Chimichanga: A Fault Tolerant Asynchronous Communication
Infrastructure for Mobile Agents

Michel Abdalla * Walfredo Cirne Leslie Franklin Anthony Sterrett
Keith Marzullo

Department of Computer Science and Engineering
University of California, San Diego
9500 Gilman Dr. — La Jolla, CA 92093-0114, USA

{mabdalla,walfredo,franklin,sterrett,marzullo}@cs.ucsd.edu

Abstract

A set of cooperating mobile agents can require some form of asynchronous communication
support. For example, an agent that is a member of a set of agents together searching for some
information may wish to alert the other agents when it has found some information of interest.
In this paper, we present a simple specification of primitives that support such asynchronous
communication among agents that together share an ancestor agent. We describe a system
infrastructure, called Chimichanga, that implement such primitives and can tolerate agent crash
failures. We give an example of a one-fault-tolerant version of Chimichanga.

1 Introduction

Mobile agents are processes that can move from one machine to another on their own initiative.
They have been a focus of research in the last few years as an alternative paradigm for developing
distributed applications [3, 11]. Their claimed advantages include enabling applications to adapt
to a constantly changing environment (such as the Internet), removing the effect of limited network
bandwidth, allowing for simpler server design, giving better support for disconnected operation,
and enabling efficient server customization|[1].

Another advantage of mobile agents is their ability to solve embarrassingly parallel applications.
It is as least as easy for an agent to create a copy of itself at another machine as it is for it to
move itself to another machine. A mobile agent can create multiple copies of itself, dividing up the
problem space as it does so, and use the real parallelism of running on multiple machines to solve
the problem more quickly. Such a set of cooperating mobile agents, however, requires some form
of inter-agent communication.

For example, consider the simple problem of a web search using a set of cooperating mobile
agents. Each agent has the responsibility of searching a set of machines. The original agent has

*Ph.D. student supported by CAPES (grant BEX3019/95-2).
tProfessor of the Universidade Federal da Paraiba, Brazil, currently on leave to undertake Ph.D. with the support
of CAPES (grant BEX2428/95-4).

the responsibility of searching all the machines, of which it delegates subsets of machines to mobile
agents it creates. These agents may further delegate based on whatever local condition they wish
to use. When a mobile agent discovers what is being searched for, it may be useful to communicate
this fact to the other mobile agents, to allow them to alter their strategy (or even to terminate their
search). Such communication is asynchronous, in that the mobile agents would not block waiting
for the communication, but would rather treat it as an exceptional condition.

Another use of such communications is to recover from the loss of an agent due to the crash of
a machine upon which it was running. The probability of losing an agent grows with the size of the
set of cooperating mobile agents. The surviving agents would need to recover from the loss of this
agent in some manner: a surviving agent may take over, or create a new agent to take the place of
the lost agent. Again, such communications would be asynchronous.

Traditional protocols for process-to-process communication are not appropriate for such com-
munications. Traditional network protocols are ultimately based on the address of a machine, and
agents move from machine to machine. In addition, a member of a set of agents may not know even
how many other mobile agents there are in the set, much less have a list of names for the members.
In order for both scaling to large numbers of agents and for flexibility, an associative name space
based on the mobile agents’ ancestry is more appropriate.

Proving general mechanisms to ease development have been proven to be valuable in agent-
based computing. Although one could build an agent-based application from scratch (using just
the network services provided by the operating system), it is more convenient to use an Agent
Support Environment (ASE). An ASE supplies the function that is common to many agent-based
applications, such as migration. Some examples of ASEs are Tacoma [7, 6, 8], Agent Tcl [4, 5],
and TeleScript [9]. Unfortunately, to the best of our knowledge, the current ASEs lack support
for asynchronous agent-to-agent communication. Some do offer traditional network communica-
tion, which relies upon machine names. Therefore, the application itself has to know each agent’s
location, enormously reducing the advantage of using an ASE.

In order to fill this need, we propose in this paper Chimichanga, a fault-tolerant communication
infrastructure for mobile agents. Chimichanga hides the agent location, in the sense that agent
addressing is independent of the machine upon which an agent is running. In order to provide a
meaningful location-independent addressing, we also introduce communication semantics for agent-
based applications. Chimichanga is based in such semantics. Finally, we describe a one-fault-
resilient implementation of Chimichanga.

