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Abstract. One of the central lines of cryptographic research is iden-
tifying the weakest assumptions required for the construction of secure
primitives. In the context of group signatures the gap between what is
known to be necessary (one-way functions) and what is known to be suf-
ficient (trapdoor permutations) is quite large. In this paper, we provide
the first step towards closing this gap by showing that the existence of
secure group signature schemes implies the existence of secure public-
key encryption schemes. Our result shows that the construction of se-
cure group signature schemes based solely on the existence of one-way
functions is unlikely. This is in contrast to what is known for standard
signature schemes, which can be constructed from any one-way function.
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1 Introduction

Motivation. One of the central lines of cryptographic research is identifying
the weakest assumptions required for the construction of secure primitives. This
is important not only to better understand the different relations among exist-
ing primitives, but also to learn the minimal conditions without which a certain
primitive cannot exist. Yet another reason for finding the weakest assumptions
is that stronger assumptions may later be found to be false while weaker as-
sumptions may still hold. Therefore, by closing the gap between which primitive
is sufficient and what is necessary to build a given cryptographic function such

? In J. Lopez, S. Qing, and E. Okamoto, editors, International Conference on Infor-
mation and Communications Security – ICICS 2004, Volume 3269 of LNCS, pages
1–13, Malaga, Spain, October 27–29, 2004. Springer-Verlag, Berlin, Germany.
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as encryption or group signatures, one can determine the exact conditions that
need be met for them to exist.

While several implications and separations are known in the literature for
primitives such as standard signatures and public-key encryption, very little is
known for group signatures despite the intuition that the latter appears to be
a stronger primitive than standard signatures. Currently, group signatures are
only known to be implied by trapdoor permutations [9] and to imply one-way
functions [30], a quite large gap. Addressing this problem is the main goal of
this paper.

Preliminaries. In order to better understand our results, let us briefly recall
the definitions for the basic primitives given in Figure 1. The most basic of the
cryptographic primitives is a one-way function. Loosely speaking, a function is
said to be one-way if it is easy to compute (on any input) but hard to invert
(on average), where easy means computable in polynomial time on the length
of the input. Another basic primitive is a trapdoor one-way function, or simply
trapdoor function, introduced by Diffie and Hellman [16] in the seminal work
which laid out the foundations of public-key cryptography. Informally, a one-
way function is said to be trapdoor if it has associated to it a secret trapdoor
which allows anyone in its possession to easily invert it. The notions of one-
way permutations and trapdoor permutations are defined in a similar manner.
The notion of trapdoor predicates, introduced by Goldwasser and Micali [21], is
slightly different. Approximately, trapdoor predicates are probabilistic functions
over {0, 1} which are easy to compute given a public key but whose output
distributions on inputs 0 and 1 are hard to distinguish by any algorithm not in
possession of the trapdoor information.

Since we will be using terms such as implications and separations throughout
the paper, we should also recall what we mean by that. Consider for example two
cryptographic primitives S and P . In order to properly relate their security, one
usually makes use of reductions. More precisely, a primitive P is said to imply
a primitive S if the security of P has been demonstrated to imply the security
of S. More precisely, we use this phrase when someone has formally defined the
goals GP and GS for primitives P and S, respectively, and then has proven
that the existence of an adversary AS who breaks primitive S, in the sense of
violating GS , implies the existence of an adversary AP who breaks primitive P ,
in the sense of violating GP .

Proving a separation between two primitives, however, is a more subtle prob-
lem since it is not clear what it means to say that a given primitive does not
imply another primitive. To overcome this problem, one usually uses the method
due to Impagliazzo and Rudich [25] of restricting the class of reductions for which
the separation holds. More specifically, they noted the fact that the vast majority
of the reductions in cryptography uses the underlying primitive as a black-box
and based on that, they introduced a method for proving separations between
primitives with respect to these types of reductions.

