Abstracts

Data-driven penalties for linear estimators selection

Sylvain Arlot (joint work with Francis Bach)

We consider the fixed-design regression framework, where one observes

$$Y = (Y_1, \ldots, Y_n) = F + \varepsilon \in \mathbb{R}^n$$

where $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d., with $\mathbb{E}[\varepsilon_1] = 0$ and $\mathbb{E}[\varepsilon_1^2] = \sigma^2$. The goal is to find from data some $t \in \mathbb{R}^n$ having a small least-squares loss

$$n^{-1} ||t - F||_2^2 = \frac{1}{n} \sum_{i=1}^n (t_i - F_i)^2$$

We then tackle the problem of selecting among several linear estimators, i.e., of the form

$$\widehat{F}_{\lambda} = A_{\lambda}Y$$

where A_{λ} is a deterministic $n \times n$ matrix. This problem includes:

- model selection for linear regression,
- the choice of a regularization parameter in kernel ridge regression or spline smoothing,
- the choice of a kernel in multiple kernel learning,
- the choice of the number of neighbors (and of a distance in the feature space) for nearest-neighbor regression,
- the choice of a bandwidth (and of a kernel function) for Nadaraya-Watson estimators.

Given a family $(A_{\lambda})_{\lambda \in \Lambda}$ of matrices, the goal is to choose some data-driven $\widehat{\lambda} \in \Lambda$ such that the corresponding estimator $\widehat{F}_{\widehat{\lambda}}$ has a quadratic risk $n^{-1}\mathbb{E}\|\widehat{F}_{\widehat{\lambda}} - F\|^2$ as small as possible. When $\operatorname{Card}(\Lambda) \leq Kn^{\alpha}$ for some $K, \alpha \geq 0$, a well-known strategy is to follow the *unbiased risk estimation principle*, *i.e.*, to choose $\widehat{\lambda}$ by minimizing over $\lambda \in \Lambda$ an unbiased estimator of $n^{-1}\mathbb{E}\|\widehat{F}_{\lambda} - F\|_2^2$. In particular, penalization methods select

(1)
$$\widehat{\lambda} \in \arg\min_{\lambda \in \Lambda} \left\{ n^{-1} \|\widehat{F}_{\lambda} - Y\|_{2}^{2} + \operatorname{pen}(\lambda) \right\} ,$$

where pen : $\Lambda \to \mathbb{R}$ is called a penalty. Following the unbiased risk estimation principle, for every $\lambda \in \Lambda$, pen should be close to $n^{-1} \|\widehat{F}_{\lambda} - F\|_2^2 - n^{-1} \|\widehat{F}_{\lambda} - Y\|_2^2$.

Under mild conditions, concentration inequalities show that the risk $n^{-1} \| \widehat{F}_{\lambda} F||_2^2$ and the empirical risk $n^{-1}||\widehat{F}_{\lambda} - Y||_2^2$ both are close to their respective expectation. Therefore, the two key quantities in our problem are

(2)
$$\mathbb{E}\left[n^{-1}\|\widehat{F}_{\lambda} - F\|_{2}^{2}\right] = \frac{\|(A_{\lambda} - I_{n})F\|_{2}^{2}}{n} + \frac{\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})\sigma^{2}}{n} = \operatorname{bias} + \operatorname{variance} ,$$

(3)
$$\mathbb{E}\left[n^{-1}\left\|\widehat{F}_{\lambda}-Y\right\|_{2}^{2}\right] = \frac{\left\|(A_{\lambda}-I_{n})F\right\|_{2}^{2}}{n} - \frac{\left(2\operatorname{tr}(A_{\lambda})-\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})\right)\sigma^{2}}{n} + \sigma^{2}.$$

By (2), (3) and the unbiased risk estimation principle, an optimal penalty in (1) would be

(4)
$$\operatorname{pen}_{opt}(\lambda) = \mathbb{E}\left[n^{-1} \|\widehat{F}_{\lambda} - F\|_{2}^{2}\right] - \mathbb{E}\left[n^{-1} \|\widehat{F}_{\lambda} - Y\|_{2}^{2}\right] - \sigma^{2} = \frac{2\operatorname{tr}(A_{\lambda})\sigma^{2}}{n}$$

known as Mallows' C_L penalty [7]; its main drawback is its dependence on σ^2 , usually unknown. Note that $tr(A_{\lambda})$ is often called *generalized degrees of freedom*.

