
(Password) Authenticated Key Establishment:
From 2-Party To Group

Michel Abdalla1, Jens-Matthias Bohli2, Maŕıa Isabel González Vasco3,
and Rainer Steinwandt4

1 Departement d’Informatique, École Normale Supérieure, CNRS,
45 Rue d’Ulm, 75230 Paris Cedex 05, France

Michel.Abdalla@ens.fr
2 Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe,

Am Fasanengarten 5, 76128 Karlsruhe, Germany
bohli@ira.uka.de

3 Departamento de Matemática Aplicada, Universidad Rey Juan Carlos,
c/ Tulipán, s/n, 28933, Móstoles, Madrid, Spain

mariaisabel.vasco@urjc.es
4 Department of Mathematical Sciences, Florida Atlantic University,

777 Glades Road, Boca Raton, FL 33431, USA
rsteinwa@fau.edu

Abstract. A protocol compiler is described, that transforms any prov-
ably secure authenticated 2-party key establishment into a provably
secure authenticated group key establishment with 2 more rounds of
communication. The compiler introduces neither idealizing assumptions
nor high-entropy secrets, e. g., for signing. In particular, applying the
compiler to a password-authenticated 2-party key establishment without
random oracle assumption, yields a password-authenticated group key
establishment without random oracle assumption. Our main technical
tools are non-interactive and non-malleable commitment schemes that
can be implemented in the common reference string (CRS) model.

Keywords: key establishment, protocol compiler, password-based au-
thentication, common reference string model.

1 Introduction

During the last decades, the design of 2-party key establishments has been ex-
plored intensively. Certainly not all relevant issues are covered by the available
theoretical models, but the techniques at hand proved to be a valuable foun-
dation for the design of practical protocols. On the other hand, the design of
group key establishments with n > 2 participants is much less understood, and
there is a need for significant theoretical progress. In particular for password-
authenticated protocols the situation is not very satisfying. A number of proto-
cols have been designed for such a setting, including [24,1,2,28,13], but it seems
to be a non-trivial task to establish strong provable security guarantees without
making idealized assumptions.

S.P. Vadhan (Ed.): TCC 2007, LNCS 4392, pp. 499–514, 2007.
c© International Association for Cryptologic Research 2007

500 M. Abdalla et al.

One valuable tool for breaking down the task of designing a group key es-
tablishment protocol into conceptually simpler steps are protocol compilers that
build on the security of a given 2-party solution: It seems a plausible design ap-
proach to start with a 2-party key establishment and then to apply an efficient
compiler which derives the desired n-party solution. Indeed, a number of such
generic constructions have been discussed in the literature, including [9,25,17].
Remarkably, all proposed constructions rely, to the best of our knowledge, on the
use of high-entropy secrets for achieving security against active adversaries. In
particular, for the case of password-based authentication in the standard model,
no generic 2-to-n compiler seems to be known. The only result in this direction
we are aware of is a construction of Abdalla et al. [1,2] to extend a 2-party
solution to the 3-party case.

Our contribution. We describe a compiler that enables the derivation of an au-
thenticated group key establishment protocol from an arbitrary authenticated
2-party key establishment (AKE). In particular, for a password-authenticated
2-party key establishment (PAKE) we obtain a password-authenticated group
key establishment. Our compiler does not impose idealizing assumptions or high-
entropy secrets for authentication. The suggested construction builds on the use
of non-interactive and non-malleable commitments, which in the Common Ref-
erence String (CRS) model are known to be implementable through IND-CCA2
secure encryption schemes. For the security proof, we build on a model adapted
from [18,20,6] which in turn builds on [4,3]. The structure of our compiler is
inspired by the constant-round protocol recently proposed by Bohli et al. [6]
which in turn builds on [8,14,15]. If the underlying 2-party protocol requires r
rounds of communication, the group key establishment output by the compiler
takes r + 2 rounds.

Organization of the paper. In the next section we recall the basic components
of the security framework. We also address some specifics of password-based
authentication, a scenario where the application of our protocol compiler seems
particularly attractive. Thereafter, we detail the suggested protocol compiler and
present the respective security proof. Section 4 indicates some possible applica-
tions of our compiler.

2 Security Model and Security Goals

For our compiler, we assume the availability of a common reference string (CRS)
which, similarly as in [14,6], encodes

i) the necessary information for implementing a non-interactive and
non-malleable commitment scheme,

ii) a uniformly at random chosen element from a family of universal hash func-
tions and

iii) two values v0, v1 that will serve as arguments for a pseudorandom function
when computing the session identifier and session key.