Background on group signatures. The notion of group signatures was in-
troduced by Chaum and van Heyst [14] and describes a setting in which indi-
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Fig. 1. Implications and black-box separations between primitives.

viduals within a group can sign messages with respect to the group. According
to [14], a secure group signature scheme should satisfy two basic requirements,
anonymity and traceability. While the former says that the identity of the signer
should remain unknown to anyone verifying the signature including other group
elements, the latter asks that there should exist an entity, called the group man-
ager, capable of revoking the anonymity of signer whenever necessary.

Since the original work of Chaum and van Heyst [14], several other schemes
have been proposed in the literature (e.g., [1, 3, 2, 15, 13, 12, 26]), each with its
own set of security properties and requirements. It was only recently, however,
that a formal model of security for group signatures was put forward [9], combin-
ing the increasing set of security requirements into two basic properties, called
full-anonymity and full-traceability. These two basic properties were shown to
imply in the case of static groups all of the existing security properties of previous
scheme. Subsequent works also give formal definitions for dynamic groups [27,
10].

Such formal definitions have many benefits. They not only allow for concrete
and simpler proofs of security (only two properties need be satisfied), but they
also allow us to better understand what it means to be a secure group signature
scheme and its implications. It also allows us to draw precise relations between
group signatures and other cryptographic primitives. In fact, the implications
proven in this paper are only possible in the presence of such formal models of
security.

Contributions. In this paper, we provide the first step towards closing the
gap between what is known to be sufficient to construct secure group signatures
and what is known to be necessary. We do so by showing that group signatures
imply public-key encryption and thus are unlikely to be constructed based solely
on the existence of one-way functions (see Figure 1).

The separation between group signatures and one-way functions is a direct
consequence of our work and that of Impagliazzo and Rudich [25] which showed
that any such construction would either make use of non-black-box reduction
techniques or prove along the way that P 6= NP . Recently, in [29], Reingold,
Trevisan, and Vadhan improved on that by removing the condition that P 6=
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NP . In other words, such construction would definitely have to rely on non-
black-box reduction techniques. The implications of such results are of great
importance since almost all reductions in cryptography are black-box.

Related work. Over the years, several results proving either implications or
separations among different primitives appeared in the literature. Among the
results that are more relevant to our work are those for signatures and public-
key encryption.

Since the work of Goldwasser, Micali, and Rivest [22] proposing the con-
struction of a secure signature scheme based on claw-free pairs and laying out
the foundations of standard signatures, several other works followed aiming at
establishing the weakest computational assumptions on which signature schemes
could be based. The first of these works was the one of Bellare and Micali [8]
showing how to construct signature schemes based on any trapdoor permuta-
tions. Their work was soon followed by the work of Naor and Yung [28] showing
how to build signatures from any universal one-way hash functions and by the
work of Rompel [30] showing how to build signatures from any one-way function.
The latter is in fact also known to be a necessary assumption.

The picture in the case of public-key encryption and other primitives that
are known to be implied by it (e.g., key exchange) is not as clear as in the case
of standard signatures and is still the subject of active research [29, 18, 17, 7].
Several of these results are discussed in Section 4,

Another work that is similar in spirit to our work is the one of Halevi and
Krawczyk [23] which shows that password-based authentication protocols imply
public-key cryptography.

Organization. In Section 2 we recall the formal models and security defini-
tions for (static) group signatures and public-key encryption schemes. Next, in
Section 3, we show how to build a secure public-key encryption scheme from a
secure group signature scheme. We then prove the security of our construction
based on the anonymity property of group signatures. Finally, we conclude our
paper by discussing the implications of our result in Section 4.

2 Definitions

2.1 Preliminaries

We will denote by |m| the bit-length of a bit-string m. For any two arbitrary
bit-strings m0 and m1 with |m0| = |m1| we denote by diff(m0,m1) = {i|m0[i] 6=
m1[i]}, i.e. the set of bit positions on which m0 and m1 are different.