The paper proceeds as follows. The following section presents our system model. Section
3 specifies Chimichanga as well as the associative addressing scheme and its delivery semantics.
Section 4 presents the system architecture, which isolates the fault tolerance function from the other
services provided by Chimichanga. The next section describes how to implement Chimichanga’s
communication and naming function. Section 6 presents a one-failure-resilient implementation
of Chimichanga. Section 7 discusses some future work and Section 8 closes the paper with the
conclusions.

2 System Model

We assume detectable machine crash failures (also known as the fail-stop failure model [10]). Fail-
ures are detected by periodically pinging a machine. If a machine does not reply to the ping in
a predetermined time, then the sender of the ping will assume that all agents executing on that
machine have been lost. In a real system, these timeouts would be determined by mobile agents

themselves. We further assume that no more than one failure can occur at any time. In Section 7
we discuss how Chimichanga can be generalized to tolerate multiple failures.

We assume agent mobility and traditional network communication services are available. We
assume that agent mobility is implemented by a spawning abstraction provided by the ASE [1]. For
example, the spawning abstraction can be implemented in Tacoma [8] using the meet primitive.
A mobile agent migrates to another machine by spawning on the machine and then exiting on
the originating machine. We prefer spawning instead of migration because it is more general and
simpler to work with in terms of Chimichanga. Furthermore, the question of state transfer is
completely orthogonal to the choice of migration versus spawning.

We assume that there is a reliable message service provided by the system. In other words,
messages sent on a non-faulty communication link will eventually arrive at their destinations and in
the order they were sent. A reliable service could be implemented using a protocol such as TCP/IP.

3 Specification

Chimichanga supports communication among agents that share a common original ancestor. We
call these agents members of an agent group. Initially, an agent group contains solely its cre-
ator (usually an agent launched by the user). All agents spawned from an agent in the group
automatically belong to the group.

The first element of the Chimichanga specification is exactly how to address messages in a
meaningful way. Recall that we cannot rely upon any stationary server. Instead, we use the ancestor
relation (which we call the ancestor tree) defined by the spawn primitive to address messages.
Chimichanga wraps the ASE spawn and quit primitives in order to gather information about the
tree topology.

In particular, an agent can send messages to all mobile agents in the agent group, to its parent,
to its ancestors, to its children, or to its descendents. Hence, there are five destinations for a
message. Each agent provides a deliver function, which is called by Chimichanga when a message
arrives.

The semantics of sending a message to the parent, to the children, or to the ancestors is
straightforward. Any of these addresses define a set of agents as the recipient of the message.
Ignoring lost agents, Chimichanga’s semantics is that each agent in this set eventually receives the
message. Of course, an agent may quit (or fail) before receiving it. Formally, let D be a destination
and let D(t) be the set of agents that constitute D at time . When D denotes parent, children, or
ancestors, then D does not change over the sending of the message. Thus, Chimichanga guarantees
that:

send(m,a, D,t) = Vt; >t :Vd € D(t;) : received(m.d, t1)

where send(m,a, D,t) means a sends message m to destination set D at time ¢
and received(m.d,t;) means d has received message m at most at time ¢
when D denotes parent, children, or ancestors.

The semantics of sending a message to the other destinations is more complex because a new
agent can be spawned while the message is in transit. In order to provide a meaningful abstraction
for the programmer, we define the semantics as follows. For every agent that belongs to the
message’s destination set at any time after the message was sent, then that agent (i) has already

received the message, (ii) will eventually receive the message, or (iii) has an ancestor that received
the message before spawning its branch of the tree. More formally,

send(m,a,D,t) = Vt1 > t:Yd € D(t1) : It > 11 :
received(m.d, ta)V
Jtg:t1 <tz <tg: e, f: (received(m,e,t3)A\ spawn(e, f,t2)A (ancestor(f,d) V f = d))
where spawn(e, f,t) means e spawned f at time ¢
and ancestor(f,d) means f is an ancestor of d
when D denotes either all or descendents.

All messages are delivered exactly once. However, there are no ordering guarantees. If the appli-
cation requires ordered delivery (e.g. total order), then an appropriate protocol can be implemented
on top of Chimichanga. We believe that not implementing stronger semantics in Chimichanga it-
self is a good design because the cost of implementing ordering is incurred only when ordering is
necessary.

