
SEARNN: Training RNNs with global-local losses

Rémi Leblond * 1 2 Jean-Baptiste Alayrac * 1 2 Anton Osokin 1 2 Simon Lacoste-Julien 3

Abstract

We propose SEARNN, a novel training algorithm
for recurrent neural networks (RNNs) inspired by
the “learning to search” (L2S) approach. RNNs
have been widely successful in structured predic-
tion tasks such as machine translation or parsing,
and are commonly trained using maximum likeli-
hood estimation (MLE). Unfortunately, this train-
ing loss is not always an appropriate surrogate
for the test error: by only maximizing the ground
truth probability, it fails to exploit the wealth of
information offered by structured losses. Further,
it introduces discrepancies between training and
predicting that may hurt test performance. In-
stead, SEARNN leverages test-alike search space
exploration to introduce global-local losses that
are closer to the test error. We demonstrate im-
proved performance over MLE on 3 different
tasks: OCR, spelling correction and text chunk-
ing. Finally, we propose a subsampling strategy
to enable SEARNN to scale to large vocabulary
sizes.

1. Introduction
Recurrent neural networks (RNNs) have been recently quite
successful in structured prediction applications, e.g. ma-
chine translation (Sutskever et al., 2014). These models
use the same repeated cell (or unit) to output a sequence of
tokens one by one. As each prediction takes into account
all its predecessors, this cell learns to output the next token
conditioned on the previous ones. The standard training
loss is derived from maximum likelihood estimation (MLE):
we consider that the cell outputs a probability distribution
at each step in the sequence, and we seek to maximize the
probability of the ground truth.

Unfortunately, this training loss is not a particularly close
surrogate to the various test errors we want to minimize.
A striking example of discrepancy is that the MLE loss is
close to 0/1: it makes no distinction between candidates that
are close or far away from the ground truth (with respect
to the structured test error), thus failing to exploit valuable
information. Another train/test discrepancy is the exposure

*Equal contribution 1INRIA, Paris 2ENS, Paris 3UdeM, Mon-
tréal. Correspondence to: Rémi Leblond <remi.leblond@inria.fr>.

or exploration bias (Ranzato et al., 2016): in traditional
MLE training the cell learns the conditional probability of
the next token, based on previous ground truth tokens – this
is referred to as teacher forcing. But at test time the model
does not have access to the ground truth, and thus feeds its
own previous predictions to its cell for prediction instead.

To address these issues, we propose to use ideas from the
structured prediction field, in particular from the “learning to
search” (L2S) approach introduced by Daumé et al. (2009).

Outline. In § 2, we detail the limitations of MLE training.
In § 3, we make explicit the strong links between RNNs and
L2S. In § 4, we present SEARNN, a novel training algorithm
for RNNs, using ideas from L2S to derive a global-local
loss that is closer to the test error than MLE. We show that
SEARNN leads to significant improvements on 3 difficult
structured prediction tasks. As this algorithm is quite costly,
in § 5 we propose a subsampling strategy that allows us
to considerably reduce training times while maintaining
improved performance compared to MLE. Finally, in § 6
we contrast our novel approach to the related work.

2. Limitations of traditional RNN training
RNNs are a large family of neural network models aimed
at representing sequential data. To do so, they produce
a sequence of states (h1, ..., hT) by recursively applying
the same transformation (or cell) f on the sequential data:
ht = f(ht−1, yt−1, x), given an optional input x.

We focus on a subset of this family typically used for struc-
tured prediction, where we want to model the joint prob-
ability of a target sequence y1, . . . , yTx

given an input x
(e.g. the decoder RNN in the encoder-decoder architec-
ture (Sutskever et al., 2014)). Here A is the alphabet of
output tokens and Tx is the length of the output sequence as-
sociated with input x (though Tx may take different values,
in the following we drop the dependency in x and use T for
simplicity). To achieve this modeling, we add a projection
layer over ht to obtain a vector of scores st over all tokens
a ∈ A, and a softmax normalizer layer to get a distribution
ot over A. ot is interpreted as the predictive conditional
distribution for the tth token given by the RNN model, i.e.
p(a|y1:t−1, x) := ot(a) for a ∈ A. Multiplying the values
ot(yt) together yields the joint probability of the sequence
y defined by the RNN (thanks to the chain rule):

p(y1:T |x) = p(y1|x) ... p(yT |y1:T−1, x) := ΠT
t=1ot(yt) .