As usual, a function f(·) is said to be negligible if for any polynomial p, there
exists a natural number np such that f(n) ≤

1
p(n) for all np ≤ n. We will say

that a function of two arguments f(·, ·) is negligible, if for all polynomials p, the
function g defined by g(k) = f(k, p(k)) is negligible.
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2.2 Public Key Encryption Schemes

Encryption schemes. A public-key encryption scheme AE = (Ke,Enc,Dec)
is specified, as usual, by algorithms for key generation, encryption and decryp-
tion. The security property that is most relevant for the results of this paper is
indistinguishability under chosen-plaintext attack, in short IND-CPA.
For completeness we now recall the definition. An (IND-CPA) adversary

against AE is an algorithm A that operates in two stages, a choose stage and
a guess stage. For a a fixed bit b, the adversary works as follows. In the first
stage the algorithm is given a public key pke for encryption, and at the end of
this stage it outputs a pair of messages M0 and M1. The input of the algorithm
to the second stage is some state information, also produced at the end of the
first stage, and a challenge ciphertext C that is an encryption of Mb. At the
end of the second stage the adversary outputs a guess bit d that selects one or
the other message. The adversary wins if he guesses successfully which of the
messages was encrypted.
Let Exp

ind-cpa b
AE,A (k) denote the random variable representing the output of

A in the above experiment, when pke is obtained by running the key generation
algorithm (with fresh coins) on security parameter k. The advantage function of
A is defined as:

Adv
ind-cpa
AE,A (k) = Pr

[

Exp
ind-cpa 1
AE,A (k) = 1

]

− Pr
[

Exp
ind-cpa 0
AE,A (k) = 1

]

An encryption scheme AE is said to be IND-CPA secure if the advantage function
Advind-cca

AE,A (·) is negligible for any polynomial-time adversary A.

2.3 Group Signatures

In this section we recall the relevant definitions regarding group signatures. The
presentation in this section follows [9].

Syntax of group signature schemes. A group signature scheme GS =
(GKg,GSig,GVf,Open) consists of four polynomial-time algorithms:

• The randomized group key generation algorithm GKg takes input 1k, 1n,
where k ∈ N is the security parameter and n ∈ N is the group size (ie. the
number of members of the group), and returns a tuple (gpk, gmsk,gsk),
where gpk is the group public key, gmsk is the group manager’s secret key,
and gsk is an n-vector of keys with gsk[i] being a secret signing key for
player i ∈ [n].

• The randomized group signing algorithm GSig takes as input a secret signing
key gsk[i] and a message m to return a signature of m under gsk[i] (i ∈ [n]).

• The deterministic group signature verification algorithm GVf takes as input
the group public key gpk, a message m, and a candidate signature σ for m
to return either 1 or 0.

• The deterministic opening algorithm Open takes as input the group manager
secret key gmsk, a message m, and a signature σ of m to return an identity
i or the symbol ⊥ to indicate failure.
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Experiment Expanon-b
GS,A (k, n)

(gpk, gmsk,gsk)
$

← GKg(1k, 1n)

(St, i0, i1,m)
$

← AOpen(gmsk,·,·)(choose, gpk,gsk) ; σ
$

← GSig(gsk[ib],m)

d
$

← AOpen(gmsk,·,·)(guess, St, σ)

If A did not query its oracle with m,σ in the guess stage then return d EndIf

Return 0

Fig. 2. Experiment used to define full-anonymity of a group signature scheme GS =
(GKg,GSig,GVf,Open). Here A is an adversary, b ∈ {0, 1}, and St denotes state infor-
mation passed by the adversary between stages.

Correctness. A group signature scheme must satisfy the following correctness
requirement: For all k, n ∈ N, all (gpk, gmsk,gsk) ∈ [GKg(1k, 1n)], all i ∈ [n]
and all m ∈ {0, 1}∗

GVf(gpk,m,GSig(gsk[i],m)) = 1 and Open(gmsk,m,GSig(gsk[i],m)) = i .

In [9], the authors identify two security notions which are sufficient for defin-
ing security of group signature schemes. Out of the two notions, termed in [9]
full-anonymity and full-traceability respectively we recall the formalization of
the first and only informally discuss the second.