(Password) Authenticated Key Establishment 501

The total set of users will be denoted by P and is assumed to be of polyno-
mial size. By U = {U1, . . . , Un} ⊆ P we denote the set of protocol participants.
We assume that shared (low- or high-entropy) secrets needed for authentication
are generated in a trusted initialization phase. During this trusted initialization
phase, also possibly needed public keys may be distributed to all potential pro-
tocol participants. If authentication is based on shared secrets, we may either
assume that each pair of protocol participants Ui, Uj ∈ U shares such a secret
or that the complete set of protocol participants U shares one common secret
(our compiler is provably secure in either case). We assume that all secrets are
chosen independently.

Specifics for password-based authentication. In the case of password-authenticated
key establishment, we assume a dictionary D ⊆ {0, 1}∗ to be publicly available.
It is supposed to be efficiently recognizable and of constant or polynomial size. In
particular, a polynomially bounded adversary is able to exhaust the complete dic-
tionary D. We assume that all passwords are chosen independently and uniformly
at random from D.

2.1 Communication Model and Adversarial Capabilities

As mentioned earlier, our security model is essentially adopted from [6] which
in turn builds on [8,14,15,5]. Moreover, as we consider forward secrecy, we also
include a Corrupt-oracle. As usual, users are modeled as probabilistic polynomial
time (ppt) Turing machines. For our proofs, we may either use uniform or non-
uniform Turing machines.

Protocol instances. Each protocol participant U ∈ U may execute a polynomial
number of protocol instances in parallel. A single instance Πsi

i can be interpreted
as a process executed by protocol participant Ui. Throughout, the notation Πsi

i

(i ∈ N) will be used to refer to instance si of protocol participant Ui ∈ U . To
each instance we assign seven variables:
usedsi

i indicates whether this instance is or has been used for a protocol run.
The usedsi

i flag can only be set through a protocol message received by the
instance due to a call to the Execute- or to the Send-oracle (see below);

statesi

i keeps the state information needed during the protocol execution;
termsi

i shows if the execution has terminated;
sidsi

i denotes a public session identifier that can serve as identifier for the session
key sksi

i . Note that even though we do not construct session identifiers as
session transcripts, the adversary is allowed to learn all session identifiers;

pidsi

i stores the set of identities of those users that Πsi

i aims at establishing a
key with—including Ui himself;

accsi

i indicates if the protocol instance was successful, i. e., the user accepted
the session key;

sksi

i stores the session key once it is accepted by Πsi

i . Before acceptance, it
stores a distinguished null value.

For more details on the usage of the variables we refer to the work of Bellare et
al. in [3].

502 M. Abdalla et al.

Communication network. We assume arbitrary point-to-point connections
among users to be available. The network is non-private and fully asynchronous:
The adversary may delay, eavesdrop, insert and delete messages at will.

Adversarial capabilities. We consider ppt adversaries only. Let b be a bit cho-
sen uniformly at random. The capabilities of an adversary A are made explicit
through a number of oracles allowing A to communicate with protocol instances
run by the users:

Send(Ui, si, M). This sends message M to the instance Πsi

i and returns the
reply generated by this instance. If A queries this oracle with an unused
instance Πsi

i and M ⊆ P a set of identities of principals, the usedsi

i -flag is
set, pidsi

i initialized with pidsi

i := {Ui}∪M , and the initial protocol message
of Πsi

i is returned.
Execute({Π

su1
u1 , . . . , Π

suμ
uμ }). This executes a complete protocol run among the

specified unused instances of the respective users. The adversary obtains
a transcript of all messages sent over the network. A query to the Exe-
cute oracle is supposed to reflect a passive eavesdropping. In particular, for
a password-authenticated setting, no online-guess for the secret password
can be implemented with a query to this oracle.

Reveal(Ui, si). This yields the value stored in sksi

i .
Test(Ui, si). Provided that the session key is defined (i. e. accsi

i = true and
sksi

i �= null) and instance Πsi

i is fresh (see the definition of freshness below),
A can execute this oracle query at any time when being activated. Then, the
session key sksi

i is returned if b = 0 and a uniformly chosen random session
key is returned if b = 1. In this model, an arbitrary number of Test queries is
allowed for the adversary A, but once the Test oracle returned a value for an
instance Πsi

i , it will return the same value for all instances partnered with
Πsi

i (see the definition of partnering below).
Corrupt(Ui). This returns all long-term secrets of user Ui. In case of password-

based authentication, all passwords held by Ui are returned. In the case of
Ui having long-term private keys, e. g., for signing, these private keys are
returned.