SEARNN: Training RNNs with global-local losses

The underlying structure of these RNNs as graphical models
is thus the complete graph. To decode, one uses beam search
or greedy predictions ŷt := arg maxa∈A p(a|ŷ1:t−1, x).

In the “teacher forcing” regimen, the inputs to the RNN cell
are the ground truth tokens (as opposed to its own greedy
predictions). We get the probability of each ground truth
sequence according to the RNN model, allowing us to derive
a training loss from MLE. Although the individual output
probabilities are at token level, the MLE loss involves the
joint probability (via chain rule) and is thus sequence level.

The limitations of MLE training. MLE training suffers
from exposure or exploration bias (Ranzato et al., 2016).
When training with teacher forcing, the model learns the
probabilities of the next tokens conditioned on the ground
truth. But at test time, the model does not have access to
the ground truth and outputs probabilities are conditioned
on its own previous predictions instead. Therefore if the
predictions differ from the ground truth, the model continues
based on an exploration path it has not seen in training,
meaning that it is less likely to make accurate predictions.

The second major issue is the discrepancy between the train-
ing loss and the various test errors (e.g. edit distance, F1
score...). Of course, a single surrogate is not likely be a
good approximation for all these errors. For example, MLE
ignores most of the information given by a structured loss.
As it only focuses on maximizing the probability of the
ground truth, it does not distinguish between a prediction
that is close to the ground truth and one that is far away.

These issues motivate exploring new ways of training RNNs.
This field has attracted a lot of interest in the past few years.
Contrary to many papers which try to adapt ideas coming
from reinforcement learning, we focus on the links we can
draw with structured prediction, and in particular with L2S.

3. Links between RNNs and L2S
The main idea behind the L2S approach to structured pre-
diction is reduction: transforming a complex problem into a
simpler one. To achieve this, Daumé et al. (2009) propose
in their SEARN algorithm to train a shared local classifier to
predict each token sequentially (conditioned on all inputs
and all past tokens), thus searching greedily step by step in a
big combinatorial space. A central idea is that tokens can be
predicted one at a time, conditioned on their predecessors.

The training procedure is iterative: at the beginning of each
round, one uses the current model or policy to build an inter-
mediate cost-sensitive dataset to train the shared classifier,
where each sample is accompanied by a cost vector contain-
ing one entry for each a ∈ A. To obtain these cost vectors,
one first applies a roll-in strategy to predict all the tokens up
to T , thus building one trajectory (in the search space) per
sample. Then, at each time step, one picks arbitrarily each

possible token (diverging from the roll-in trajectory) and
continues predicting to finish the modified trajectories using
a roll-out strategy. Computing the costs of all the obtained
sequences yields T vectors (one per time step) of size A
(the number of tokens) for every sample. Figure 1 describes
a similar process for our SEARNN algorithm.

One then extracts features from the “state” at each time step
t (i.e. the full input and the previous tokens predicted up to t
during the roll-in). Combining the cost vectors to these fea-
tures yields the intermediary dataset. The original problem
is thus reduced to multi-class cost-sensitive classification.
Once the shared classifier has been fully trained on this new
dataset, the policy is updated for the next round.