Full-anonymity. Informally, anonymity requires that an adversary not in pos-
session of the group manager’s secret key find it hard to recover the iden-
tity of the signer from its signature. The formalization of [9] uses a strong
indistinguishability-based formulation. Roughly an adversary is allowed to inter-
act with the group signature by asking for signatures, and openings of signatures
of its own choosing. At the end of this interaction which represents the choose
stage, the adversary has to output a message m and two identities i0 and i1. As
input to its second stage, the adversary receives state information it had output
at the end of the choose stage and a challenge signature on m, created using one
of the two identities chosen at random. The goal of the adversary is to determine
which of the two users created the signature.

The experiment defining full-anonymity is given in Figure 2.3.

The advantage of an adversary A in breaking the full-anonimity of a group
signature scheme GS is denoted by

Advanon
GS,A(k, n) = Pr

[

Expanon-1
GS,A (k, n) = 1

]

− Pr
[

Expanon-0
GS,A (k, n) = 1

]

.

A group signature scheme GS is said to be fully-anonymous if for any polynomial-
time adversary A, the two-argument function Advanon

GS,A(·, ·) is negligible (as de-
fined in Section 2.1.)

Full-traceability. Full-traceability refers to the ability of the group manager
to revoke anonymity of signers. Informally it requires that no colluding set S of
group members, comprised potentially of the whole group, can create signatures
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that cannot be traced back to some member of S. A formalization of this property
appears in [9], and we omit it here since is not relevant to the results of this paper.
The main result of [9] is to show that if trapdoor functions exist then group

signature schemes that are fully-anonymous and fully-traceable also exist.

3 Group Signature Schemes Imply Public Key

Cryptography

In this section, we show how to construct a secure public key encryption scheme
given any secure group signature scheme.

3.1 Construction

Fix an arbitrary group signature scheme GS = (GKg,GSig,GVf,Open). The idea
of our construction is the following. Consider an instance of GS in which the
group of signers has size 2, i.e. it only contains users 0 and 1. Consider the
following encryption scheme, AE [GS]: the public key consists of the signature
verification key of the group gpk, together with the signing keys of users 0
and 1, i.e. the vector gsk = (gsk[0],gsk[1]). The associated secret key consists
of the group verification key together with the group manager secret key. The
encryption of message M = b0b1 . . . bn with bi ∈ {0, 1} is done bit by bit, where
the encryption of the bit b is a signature on some fixed message 0 using the group
signing key of user b. The decryption is immediate: to decrypt the encryption
σ of a bit b, simply verify that σ is a valid group signature, and if so use the
group manager’s secret key to recover the identity of the signer (i.e. b). This
immediately extends to arbitrary length messages.
We give the full details of our construction in Figure 3.

3.2 Security Proof

Let B be an adversary attacking the IND-CPA security of the encryption scheme
AE [GS]. We show how to construct an adversary A against the group signature
scheme GS such that

Adv
ind-cpa
AE,A (k) ≤ pA(k) ·Advanon

GS,B(k, 2) , (1)

where pA(k) is some polynomial bounding the running time of adversary A.
Since we assumed that GS is fully-anonymous, the function on the right-hand
side of the inequality is negligible so AE is an IND-CPA secure encryption scheme.
The algorithm A is given in Figure 4. In the guess stage, A runs the guess

stage of algorithm B for encryption scheme AE and obtains two messages m0

and m1. These messages, together with the state information output by B is
forwarded to the choose stage of A. In this stage, A selects at random a position
j on which m0 and m1 are different, and creates a challenge ciphertext for B.
The challenge ciphertext is an encryption (gpk,gsk) of a word which on its first
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Algorithm Ke(1
kg )

n← 2

(gpk, gmsk,gsk)
$

← GKg(1kg , 1n)

ske ← (gpk, gmsk)

pke ← (gpk,gsk)

Return (pke, ske)

Algorithm Enc(pke,M)

Parse pke as (gpk,gsk)

l← |M |

Parse M as b1 . . . bl

For i = 1 . . . l do

σi ← GSig(gsk[bi],0)

Return (σ1, . . . , σl)

Algorithm Dec(ske, C)

Parse ske as (gpk, gmsk)

Parse C as σ1 . . . σl

For i = 1 . . . l do

If GVf(gpk,0, σi) = 0 Then

Return ⊥

bi ← Open(gmsk,0, σi)

If bi 6∈ {0, 1} Then

Return ⊥

Return M = b1 . . . bl

Fig. 3. Construction of an IND-CPA secure public-key bit-encryption scheme
AE [GS] = (Ke,Enc,Dec) based on any secure group signature scheme GS =
(GKg,GSig,GVf,Open).

j − 1 positions coincides with m1 and on its last n− j positions coincides with
m0, where n = |m0| = |m1|. The bit b on position j in the plaintext encrypted
by the challenge ciphertext is precisely the identity of the player that generated
the challenge signature σ which A received from its environment.

