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We consider the fixed-design regression framework, where one observes

Y = (Y1, . . . , Yn) = F + ε ∈ Rn ,

where ε1, . . . , εn are i.i.d., with E[ε1] = 0 and E[ε2
1] = σ2 . The goal is to find from

data some t ∈ Rn having a small least-squares loss

n−1 ‖t− F‖2
2 =

1
n

n∑
i=1

(ti − Fi)2 .

We then tackle the problem of selecting among several linear estimators, i.e., of
the form

F̂λ = AλY ,

where Aλ is a deterministic n× n matrix. This problem includes:

• model selection for linear regression,
• the choice of a regularization parameter in kernel ridge regression or spline

smoothing,
• the choice of a kernel in multiple kernel learning,
• the choice of the number of neighbors (and of a distance in the feature

space) for nearest-neighbor regression,
• the choice of a bandwidth (and of a kernel function) for Nadaraya-Watson

estimators.

Given a family (Aλ)λ∈Λ of matrices, the goal is to choose some data-driven λ̂ ∈ Λ
such that the corresponding estimator F̂bλ has a quadratic risk n−1E‖F̂bλ − F‖2 as
small as possible. When Card(Λ) ≤ Knα for some K, α ≥ 0 , a well-known strategy
is to follow the unbiased risk estimation principle, i.e., to choose λ̂ by minimizing
over λ ∈ Λ an unbiased estimator of n−1E‖F̂λ − F‖2

2 . In particular, penalization
methods select

(1) λ̂ ∈ arg min
λ∈Λ

{
n−1‖F̂λ − Y ‖2

2 + pen(λ)
}

,

where pen : Λ → R is called a penalty. Following the unbiased risk estimation

principle, for every λ ∈ Λ , pen should be close to n−1‖F̂λ−F‖2
2−n−1

∥∥∥F̂λ − Y
∥∥∥2

2
.
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Under mild conditions, concentration inequalities show that the risk n−1‖F̂λ −
F‖2

2 and the empirical risk n−1‖F̂λ−Y ‖2
2 both are close to their respective expec-

tation. Therefore, the two key quantities in our problem are

E
[
n−1‖F̂λ − F‖2

2

]
=
‖(Aλ − In)F‖2

2

n
+

tr(A>λ Aλ)σ2

n
= bias + variance ,(2)

E
[
n−1

∥∥∥F̂λ − Y
∥∥∥2

2

]
=
‖(Aλ − In)F‖2

2

n
−

(
2tr(Aλ)− tr(A>λ Aλ)

)
σ2

n
+ σ2 .(3)

By (2), (3) and the unbiased risk estimation principle, an optimal penalty in
(1) would be

(4) penopt(λ) = E
[
n−1‖F̂λ − F‖2

2

]
− E

[
n−1

∥∥∥F̂λ − Y
∥∥∥2

2

]
− σ2 =

2tr(Aλ)σ2

n
,

known as Mallows’ CL penalty [7]; its main drawback is its dependence on σ2 ,
usually unknown. Note that tr(Aλ) is often called generalized degrees of freedom.

We extend the notion of minimal penalty [4, 3] in order to define an estimator of
σ2 that could be plugged into (4) for designing a fully data-driven penalty. Indeed,
let

penmin(λ) =

(
2tr(Aλ)− tr(A>λ Aλ)

)
σ2

n

and ∀C > 0, λ̂min(C) ∈ arg min
λ∈Λ

{
n−1‖F̂λ − Y ‖2

2 + Cpenmin(λ)
}

.

By (3), up to concentration inequalities that are detailed in [1, 2], λ̂min(C) behaves
like a minimizer of

gC(λ) = E

[
‖F̂λ − Y ‖2

2

n
+ Cpenmin(λ)

]
−σ2 =

‖(Aλ − In)F‖2
2

n
+(C−1)penmin(λ) .

Therefore, two main cases can be distinguished:
• if C < 1 , then gC(λ) decreases with tr(Aλ) so that tr(Abλmin(C)) is huge:

λ̂min(C) overfits.
• if C > 1 , then gC(λ) increases with tr(Aλ) when tr(Aλ) is large enough,

so that tr(Abλmin(C)) is much smaller than when C < 1 .

As a conclusion, penmin(λ) is the minimal amount of penalization needed so that
a minimizer λ̂ of a penalized criterion is not clearly overfitting.

Since σ−2penmin(λ) is known, we deduce the following algorithm:
Input: Λ a finite set with Card(Λ) ≤ Knα for some K, α ≥ 0 , and matrices Aλ .

• ∀C > 0 , compute λ̂0(C) = λ̂min(Cσ−2) ∈ arg minλ∈Λ{‖F̂λ − Y ‖2
2 +

C(2tr(Aλ)− tr(A>λ Aλ))} .
• Find Ĉ corresponding to the largest jump of C → tr(Abλ0(C)) .

Output: λ̂ ∈ arg minλ∈Λ{‖F̂λ − Y ‖2
2 + 2Ĉtr(Aλ)} .
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We prove in [1, 2] that if the εi are Gaussian, under mild assumptions on the bias
term ‖(Aλ − In)F‖2

2 , then |σ−2Ĉ − 1| ≤ κ
√

ln(n)n−1/4 with large probability, for
some constant κ > 0 . Furthermore, we deduce that λ̂ satisfies an oracle inequality
with leading constant 1 + εn on an event of probability at least 1− n−2 .

Previous results on minimal penalties [4, 3, 6] considered the case of projection
estimators, for which tr(A>λ Aλ) = tr(Aλ) , so that the minimal penalty is exactly
half the optimal penalty. Our result shows that for general linear estimators, the
optimal and minimal penalties have different shapes, and their ratio

penopt(λ)
penmin(λ)

=
2tr(Aλ)

2tr(Aλ)− tr(A>λ Aλ)

can take any value in (1; 2] .

Simulation experiments with kernel ridge regression and multiple kernel learning
show that the proposed algorithm often improves significantly existing calibration
procedures such as 10-fold cross-validation or generalized cross-validation [5], for
moderate values of the sample size [1, 2].
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