Roll-in and roll-out strategies. These strategies fulfill
different roles. The roll-in policy controls what part of
the search space the algorithm explores, while the roll-out
policy determines how the cost of each token is computed.
Alternatives for both are explored by Chang et al. (2015).
The reference policy tries to pick the optimal action based
on the ground truth. During the roll-in, it corresponds to
picking the ground truth. For the roll-out, while an optimal
policy is easy to compute in some cases (for the Hamming
loss, simply copying the ground truth is optimal), it is often
intractable. One then uses a heuristic (for us, the reference
policy is always to copy the ground truth for both roll-in and
roll-out). The learned policy simply uses the current model
instead, and the mixed policy stochastically combines both.
The best strategy when the reference policy is poor is to use
a learned roll-in and a mixed roll-out (Chang et al., 2015).

Links to RNNs. One can identify the following interest-
ing similarities between a greedy approach to RNNs and
L2S. Both models handle sequence labeling problems by
outputting tokens recursively, conditioned on past decisions.
Further, the RNN “cell” is shared at each time step and can
thus also be seen as a shared local classifier that is used to
make structured predictions, as in the L2S framework.

However, many differences remain. E.g., while there is a
clear equivalent to the roll-in strategy in RNNs, i.e. the
decision to train with or without teacher forcing, there are
no roll-outs in standard RNN training. Can we use ideas
coming from L2S – which leverages structured losses infor-
mation – to mitigate the issues of MLE training for RNNs?

4. Improving RNN training with L2S
We can obtain structured loss information in the same fash-
ion as L2S: through the roll-out policy. While in some
structured prediction tasks the “cost-to-go” that the roll-
out yields is free or easily computable, we are interested in
cases where this information is unavailable, and roll-outs are
needed to approximate it (e.g. machine translation). This
leads to several questions: how can we integrate roll-outs
in a RNN? Which training loss do we use to leverage this

SEARNN: Training RNNs with global-local losses

Figure 1. Illustration of the roll-in/roll-out mechanism used in
SEARNN. To define a cost sensitive loss to train the network
we need a vector of costs for each cell of the RNN. Here, we show
how to obtain the vector of costs for the red cell. First, we use a
roll-in policy to predict until the red cell. Here, we use the learned
strategy: the network feeds its own prediction to the next cell.
Second, the roll-out phase. We feed every possible token (the red
letters) to the next cell and let the model predict the full sequence.
For each token a, we obtain a predicted sequence ŷa. Comparing
it to the ground truth sequence y yields the associated cost c(a).

added information? Is it computationally tractable?

The SEARNN Algorithm. We borrow from L2S the idea
of using a global loss for each local cell of the RNN. We
first compute a roll-in trajectory, following a specific roll-in
strategy. Then, at each step t of this trajectory, we compute
the costs ct(a) associated with each token a, by picking a at
step t and then following a roll-out strategy to finish the se-
quence ŷa. ŷa is compared to the ground truth using the test
error itself. We use this information to derive a cost-sensitive
training loss for each cell. The full process is illustrated
in Fig 1. Our losses are global-local, as they appear at the
local level but contain sequence-level information.

Choosing a multi-class classifier. As the RNN cell can
serve as a multi-class classifier, in SEARNN we could use it
as our shared classifier, contrary to L2S. Instead, we pick the
RNN itself, thus getting a (deep) shared classifier that also
learns the features. Arbitrarily picking a token a during the
roll-out phase can be done by emulating the teacher forcing
technique: when decisions are fed back, we feed a to the
next cell (instead of the cell’s prediction).

Choosing a cost-sensitive loss. The traditional loss in
L2S is quite difficult to adapt to as a neural layer. Instead,
we simply work with the multi-class classifier encoded by
the RNN cell with training losses defined next.

A central idea in L2S is to learn the target tokens the model
should aim for. This is more meaningful than blindly aiming
for the ground truth, especially when the model deviates
from the ground truth trajectory. Following this idea, we
define 2 losses at the cell level (the global loss is the sum of
the T losses). st(a) is the score output by cell t for token a.

Log-loss (LL). Our first loss is a simple log-loss with the
minimal cost action, a? := arg mina∈A c(a), as target:

Lt(st; ct) = − log
(
est(a

?)
/∑A

i=1 e
st(i)

)
.

