) . The true model has dimension D = 5 .
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s
·

σ
·

Id VF5 BM BGH
1 c 1.56 ± 0.01 2.38 ± 0.02 1.70 ± 0.02 1.85 ± 0.02

pc,1 1.12 ± 0.01 2.67 ± 0.03 1.24 ± 0.02 5.83 ± 0.05

pc,2 1.82 ± 0.02 3.20 ± 0.03 3.10 ± 0.03 6.38 ± 0.05

pc,3 2.07 ± 0.02 3.42 ± 0.03 3.81 ± 0.04 6.51 ± 0.04

s 1.51 ± 0.02 2.73 ± 0.03 2.08 ± 0.02 3.83 ± 0.03

2 c 2.87 ± 0.01 3.99 ± 0.02 3.58 ± 0.02 3.52 ± 0.02

pc,1 1.33 ± 0.02 3.64 ± 0.05 6.87 ± 0.06 9.50 ± 0.07

pc,2 2.91 ± 0.02 5.62 ± 0.05 9.25 ± 0.06 10.13 ± 0.07

pc,3 3.14 ± 0.03 5.94 ± 0.06 8.79 ± 0.06 9.77 ± 0.07

s 2.98 ± 0.01 4.34 ± 0.03 4.76 ± 0.03 4.88 ± 0.03

3 c 3.18 ± 0.01 4.31 ± 0.02 4.67 ± 0.01 4.47 ± 0.01

pc,1 3.04 ± 0.02 4.65 ± 0.02 4.55 ± 0.02 4.92 ± 0.02

pc,2 4.14 ± 0.02 5.82 ± 0.02 5.90 ± 0.02 5.93 ± 0.02

pc,3 4.44 ± 0.02 6.13 ± 0.02 6.24 ± 0.02 6.31 ± 0.02

s 3.92 ± 0.01 5.61 ± 0.02 5.64 ± 0.02 5.63 ± 0.02

A 3.28 ± 0.02 4.67 ± 0.03 4.68 ± 0.03 4.85 ± 0.03

B 3.21 ± 0.02 4.61 ± 0.03 4.63 ± 0.03 4.78 ± 0.03

C 4.27 ± 0.03 6.49 ± 0.04 7.34 ± 0.05 7.70 ± 0.05

Table 4: Performance Cor (JERM, PK) for P = Id (that is, choosing the dimension D⋆ :=

arg minD∈Dn

{∥∥s − ŝbmERM(D)

∥∥2

n

}
), P = VFV with V = 5, P = BM or P = BGH . Several

regression functions s and noise-level functions σ have been considered, each time with
N = 10 000 independent samples. Next to each value is indicated the corresponding
empirical standard deviation divided by

√
N , measuring the uncertainty of the estimated

performance.
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Figure 5: Same as Figure 4 in setting (s2, σpc,2) . The true model has dimension D = 5 .
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(s, σ) (s1, σc) (s1, σpc,1) (s1, σpc,2) (s1, σpc,3) (s1, σs)
JLoo,VF5K 2.40 ± 0.02 2.64 ± 0.03 3.17 ± 0.03 3.40 ± 0.03 2.59 ± 0.03

JLpo20,VF5K 2.58 ± 0.02 3.78 ± 0.04 3.29 ± 0.03 3.55 ± 0.04 2.86 ± 0.03

JLpo50,VF5K 2.69 ± 0.03 3.97 ± 0.04 3.60 ± 0.04 3.77 ± 0.04 3.15 ± 0.04

JERM,VF5K 2.38 ± 0.02 2.67 ± 0.03 3.20 ± 0.03 3.42 ± 0.03 2.73 ± 0.03

JERM,BMK 1.70 ± 0.02 1.24 ± 0.02 3.10 ± 0.03 3.81 ± 0.04 2.08 ± 0.02

JERM,BMthrK 5.87 ± 0.03 11.00 ± 0.03 11.20 ± 0.03 11.28 ± 0.03 10.14 ± 0.03

BGH 1.85 ± 0.02 5.83 ± 0.05 6.38 ± 0.05 6.51 ± 0.04 3.83 ± 0.03

ZS 1.71 ± 0.02 2.20 ± 0.03 3.92 ± 0.04 4.41 ± 0.04 2.46 ± 0.03

PML 2.79 ± 0.02 2.48 ± 0.03 3.42 ± 0.03 3.97 ± 0.04 2.72 ± 0.03

(s, σ) (s2, σc) (s2, σpc,1) (s2, σpc,2) (s2, σpc,3) (s2, σs)
JLoo,VF5K 4.02 ± 0.02 3.14 ± 0.04 4.95 ± 0.05 5.24 ± 0.05 4.32 ± 0.03