For some fixed messages m0 and m1, let us denote by s0, . . . , sp the sequence
of p = |diff(m0,m1)| words such that s0 = m0, sp = m1, and any two consecutive
words si−1 and si differ exactly in one bit position. More precisely, let j be the
element of rank i in diff(m0,m1). We can construct word si from word si−1 by
flipping the j-th bit of si−1, for i = 1, . . . ,p. Now, let i be the rank of the value
j selected by A during the choose stage of A. Therefore, adversary B receives as
challenge either the encryption of si−1 or the encryption of si, depending on the
key used to create challenge signature σ. With this in mind, notice that in the
experiment Expanon-b

GS,A (k, 2) (for b ∈ {0, 1}), adversary A successfully guesses the
bit b whenever adversary B correctly identifies if the challenge ciphertext is the
encryption of si−1 or that of si. To simplify notation, we will write B(Enc(pk, si))
for B(guess,St,Enc((gpk,gsk), si)). It follows from the above discussion that

Pr
[

Expanon-0
GS,A (k, 2) = 1

]

=
1

|diff(m0,m1)|

|diff(m0,m1)|
∑

i=1

Pr [B(Enc(pk, si−1)) = 1 ]
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Adversary A(choose, gpk,gsk)

(St,m0,m1)← B(choose, (gpk,gsk))

j ← diff(m0,m1)
St′ ← (St,m0,m1, gpk,gsk, j)

Return (St′,m0[j],m1[j],0)

Adversary A(guess, St′, σ)

Parse St′ as (St,m0,m1, gpk,gsk, j)

For i← 1, . . . , j − 1
σi ← GSig(gsk[m0[i]],0)

For i← j + 1, . . . , n
σi ← GSig(gsk[m1[i]],0)

σj ← σ

Let d← B(guess, St, (σ1, . . . , σl))

Output d

Fig. 4. Construction of an adversary A against GS from an adversary B against
AE [GS].

and

Pr
[

Expanon-1
GS,A (k, 2) = 1

]

=
1

|diff(m0,m1)|

|diff(m0,m1)|
∑

i=1

Pr [B(Enc(pk, si)) = 1 ] ,

where the first factor represents the probability that the value j selected by A
has rank i. Let p = |diff(m0,m1)|. We can now bound the advantage of A by:

Advanon
GS,A(k, 2)=

= Pr
[

Expanon-1
GS,A (k, 2) = 1

]

− Pr
[

Expanon-0
GS,A (k, 2) = 1

]

=
1

p
·

p
∑

i=1

Pr [B(Enc(pk, si)) = 1 ]−
1

p
·

p
∑

i=1

Pr [B(Enc(pk, si−1)) = 1 ]

=
1

p
·

p
∑

i=1

(Pr [B(Enc(pk, si)) = 1 ]− Pr [B(Enc(pk, si−1)) = 1 ])

=
1

p
· (Pr [B(Enc(pk, sp)) = 1 ]− Pr [B(Enc(pk, s0)) = 1 ])

=
1

p
· (Pr [B(Enc(pk,m1)) = 1 ]− Pr [B(Enc(pk,m0)) = 1 ])

=
1

p
·Adv

ind-cpa
AE,B (k)

≥
1

|m0|
·Adv

ind-cpa
AE,B (k)

We can also bound the length of m0 by the total running of algorithm A,
which is some polynomial pA(·) in the security parameter. As a result,

Advanon
GS,A(k, 2) ≥

1

pA(k)
·Adv

ind-cpa
AE,B (k)
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which gives the result claimed in Equation 1 by rearranging the terms.