It is structurally similar to MLE, which is an advantage
from an optimization perspective as RNNs have mostly been

Dataset MLE
LL LLCAS

roll-in learned reference learned learned reference learned
roll-out mixed learned learned mixed learned learned

OCR 2.8 1.9 2.5 1.8 1.9 2.4 1.9
CoNLL 4.2 3.7 6.1 5.6 5.8 5.3 5.1

Spelling 0.3 19.6 17.8 19.5 17.9 17.7 19.6 17.7
0.5 43.0 37.3 43.3 37.5 37.1 43.3 38.2

Table 1. Comparison of the SEARNN algorithm with MLE for
different cost sensitive losses and different roll-in/out strategies.

trained using MLE. Note that when the reference policy is to
always copy the ground truth (which is sometimes optimal),
a? is always the ground truth action. LL with reference
roll-in and roll-out is in this case equivalent to MLE.

Log-loss with cost-augmented softmax (LLCAS). LL
is a bit wasteful with our structured information as we are
only exploiting the minimal cost value. To exploit it better,
we add the full costs in the exponential, as is standard:

Lt(st; ct) = − log
(
est(a

?)+ct(a
?)
/∑A

i=1 e
st(i)+ct(i)

)
.

The associated gradient update discriminates between to-
kens based on their costs. It leverages the structured loss
information and thus mitigates the 0/1 nature of MLE better.

Optimization. Note that we do not need the test error
to be differentiable, as our costs ct(a) are fixed when we
minimize our training loss. As RNNs are typically trained
using stochastic gradient descent, we adopt it by selecting
a random mini-batch of samples at each round, instead of
the full dataset as in SEARN. We also do a single gradient
step with the associated loss (contrary to SEARN where the
reduced classifier is fully trained at each round).

Expected benefits. First, our losses leverage the test er-
ror, leading to potentially much better surrogates than MLE.
Second, our training losses leverage the structured infor-
mation contained in the computed costs, contrary to MLE
which ignores nuances between good and bad candidates.
Our hypothesis is that the more complex the error, the more
SEARNN improves performance. Third, the exploration
bias in teacher forcing can be mitigated by using a “learned”
roll-in strategy. Fourth, the loss at each cell is global, as the
costs are computed on full sequences. This may help with
the vanishing gradients problem prevalent in RNN training.

Experiments. We ran SEARNN on an encoder-decoder
model on 3 datasets and compared its performance against
MLE: the OCR task from (Taskar et al., 2003), the CoNNL
text chunking task (Tjong Kim Sang and Buchholz, 2000)
and the spelling correction task from Bahdanau et al. (2017).
For the first two, we use the Hamming error to compute
costs, and report the total normalized Hamming error. The
third task is to recover correct text from a corrupted version
where characters are replaced by random ones with fixed
probability. We provide results for two datasets generated
with replacement probabilities 0.3 and 0.5. We use the edit
distance as our cost. Results are given in Table 1.

SEARNN: Training RNNs with global-local losses

Dataset MLE LL LLCAS

uni. stat. pol. bias. top-k uni. stat. pol. bias. top-k

OCR 2.84 1.94 1.50 1.96 1.84 2.13 2.03 2.33 1.50 2.37 1.94

Spelling 0.3 19.6 17.7 17.8 17.9 17.7 17.8 18.8 18.7 17.7 17.7 18.2
0.5 43.0 37.0 36.9 37.3 36.6 36.6 37.6 37.7 37.0 37.8 40.5

Table 2. Performance of SEARNN using subsampling.

Key takeaways. First, SEARNN outperforms MLE signif-
icantly on all tasks, confirming the benefits of leveraging
structured information. Second, the best roll-in/out strategy
appears to be combining a learned roll-in and a mixed roll-
out, which is consistent with the claims from Chang et al.
(2015). Third, the spelling task shows that the harder the
task is, the more SEARNN improves over MLE.