Since the ancestor tree is the naming mechanism, it must be updated when mobile agents quit
or are lost due to failures. Changes to the ancestor tree affect the meaning of destinations (such
as children and parent), and so we make these changes in a way that we believe makes the most
sense to the application. Leaf nodes are simply removed from the tree when their agent quits or
fails. When a non-leaf node quits, its newest child takes its place; this is sensible given that agent
migration is implemented by spawning and then quitting. When a non-leaf node fails, its newest
child also takes its place in the tree. The rationale for this choice is that no other agent has more
information (in the causal history sense [2]) about the state of the faulty agent than the newest
child. Furthermore, among all the agents with the most complete information, the newest child
taking over represents the simplest change to the ancestor tree.

Besides reconstructing the ancestor tree, Chimichanga also notifies all the neighbors (i. e., the
parent and the children) of the lost agent. For each such failure notification, exactly one agent is
selected to take over the role of the lost agent in the application. The selected agent is the same
agent that takes over the role of the faulty agent in the ancestor tree. If there is no such agent
(i. e., the lost agent was a leaf), then the parent agent is selected. The selected agent receives
the failure notification via the replace-agent method, which is supplied by each agent. All other
neighbors are informed about the failure via the agent-failed method, which is also supplied by all
agents using Chimichanga.

Other than the selection of a particular agent, Chimichanga assumes that the application itself
is responsible for dealing with the failure of mobile agents. Chimichanga tries to facilitate that by
notifying all neighbors of a faulty agent and by selecting a single “preferred” agent to take its role
in the application. Chimichanga supplies no other functions for recovery purposes.

4 Architecture

Chimichanga addresses three issues: naming, communication, and fault tolerance. Fault tolerance,
however, is decoupled from naming and communications. Doing so both simplifies the design of
Chimichanga and allows us to have different versions of Chimichanga, each providing a different
level of fault tolerance. The two issues are implemented using two entities: secretaries for naming
and communications, and lifeguards for fault tolerance.

There is a one-to-one correspondence between an agent and a secretary. A natural implemen-
tation of a secretary is as library routines that are linked with the agent executable. A secretary
knows the identities of the secretaries of its agent’s parent and children. It can forward messages
to these secretaries. Spawning updates the agent’s secretary and quitting updates the secretaries
of the agent’s parent and children.

Each agent has a lifeguard. However, there is no restriction that a particular lifeguard watches
a single agent. In case of failure, lifeguards update secretaries with new neighborhood information
and retransmit lost messages. An agent’s secretary keeps its lifeguard informed about any change
in the agent’s neighborhood caused by spawn and quit. Additionally, secretaries notify lifeguards
about sent and received messages. Such information is essential for the message retransmission
that might be necessary during the failure recovery procedure. Lifeguards may have to exchange
information among themselves to guarantee that they can fulfill their role. Figure 1 depicts the
relation between agents, secretaries, and lifeguards.

Figure 1: Chimichanga’s architecture.

4.1 Notation

Since Chimichanga has two distinct entities (secretaries and lifeguards) that communicate with
other independent entities (mobile agents), we find the object-oriented approach and terminology
a very appropriate way to describe Chimichanga. Indeed, we have found it useful to utilize remote
member access and method invocation. We expect remote access and invocation to behave similarly
to their local counterparts: they are reliable and synchronous. From the viewpoint of the invoker
of a remote method (or a remote member), a failure results in blocking. These semantics are easy
to implement and thus do not represent any difficulty for the Chimichanga implementation.

Even though we use remote operations as local ones, we represent them differently. We use
~ (instead of the traditional .) to denote a remote operation. However, the use of ~ does not
necessarily imply that the local and remote objects are on different machines. For example, an
agent and its secretary are always in the same machine.

We have aimed for simplicity in the protocols we give here. There are several obvious optimiza-
tions that would improve performance, but we have ignored them for the sake of clarity.

4.2 Primitives

Chimichanga provides six primitives: init-chimichanga, spawn, quit, send, deliver, and agent-failed.
The first three of them are part of Chimichanga’s library, although they are conceptually agent
methods. send is implemented directly by the agent’s secretary. deliver and agent-failed are methods
the agent has to provide. They are called by the secretary upon message reception or mobile agent
failure detection, respectively.