JLpo20,VF5K 4.10 ± 0.02 3.34 ± 0.05 5.00 ± 0.05 5.26 ± 0.05 4.49 ± 0.03

JLpo50,VF5K 4.44 ± 0.03 4.41 ± 0.06 5.20 ± 0.05 5.54 ± 0.06 4.86 ± 0.03

JERM,VF5K 3.99 ± 0.02 3.64 ± 0.05 5.62 ± 0.05 5.94 ± 0.06 4.34 ± 0.03

JERM,BMK 3.58 ± 0.02 6.87 ± 0.06 9.25 ± 0.06 8.79 ± 0.06 4.76 ± 0.03

JERM,BMthrK 6.97 ± 0.03 17.63 ± 0.05 17.94 ± 0.05 17.59 ± 0.05 10.05 ± 0.03

BGH 3.52 ± 0.02 9.50 ± 0.07 10.13 ± 0.07 9.77 ± 0.07 4.88 ± 0.03

ZS 3.62 ± 0.02 3.36 ± 0.05 6.50 ± 0.05 6.92 ± 0.06 4.16 ± 0.02

PML 4.34 ± 0.02 2.35 ± 0.03 2.73 ± 0.03 2.84 ± 0.03 4.32 ± 0.02

(s, σ) (s3, σc) (s3, σpc,1) (s3, σpc,2) (s3, σpc,3) (s3, σs)
JLoo,VF5K 4.42 ± 0.02 4.22 ± 0.02 5.24 ± 0.02 5.59 ± 0.02 5.35 ± 0.02

JLpo20,VF5K 4.61 ± 0.02 4.62 ± 0.02 5.47 ± 0.02 5.78 ± 0.02 5.55 ± 0.02

JLpo50,VF5K 5.06 ± 0.02 4.84 ± 0.02 5.86 ± 0.02 6.25 ± 0.02 6.03 ± 0.02

JERM,VF5K 4.31 ± 0.02 4.65 ± 0.02 5.82 ± 0.02 6.13 ± 0.02 5.61 ± 0.02

JERM,BMK 4.67 ± 0.01 4.55 ± 0.02 5.90 ± 0.02 6.24 ± 0.02 5.64 ± 0.02

JERM,BMthrK 4.68 ± 0.01 5.98 ± 0.02 6.83 ± 0.02 7.19 ± 0.02 7.38 ± 0.02

BGH 4.47 ± 0.01 4.92 ± 0.02 5.93 ± 0.02 6.31 ± 0.02 5.63 ± 0.02

ZS 5.46 ± 0.02 4.44 ± 0.02 6.63 ± 0.02 6.61 ± 0.02 6.31 ± 0.02

PML 5.05 ± 0.02 3.70 ± 0.03 4.67 ± 0.03 4.99 ± 0.03 5.52 ± 0.02

Table 5: Performance Cor(P) for several change-point detection procedures P . ‘BMthr’

refers to BM with Ĉ = 2K̂thresh. (see Section 4), whereas ‘BM’ correspond to Ĉ = 2σ̂2

as everywhere in the main paper. Several regression functions s and noise-level functions
σ have been considered, each time with N = 10 000 independent samples. Next to each
value is indicated the corresponding empirical standard deviation.
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(s, σ) (s4, σc) (s4, σpc,2)
JLoo,VF5K 2.36 ± 0.02 3.17 ± 0.03

JLpo20,VF5K 2.53 ± 0.02 3.32 ± 0.03

JLpo50,VF5K 2.64 ± 0.03 3.62 ± 0.04

JERM,VF5K 2.38 ± 0.02 3.24 ± 0.03

JERM,BMK 2.05 ± 0.02 5.54 ± 0.04

JERM,BMthrK 5.92 ± 0.03 11.40 ± 0.03

BGH 1.85 ± 0.02 6.54 ± 0.05

ZS 1.70 ± 0.02 4.00 ± 0.04

PML 2.77 ± 0.02 3.55 ± 0.04

Table 6: Same as Table 5 with s = s4.

(s, σ) (s2, σpc,2) (s2, σpc,3) (s3, σpc,2) (s3, σpc,3)
JLoo,VF5K 4.47 ± 0.05 4.69 ± 0.06 4.80 ± 0.03 5.11 ± 0.03

JLpo20,VF5K 4.62 ± 0.06 4.88 ± 0.06 5.03 ± 0.03 5.29 ± 0.03

JLpo50,VF5K 5.22 ± 0.07 5.54 ± 0.07 5.45 ± 0.03 5.83 ± 0.03

JERM,VF5K 5.98 ± 0.07 6.31 ± 0.07 5.82 ± 0.04 6.22 ± 0.04

JERM,BMK 10.81 ± 0.09 10.31 ± 0.09 6.09 ± 0.04 6.45 ± 0.04

JERM,BMthrK 17.83 ± 0.09 17.26 ± 0.08 6.60 ± 0.03 6.99 ± 0.03

BGH 11.67 ± 0.09 11.15 ± 0.09 5.94 ± 0.03 6.42 ± 0.04

ZS 9.34 ± 0.09 9.29 ± 0.09 6.60 ± 0.04 6.83 ± 0.04

PML 5.04 ± 0.06 5.00 ± 0.06 5.17 ± 0.03 5.40 ± 0.03

Table 7: Same as Table 5 with εi having an exponential distribution.
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