Remark 1. The encryption scheme AE [GS] in Figure 3 can also be proven to be
IND-CCA secure if we restrict the length of the messages being encrypted to 1
(i.e., the plaintext is just a single bit). Note that, in this special case, we can
easily simulate the decryption oracle given to the adversary B using the oracle
for the opening algorithm Open from the experiment for anonymity.

Remark 2. In [11], Boneh, Boyen, and Shacham define a weaker variant of the
full-anonymity property, called CPA-full-anonymity, in which the Open oracle is
not given to the adversary in the experiment for anonymity. Since the proof that
secure group signatures imply IND-CPA public-key encryption does not rely on
the Open oracle, the implication still stands even in their weaker security model.

4 Concluding Remarks

The main advantage of proving that the existence of secure group signature
schemes implies public-key encryption schemes is that one can apply several
of the results that are known for public-key encryption to the case of group
signatures. Here we highlight the most important ones.

Group signatures from one-way functions.Given that standard signature
schemes can be constructed from any one-way function, one may wonder whether
the same is true for group signatures. Unfortunately, this does not seem to be the
case. In particular, such construction would need to use non-black-box reduction
techniques when proving its security [25, 29]. Loosely speaking, a non-black-box
reduction from a cryptographic scheme to a given primitive is a reduction in
which either the code of the primitive is used in a non-black-box manner by the
cryptographic scheme or the code of the adversary against the cryptographic
scheme is explicitly used when building an adversary against the primitive.
As pointed out in [29], many of the examples of cryptographic schemes that

make use of the primitive’s code come from constructions making use of the
general construction of zero-knowledge proofs for NP languages of Goldreich
et al. [20, 19], as their construction is non-black-box. However, it was recently
found [4, 6, 5] that reductions making use of the adversary’s code in the proof
of security were found and they are considered one of main breakthroughs in
the area of zero-knowledge. Nevertheless, we would like to stress that almost
all reductions in cryptography are black-box and the examples of non-black-box
reductions are very few. Hence, it is unlikely that group signatures can be built
from one-way functions.

On the minimal assumption for group signatures. Despite the difficulty
of constructing group signature schemes from one-way functions, one may won-
der whether it is possible to build group signature from apparently stronger
assumptions such as trapdoor predicates or (poly-to-one) trapdoor functions. A
poly-to-one trapdoor function is a trapdoor function where the number of pre-
images for any point in the range is polynomially-bounded. However, the picture
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in this case is not so clear and such constructions may or may not be possible.
For this reason, we review some results which may be of importance to us.

The first of these results is the one of Bellare et al. [7] that shows the the
restriction on the pre-image size of trapdoor functions is an important one since
super-poly-to-one trapdoor functions can be constructed from one-way func-
tions [7]. On the other hand, poly-to-one trapdoor functions are also known to
imply trapdoor predicates [7, 31], which in turn are known to be equivalent to
to secure public-key encryption [21].

Another relevant result is the one due to Gertner et al. [18] which shows
that no black-box reductions exist from trapdoor predicates to poly-to-one trap-
door functions. In fact, their result shows that it might be possible to construct
trapdoor predicates (i.e., public-key encryption) based on assumptions that are
strictly weaker than (poly-to-one) trapdoor functions, with respect to black-box
reductions.

Another separation that is important to our work is the one from Gertner
et al. [17] which shows that there are no black-box constructions of trapdoor
permutations from trapdoor functions. Their result seems to indicate that the
latter assumption is stronger than (poly-to-one) trapdoor functions.

Apart from the fact that trapdoor permutations imply group signatures [9]
and that the latter implies trapdoor predicates (this paper), the impossibil-
ity of black-box reductions from trapdoor predicates to trapdoor functions to
trapdoor permutations leaves completely open the remaining relations between
these primitives and group signatures. Therefore, constructions of group signa-
tures based on trapdoor functions or trapdoor predicates may still be possible.
Turning to the other side of the coin, the construction of any of these primitives
from group signatures may also be possible.
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