Figure 2 presents the algorithms for init-chimichanga, spawn, and quit. Such algorithms establish
how the relationships among an agent, its secretary, and its lifeguards are set up. ase-spawn is the
native ASE primitive to spawn an agent. secretary-create and lifeguard-create respectively return
a new secretary and the appropriate lifeguard for such secretary (which may be a new one). The
other secretary’s methods are described in the following sections.

1. agent.init-chimichanga()

2. self.secretary <— secretary-create(agent.machine, self, NULL)

3. agent.spawn(machine)

4. new-agent < ase-spawn(machine)

5. new-agent~secretary < secretary-create(machine, new-agent, self.secretary)
6. self.secretary.add-child(new-agent~secretary)

7. agent.quit()

8. self.secretary~quit()

Figure 2: init-chimichanga, spawn, and quit.

5 Naming and Communication

Since lifeguards provide the required fault tolerance, secretaries can be designed in a very straight-
forward way. Secretaries provide secretary-create, send, add-child, and quit to the agent. The
algorithms for these methods are shown in Figure3. send is called by the agent itself, and the
other three methods are called by the Chimichanga library that is to be linked with the agent. In
addition, a secretary calls its agent’s deliver method upon receiving a message.

1. secretary-create(machine, agent, parent)

2 create secretary at machine

3 secretary.machine <— machine

4. secretary.agent < agent

5. secretary.parent <— parent

6 secretary.children < []

7 secretary.msg-log « ()

8 secretary.id < 1

9 secretary.lifeguard < lifeguard-create(agent, secretary, parent, [],)
10. return secretary

11. secretary.send(dest, msg)

12. self.msg-log < self.msg-log + (self, dest, msg, self.id, self.id)
13. self.lifeguard~notify-msg(self, dest, msg, self.id, self.id)

14. if dest is PARENT or ANCESTORS or ALL

15. self.parent~message(self, dest, msg, self.id)
16. if dest is CHILDREN or DESCENDENTS or ALL
17. for each child in self.children

18. child~message(self, dest, msg, self.id)

19. self.id + self.id + 1

20. secretary.add-child(child)

21. self.children < self.children.append([child])
22. self.lifeguard~children <« self.children

23. self.lifeguard~notify-add-child(child)

24. secretary.quit()

25. newest-child < self.children.last()

26. if newest-child = NULL

27. self.parent~children < self.parent~children.remove(self)

28. older-children < |[]

29. else

30. self.parent~children < self.parent~children.replace(self, newest-child)
31. older-children < self.children.remove(newest-child)

32. for each child in older-children

33. child~parent < newest-child

34, newest-child~parent < self.parent

35. newest-child~children < older-children.append(newest-child~children)
36. self.lifeguard~quit(parent, newest-child, older-children)

37. quit()

Figure 3: Secretary methods invoked by agents.

The state kept by a secretary contains references to its agent, to its lifeguard, and to the
secretaries of its neighbors (that is, its agent’s parent and children). The state also contains a log
of sent messages which is used by lifeguards.

When a new agent is spawned, secretary-create is called. A brand-new secretary cannot have
any children at this point nor can it have sent any messages (lines 3-9 in Figure 3). On its turn, the
spawning agent calls its secretary’s add-child method. Such a secretary is therefore able to keep a
correct view of its neighborhood (lines 21-23). Finally, if an agent quits, it calls its secretary’s quit
method. This method then checks whether the exiting agent has any child to take over its place in
the ancestor tree. If so, the newest child replaces the quitting agent and becomes the parent of all
its siblings (lines 30-35). Conversely, when there is no child to take over the place of the quitting
agent, the latter removed from its parent’s list of children (lines 27-28).

The send method stores any outgoing message (lines 12-13) and then transmits them to the
indicated destinations (lines 14-18). Each message is assigned a sequence number when it is sent or
relayed. The actual transmission is done by remotely invoking the message method in appropriate
neighbor secretaries (shown in Figure 4). The method message logs the message (lines 2-3 in

Figure 4), delivers the message to the agent (line 4) and relays it, if necessary (5-14).