We extend the notion of *minimal penalty* [4, 3] in order to define an estimator of σ^2 that could be plugged into (4) for designing a fully data-driven penalty. Indeed, let

$$\operatorname{pen}_{\min}(\lambda) = \frac{\left(2\operatorname{tr}(A_{\lambda}) - \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})\right)\sigma^{2}}{n}$$

and $\forall C > 0, \quad \widehat{\lambda}_{\min}(C) \in \operatorname{arg\,min}_{\lambda \in \Lambda}\left\{n^{-1}\|\widehat{F}_{\lambda} - Y\|_{2}^{2} + C\operatorname{pen}_{\min}(\lambda)\right\}$

By (3), up to concentration inequalities that are detailed in [1, 2], $\widehat{\lambda}_{\min}(C)$ behaves like a minimizer of

$$g_C(\lambda) = \mathbb{E}\left[\frac{\|\widehat{F}_{\lambda} - Y\|_2^2}{n} + C \operatorname{pen}_{\min}(\lambda)\right] - \sigma^2 = \frac{\|(A_{\lambda} - I_n)F\|_2^2}{n} + (C-1)\operatorname{pen}_{\min}(\lambda)$$

Therefore, two main cases can be distinguished:

- if C < 1, then $g_C(\lambda)$ decreases with $\operatorname{tr}(A_{\lambda})$ so that $\operatorname{tr}(A_{\widehat{\lambda}_{\min}(C)})$ is huge: $\lambda_{\min}(C)$ overfits.
- if C > 1, then $g_C(\lambda)$ increases with $\operatorname{tr}(A_{\lambda})$ when $\operatorname{tr}(A_{\lambda})$ is large enough, so that $\operatorname{tr}(A_{\widehat{\lambda}_{\min}(C)})$ is much smaller than when C < 1.

As a conclusion, $pen_{min}(\lambda)$ is the minimal amount of penalization needed so that a minimizer $\hat{\lambda}$ of a penalized criterion is not clearly overfitting.

Since $\sigma^{-2} \text{pen}_{\min}(\lambda)$ is known, we deduce the following algorithm:

Input: Λ a finite set with $\operatorname{Card}(\Lambda) \leq Kn^{\alpha}$ for some $K, \alpha \geq 0$, and matrices A_{λ} .

- $\forall C > 0$, compute $\widehat{\lambda}_0(C) = \widehat{\lambda}_{\min}(C\sigma^{-2}) \in \arg \min_{\lambda \in \Lambda} \{ \|\widehat{F}_{\lambda} Y\|_2^2 + \|\widehat{F}_{\lambda} Y\|_2^2 \}$ $C(2\mathrm{tr}(A_{\lambda}) - \mathrm{tr}(A_{\lambda}^{\top}A_{\lambda}))\}.$ • Find \widehat{C} corresponding to the largest jump of $C \to \mathrm{tr}(A_{\widehat{\lambda}_{0}(C)})$.

Output: $\widehat{\lambda} \in \arg \min_{\lambda \in \Lambda} \{ \|\widehat{F}_{\lambda} - Y\|_2^2 + 2\widehat{C} \operatorname{tr}(A_{\lambda}) \}.$

We prove in [1, 2] that if the ε_i are Gaussian, under mild assumptions on the bias term $\|(A_{\lambda} - I_n)F\|_2^2$, then $|\sigma^{-2}\hat{C} - 1| \leq \kappa \sqrt{\ln(n)}n^{-1/4}$ with large probability, for some constant $\kappa > 0$. Furthermore, we deduce that $\hat{\lambda}$ satisfies an oracle inequality with leading constant $1 + \epsilon_n$ on an event of probability at least $1 - n^{-2}$.

Previous results on minimal penalties [4, 3, 6] considered the case of projection estimators, for which $\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) = \operatorname{tr}(A_{\lambda})$, so that the minimal penalty is exactly half the optimal penalty. Our result shows that for general linear estimators, the optimal and minimal penalties have different shapes, and their ratio

$$\frac{\mathrm{pen}_{\mathrm{opt}}(\lambda)}{\mathrm{pen}_{\min}(\lambda)} = \frac{2\mathrm{tr}(A_{\lambda})}{2\mathrm{tr}(A_{\lambda}) - \mathrm{tr}(A_{\lambda}^{\top}A_{\lambda})}$$

can take any value in (1; 2].

Simulation experiments with kernel ridge regression and multiple kernel learning show that the proposed algorithm often improves significantly existing calibration procedures such as 10-fold cross-validation or generalized cross-validation [5], for moderate values of the sample size [1, 2].

References

- S. Arlot and F. Bach, Data-driven calibration of linear estimators with minimal penalties, In Advances in Neural Information Processing Systems 22 (2009).
- S. Arlot and F. Bach, Data-driven calibration of linear estimators with minimal penalties, arXiv:0909.1884v1 (2009).
- [3] S. Arlot and P. Massart, Data-driven calibration of penalties for least-squares regression, Journal of Machine Learning Research 10 (2009), 245–279.
- [4] L. Birgé and P. Massart, Minimal penalties for Gaussian model selection, Probability Theory and Related Fields, 138 (2007), 33–73.
- [5] P. Craven and G. Wahba, Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation, Numerische Mathematik 31 (1978/79), 377–403.
- M. Lerasle, Optimal model selection in density estimation, http://hal.archivesouvertes.fr/hal-00422655/en/ (2009).
- [7] C. L. Mallows, Some comments on C_p, Technometrics 15 (1973), 661–675.