5. Scaling up SEARNN

SEARNN’s improvements are expensive, as AT roll-outs
(forward passes) are required to compute costs. So SEARNN
is not directly applicable to tasks with large vocabulary size.
To mitigate this issue, we only compute cost vectors for a
subsample of all tokens. We can expect a large speedup, as
the total number of roll-outs is proportional to this quantity.

Sampling strategies. We explore several different possi-
bilities. Uniform sampling, sampling according to corpus-
wide statistics, and 3 samplings using the current state of
our model: stochastic policy sampling (where we pick ac-
cording to the current stochastic policy), a biased version
of policy sampling where we boost the scores of the low-
probability tokens, and a top-k strategy where we take the
top k actions according to the current policy. Note that in
all strategies we always sample the ground truth action to
make sure that our performance is at least as good as MLE.

Experiments. We run the method on 2 datasets that we
used in the previous section, with different samplings and
training losses. We use the learned strategy for roll-in and
the mixed one for roll-out and we sample 5 tokens per cell.

Key takeaways. Results are given in Table 2. First, sub-
sampling appears to be a viable strategy as we recover all
of the improvements of SEARNN while only sampling a
fraction of tokens. Second, as deciding on a best sampling
strategy is hard, a mixture may be the best option. Finally,
this sampling technique yields a 5× speedup.

6. Comparison to RL-inspired approaches
In structured prediction tasks, we have access to ground
truth trajectories, contrary to traditional RL. An active area
of research is to adapt RL techniques to leverage this richer
information: the idea is to optimize the expectation of the
test error directly (under the RNN’s stochastic policy):

L(θ) = −
∑N
i=1 E(yi1,..,y

i
T)∼π(θ)r(y

i
1, .., y

i
T) .

As the only term depending on the parameters is the policy,
this loss function supports non-differentiable test errors. Of

course, actually computing the expectation over an exponen-
tial number of possibilities is computationally intractable.
Approximating it can be done either by sampling trajectories
according to the learned policy (Shen et al., 2016), by using
the REINFORCE algorithm (i.e. sampling a single trajectory,
see Ranzato et al. (2016)), or by training a critic network as
in the ACTOR-CRITIC algorithm (Bahdanau et al., 2017).

While these approaches report improvement on various
tasks, they only work when initialized from a good pre-
trained model. This is often explained by the sparsity of
the information contained in “sequence-level” losses. In-
deed, in the case of REINFORCE, all tokens are pushed up or
down depending on whether the trajectory is above a global
baseline, without distinction. Good tokens are sometimes
penalized and bad tokens rewarded.

In contrast, SEARNN uses “global-local” losses, where a
local loss attached to each step is based on costs computed
on full sequences. As a result, SEARNN does not require
warm-starting to achieve good experimental performance.
This matters because warm-starting means initializing in a
specific region of parameter space which may be hard to
escape. Exploration is less constrained when starting from
scratch, leading to potentially larger gains over MLE.

Finally, the RL approach of minimizing the expected reward
introduces a discrepancy between training and testing: at test
time, one does not decode by sampling from the stochastic
policy. Instead, one selects the best performing sequence.
SEARNN avoids this averse effect by computing costs with
the same decoding technique as the one used at test time, so
that its loss can be even closer to the test loss.

References
D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau,

A. Courville, and Y. Bengio. An actor-critic algorithm for
sequence prediction. In ICLR, 2017.

K.-W. Chang, A. Krishnamurthy, A. Agarwal, H. Daumé, III, and
J. Langford. Learning to search better than your teacher. In
ICML, 2015.

H. Daumé, III, J. Langford, and D. Marcu. Search-based structured
prediction. Machine Learning, 2009.

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence level
training with recurrent neural networks. In ICLR, 2016.

S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and Y. Liu.
Minimum risk training for neural machine translation. ACL,
2016.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In NIPS, 2014.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov net-
works. In NIPS, 2003.

E. F. Tjong Kim Sang and S. Buchholz. Introduction to the CoNLL-
2000 shared task: Chunking. In CoNLL, 2000.