1. secretary.message(sender, dest, msg, id)

2 self.msg-log «+ self.msg-log + (sender, dest, msg, id, self.id)
3 self.lifeguard~notify-msg(sender, dest, msg, id, self.id)

4. self.agent~deliver(msg)

5. if dest is ANCESTORS and parent # NULL

6 self.parent~message(self, dest, msg, self.id)

7 if dest is DESCENDENTS

8 for each child in self.children

9. child~message(self, dest, msg, self.id)

10. if dest is ALL

11. neighbors < self.children.append([parent])
12. neighbors + neighbors.remove(sender)

13. for each neighbor in neighbors

14. neighbor~message(self, dest, msg, self.id)

15. self.id + self.id + 1

Figure 4: Secretary methods invoked by secretaries themselves.

Each message is logged in two places, at the secretary and at the lifeguard. This is required
for fault-tolerance: two copies are required since one may be lost due to a crash. A message is
logged before being sent, delivered, or relayed in order to ensure that the lifeguards will be able to
guarantee the delivery semantics in the face of failures. When an agent’s failure is detected, the
agent’s lifeguard retransmits all messages the lifeguard has logged but have not been received by
the destinations’ secretaries. This guarantees that each message will be delivered exactly once even
if the secretary fails during the execution of send or message.

1. secretary.last-received(agent)

2. id-list < all sender-id such that (sender, dest, msg, sender-id, local-id) is
in self.msg-log and agent = sender
3. return the greater id in id-list

4. secretary.parent-failed(new-parent)

5. self.parent < new-parent

6. agent.agent-failed(parent)

7. secretary.replace-parent(new-parent, new-children)

8. self.parent < new-parent

9. self.children <~ new-children.append(self.children)
10. agent.replace-agent(new-parent)

11. secretary.child-failed(old-child, new-child)

12. if new-child # NULL

13. self.children « self.children.replace(old-child, new-child)
14. agent.agent-failed(old-child)

15. else
16. self.children < self.children.remove(old-child)
17. agent.replace-agent(old-child)

Figure 5: Secretary methods invoked by lifeguards.

parent-failed, replace-parent, and child-failed are called by a lifeguard to inform a secretary about
a failure in its agent’s neighborhood. The secretary forwards this information to its agent in such a
way that exactly one neighborhood agent receives a replace-agent invocation. There are two cases.
First, if a secretary takes over the role of the lost secretary in the ancestor tree, then it is this
secretary that has replace-parent called. The replace-parent in turn calls the agent’s replace-agent
(lines 7-10 in Figure 5). All other neighbors receive a call for agent-failed (lines 6 and 14) and their
secretaries receive a call for either replace-parent or child-failed. Second, if there is no secretary
taking over the role of the lost secretary, then the lost agent is a leaf node in the ancestor tree. The
only agent in the lost agent’s neighborhood is its parent, which receives the replace-agent invocation
(line 14) and its associated secretary the child-failed invocation. In both cases, the secretaries also
update their state to reflect the loss of the agent (lines 5, 8-9, 13, and 16).

6 Fault Tolerance

In this section, we provide an implementation of a one-failure-resilient protocol. Each lifeguard
takes care of only one agent. Furthermore, the lifeguard is place on the machine where the agent’s
parent is running. Of course, this does not apply to the original agent at the root of the ancestor
tree. In this case, the machine in which the lifeguard is located depends on the number of agents
in the tree. For example, when there is only one agent in the tree, both the agent and its lifeguard
are placed in the same machine, as is shown in Figure 6 a. When there is more than agent in the
system, the lifeguard for the root agent is placed in the same machine of the first child of this agent,
as depicted by Figures 6 b and 6 c.

(@) / \

(b) (©

Figure 6: The lifeguards’ placement.

To efficiently support the agent’s mobility, lifeguards move with their hosting agents. Since
secretaries move in the same manner (they are located in their agent’s machine), this means that
Chimichanga is as mobile as the agents it serves. In addition, when an agent quits, the lifeguards

hosted by that agent themselves quit and are recreated at the appropriate agent’s machine. By
doing so, Chimichanga cannot get far away (or disconnected) from the agent group.

Figure 7 gives the description of all the lifeguard methods that are called by the secretaries.
In addition, it also provides the method failure-detected which is responsible for retransmitting
messages, notifying failures, and restoring the tree structure when an agent fails. This method
is called by the failure detector module, which is an independent thread of the lifeguard. Such a
module is constantly monitoring the agent under its surveillance.

1. lifeguard-create(agent, secretary, parent, children, msg-log)
2 if parent = NULL

3 if children = []

4. machine < secretary~machine

5. else

6 machine < children first()~machine
7 else

8 machine < parent~machine

9. create lifeguard at machine

10. lifeguard.machine <— machine

11. lifeguard.agent < agent

12. lifeguard.secretary < secretary

13. lifeguard.parent <— parent

14. lifeguard.children < children

15. lifeguard.msg-log < msg-log

16. return lifeguard

17. lifeguard.notify-msg(sender, dest, msg, sender-id, local-id)
18. self.msg-log < self.msg-log + (sender, dest, msg, sender-id, local-id)

19. lifeguard.notify-add-child(child)
20. if parent = NULL and self.children = [child]

21. self.secretary~lifeguard < lifeguard-create(self.agent, self.secretary,
self.parent, self.children, self.msg-log)

22. quit()

23. lifeguard.quit(parent, replacement, children)

24. self.recreate-lifeguards(parent, replacement, children)

25. quit()

26. lifeguard.failure-detected()
restransmitting messages
27. last < self.parent~last-received(self.secretary)
28. for each (SEND, sender, dest, msg, id) in self.msg-log
such that id > last and sender # self.parent and dest is ALL or ANCESTORS

29. self.parent~message(self.secretary, dest, msg, id)

30. for each child in self.children

31. last < child~last-received(self.secretary)

32. for each (SEND, sender, dest, msg, id) in self.msg-log such that id > last

10

and sender # child and dest is ALL or DESCENDENTS or CHILDREN

33. child~message(self.secretary, dest, msg, id)
notifying the failure and recovering the secretaries

34. newest-child < self.children.last()

35. if parent # NULL

36. self.parent~child-failed(self.secretary, newest-child)

37. if newest-child # NULL

38. older-children < self.children.remove(newest-child)

39. for each child in older-children

40. child~parent-failed(newest-child)

41. newest-child~replace-parent(self.parent, older-children)

42, else

43. older-children « []
recovering the lifeguards

44, self.recreate-lifeguards(self.parent, newest-child, older-children)
done

45. quit()

46. lifeguard.recreate-lifeguards(parent, replacement, children)
47. if self.parent ## NULL and self.parent~parent = NULL
and self.parent~children.first() = self.secretary
48. self.parent~lifeguard < lifeguard-create(self.parent~agent, self.parent~secretary,
self.parent~parent, self.parent~children, self.parent~msg-log)
49. if replacement # NULL

50. for each child in children

51. child~lifeguard < lifeguard-create(child~agent, child, replacement,
child~children, child~msg-log)

52. replacement~lifeguard < lifeguard-create(replacement~agent, replacement, parent,

replacement~children, replacement~msg-log)

Figure 7: The lifeguard protocol.

The intuition behind this protocol is very simple. An agent and its lifeguard are located on
different machines, and so the failure of a single machine cannot bring down both an agent and its
lifeguard. In addition, a lifeguard is kept current about the neighborhood of its agent and about the
messages concerning this agent. Thus, it is straightforward for a lifeguard to restore the ancestor
tree after a single failure and to complete any communication that was in progress when the agent
failed.

We first argue that the lifeguard is kept current about the neighborhood of its agent and the
communication involving its agent. There are four cases we need to consider. The first case is
when a new Chimichanga application is initialized and lifeguard-create is invoked by the secretary.
A lifeguard for this agent is created and placed in the same machine of the agent, as lines 2-8 in
Figure 7 shows. This is similar to case shown by Figure 6 a. The second case is when an agent
spawns onto another machine. The new agent’s secretary calls lifeguard-create to create a lifeguard
for it. Because its parent is different from NULL, the lifeguard for the new child will reside in the
same machine as its parent (lines 2-8 in Figure 7). Moreover, if the spawning agent was the only
one in the system, its own lifeguard is replaced on the new agent’s machine (lines 20-21). That
procedure makes the change from a tree like Figure 6 a into one similar to Figure 6 b. The third

11

case is when an agent quits. All lifeguards that run on its machine also quit. In addition, lifeguards
for any children are recreated. Of course, the lifeguard of the agent that takes over the role of
the lost agent is created (line 52) in a different place than the lifeguard of the remaining children
(lines 50-51). Finally, if the quitting agent bears its parent’s lifeguard, then this lifeguard is also
recreated (lines 47-48). The fourth case is when an agent sends a message. notify-msg is called to
inform the lifeguard about the event. The lifeguard logs the message (line 18).

We now argue the correctness of our protocol in the presence of a single failure. More specifically,
we argue that the delivery semantics are not affected by this single failure and that the ancestor tree
structure is restored. Recall that, as mentioned in Section 4.1, any agent trying to communicate
with the lost agent will keep trying until the latter is replaced.

When failure-detected is called by the failure detector module, the lifeguard starts by retrans-
mitting all messages that were not delivered to the neighbors of the lost agent (lines 27-33 in
Figure 7). Consequently, the delivery semantics are satisfied. Moreover, whenever the newest child
exists, it takes over the place of the faulty agent in the tree (lines 34-43). In the case where the
faulty agent has no children, its parent only invokes child-failed (line 36), which in turn removes the
faulty child from the list of children. Similarly to the case in which an agent quits, new lifeguards
are created for all of the agent’s children (lines 50-52). Finally, if the lifeguard of the root agent
has also failed, it too is recreated (lines 48-49).

7 Future Work

An obvious first step is to implement the protocol proposed in this paper. We currently have
only the underlying communications structure implemented within the Tacoma environment. In
addition, there are several clear improvements to the protocol. For example, multiple copies of a
message sent to the same machine can be coalesced into one message, and garbage collection needs
to be added to the message logging.

Chimichanga should also be extended to tolerate multiple simultaneous failures. There are
several issues to consider: how should the ancestor tree be reconfigured when multiple failures
occur, how should failure notification be done, and how should the protocol itself be written to
tolerate multiple failures? The first two issues are not difficult. Consider the simultaneous failure
of an agent a and its newest child b. We can treat this as if b first fails and then a fails, which
implies that b’s newest child ¢ takes over for both a and b. If b is a leaf, then there is no such node c.
In this case, the newest surviving child of a takes over. In general, consider the preorder traversing
of the subtree rooted at agent a, always choosing the next child to visit as the newest one among
the children not yet visited. This procedure numbers the agents with a priority of taking over a: if
a fails, then the agent to take over is the one with the smallest of such numbers among the agents
still running.

Some predict that agent systems will become widely diffused. In this situation, one interesting
approach to organize lifeguards would resemble an air traffic controller model. In this model, each
lifeguard is responsible for more than one agent. Lifeguards are stationary and are responsible for
agents within a predetermined area. As agents leaves one lifeguard’s area and enters another, the
responsibilities for providing fault-tolerance support for these agents is transferred to the appropri-
ate lifeguard. Some benefits that could result from this approach would be to reduce the number
of lifeguards needed to provide fault-tolerance guarantees and to reduce the overall complexity of
Chimichanga.

If Chimichanga were to be deployed in a wide-area setting, then communications failures would

12

need to be addressed. This is an important case to consider, since mobile agents are widely touted
as being useful in environments in which communications is unreliable. With minor changes to
Chimichanga as presented here, partitions would result in the creation of separate ancestor trees.
This is probably acceptable for mobile agent applications. The only additional feature that we see
as useful would be the re-grafting of ancestor trees once the partition ceases.

Finally, in designing Chimichanga we have taken a stand as to how one should approach building
fault-tolerant mobile agent applications. Experience is needed in building such applications to see
if our stand is sensible. Applications that we believe are well suited for using Chimichanga are
those with an embarrassingly parallel structure.

8 Conclusions

In this paper, we described Chimichanga, an infrastructure that provides asynchronous commu-
nication for mobile-agent based applications. The communication is message-based, where the
destination of the messages is based on the ancestor tree. Hence, an agent can send a message to
its parent, to its children, to all of its descendents, to all of its ancestors, and to all of the related
agents. In addition, Chimichanga provides a failure detection service. This service can be used by
the mobile agents to recover from the loss of an agent. Of course, to be useful Chimichanga itself
must be resilient against processor failures. Chimichanga does not provide any other mechanism
for fault-tolerance outside of notifying failures and choosing one agent to take over the role of the
lost agent. Generalized recovery techniques, such as resilient agents, could be implemented on top
of Chimichanga.

Chimichanga, as presented here, moves along with the mobile agents. This has the nice property
that the services of Chimichanga do not remain at a set of machines while the application’s agents
move far away from those machines. In addition, the addressing scheme enables Chimichanga to
be implemented such that each agent needs to know only the information about its neighborhood
in the ancestor tree. For example, when an agent exits, the only parts of Chimichanga that need
to be updated are at the parent and the children of the exiting agent. We believe that such locality
of update is important in an agent-based application because otherwise an update could span a
widely dispersed set of machines. Given the expected frequency of such updates, the cost could
easily be prohibitive.

Chimichanga is broken into two services: secretaries that manage naming and communication,
and lifeguards that manage failure detection, completion of communication, and reconstruction of
the ancestor tree. A lifeguard resides on a different machine than the agent it manages. This
allows Chimichanga to tolerate a single failure at a time. Chimichanga is somewhat complex in
the manner that lifeguards move. One case that seems complex is when a single agent migrates by
spawning and exiting. The spawn causes the lifeguard of the parent to move, and the exit causes
the lifeguard of the child to move. But, in this case, Chimichanga is not useful, since there is only
a single agent and so no communication is necessary.

Although our ultimate goal is to develop a protocol that can tolerate an arbitrary number of
failures, the protocol described here tolerates only a single failure at a time. We believe that the
structure we have chosen for Chimichanga, separate secretaries and lifeguards, makes this task
relatively easy. We have designed a secretary that can tolerate multiple failures, and if lifeguards
are separate from mobile agents, then can be made to tolerate multiple failures using traditional
approaches. Implementing mobile lifeguards that can tolerate multiple failures seems to be a more
difficult task. We were surprised by how difficult this was, and are investigating whether it is

13

intrinsic to the problem or not (we suspect that it is).

References

[1]

[2]

[10]

[11]

M. Abdalla, W. Cirne, L. Franklin, and A. Tabbara. Security Issues in Agent Based Computing.
In 15th Brazilian Symposium on Computer Networks, Sao Carlos, Brazil, May 1997.

O. Babaoglu and K. Marzullo. Distributed Systems, chapter Consistent Global States of Dis-
tributed Systems: Fundamental Concepts and Mechanisms, pages 55-96. Sape Mullender,
Addison-Wesley, New York, USA, second edition, 1993.

D. M. Chess, C. G. Harrison, and A. Kershenbaum. Mobile Agents: Are they a good idea?
Technical report, IBM, http://www.research.ibm.com/massive/mobag.ps, 1995.

R. S. Gray. Agent Tcl: A Transportable Agent System. In CIKM Workshop on Intelligent
Information Agents, Fourth International Conference on Information and Knowledge Manage-
ment (CIKM 95), http://www.cs.dartmouth.edu/ agent/papers/cikm95.ps.Z, Dec. 1995.

R. S. Gray. Agent Tcl: A Flexible and Secure Mobile-agent System. In Fourth Annual Tcl/Tk
Workshop (TCL 96), http://www.cs.dartmouth.edu/ agents/papers/tcl96.ps.Z, July 1996.

D. Johansen, R. van Renesse, , and F. Scheidner. An Introduction to the Tacoma Distributed
System: Version 1.0. Technical Report 95-23, Department of Computer Science, University of
Troms@, http://www.cs.uit.no/Lokalt /Rapporter/Reports/9523.html, 1995.

D. Johansen, R. van Renesse, , and F. Scheidner. Operating System Support for Mo-
bile Agents. In 5th IEEE Workshop on Hot Topics in Operating Systems, http://cs-
tr.cs.cornell.edu/TR/CORNELLCS:TR94-1468, 1995.

D. Johansen, R. van Renesse, , and F. Scheidner. Supporting Broad Internet Access to
Tacoma. In Seventh ACM SIGOPS FEuropean Workshop, pages 55-58, Connemara, Ireland,
http://www.cs.uit.no/DOS/Tacoma/tacoma.webpages/SIGOPS.tac-www.ps, Sept. 1996.

G. Magic. Telescript Technology: Mobile Agents. http://www.genmagic.com/Telescript/
Whitepapers/wp4/whitepaper-4.html, 1996.

F. B. Schneider. Distributed Systems, chapter What Good are Models and What Models are
Good?, pages 17-26. Sape Mullender, Addison-Wesley, New York, USA, second edition, 1993.

J. Vitek and C. Tschudin. Mobile Object Systems: Towards the Programmable Internet. In
Second International Workshop on Mobile Object Systems (MOS’96), Springer-Verlag Lecture
Notes in Computer Science 1222, Apr. 1997.

14