Remark 1. The model described above seems apparently stronger than those
normally used elsewhere since it allows for multiple Test queries. Nevertheless,
one can easily show the two notions to be equivalent via a standard hybrid
argument with a loss of a factor q in the reduction, with q being the total number
of protocol instances. A similar model was also considered by Abdalla et al. in [2]
to prove the security of their password-authenticated 3-party key establishment.
Fortunately, as pointed out in [2], the loss of a factor q in the reduction can be
avoided in most cases as several of the existing schemes (e.g., [19,20,15]) already
meet this apparently stronger notion of security. This is due to the fact that, in
their security proofs, they show that all fresh session keys that can be tested by
the adversary are indistinguishable from random.

(Password) Authenticated Key Establishment 503

2.2 Correctness, Integrity and Secrecy

Before we define correctness, integrity and secrecy, we introduce partnering to
express which instances are associated in a common protocol session.

Partnering. We refer to instances Πsi

i , Π
sj

j as being partnered if pidsi

i = pidsj

j ,
sidsi

i = sidsj

j , sksi

i = sksj

j and accsi

i = accsj

j = true.
To avoid trivial cases, we assume that an instance Πsi

i always accepts the ses-
sion key constructed at the end of the corresponding protocol run if no deviation
from the protocol specification has occurred. Moreover, we want that all users
in the same protocol session come up with the same session key, and we capture
this in the subsequent notion of correctness.

Correctness. We call a group key establishment protocol P correct, if in the
presence of a passive adversary A—i. e., A must neither use the Send nor the
Corrupt oracle—the following holds: for all i, j with both sidsi

i = sidsj

j and accsi

i =
accsj

j = true, we have sksi

i = sksj

j �= null and pidsi

i = pidsj

j .

Key integrity. By definition, correctness takes only passive attacks into account.
In contrast, key integrity imposes no restrictions on the adversary’s oracle access:
We say that a correct group key establishment protocol fulfills key integrity, if
with overwhelming probability all instances of users that have accepted with the
same session identifier sidsj

j hold identical session keys sksj

j and identical partner
identifiers pidsj

j .
Next, for detailing the security definition, we will have to specify under which

conditions a Test-query may be executed.

Freshness. A Test-query should only be allowed to those instances holding a key
that is not for trivial reasons known to the adversary. To this aim, an instance
Πsi

i is called fresh if none of the following holds:

– For some Uj ∈ pidsi

i a query Corrupt(Uj) was executed before a query of the
form Send(Uk, sk, M) has taken place, for some message (or set of identi-
ties) M and some Uk ∈ pidsi

i .
– The adversary earlier queried Reveal(Uj , sj) with Πsi

i and Π
sj

j being part-
nered.

The idea of this definition is that revealing a session key from an instance Πsi

i

trivially yields the session key of all instances partnered with Πsi

i , and hence
this kind of “attack” will be excluded in the security definition.

Security/key secrecy. For a secure group key establishment protocol, we have
to impose a corresponding bound on the adversary’s advantage: The advantage
AdvA(�) of a ppt adversary A in attacking protocol P is a function in the security
parameter �, defined as

AdvA := |2 · Succ − 1|.

504 M. Abdalla et al.

Here Succ is the probability that the adversary queries Test only on fresh in-
stances and guesses correctly the bit b used by the Test oracle (without violating
the freshness of those instances queried with Test) :

In the case of password-authenticated key establishment, due to the poly-
nomial size of the dictionary D, we cannot prevent an adversary from cor-
rectly guessing shared passwords with non-negligible probability. Thus, for the
password-authenticated setting, our goal is to restrict the adversary A to online-
verification of password guesses, namely, to prove that AdvA is only negligibly
above the probability A has guessed a shared password online. We introduce a
function ε to capture such weaknesses that originate in the employed authen-
tication technique. For the password case, ε should bound A’s probability of
guessing a shared password, assuming he is not able to test (online) more than
a constant number of passwords per protocol instance.

Remark 2. Following the spirit of [14,6], it would be desirable to restrict the
number of passwords that can be guessed online to one per protocol instance.
As described, our compiler accesses the underlying authenticated 2-party key
establishment as a black-box only, and our security proof does not guarantee
that only one password can be verified per instance. For specific instances a
tighter security reduction may be possible, however.

Definition 1. We say that an authenticated group key establishment protocol P
is ε-secure, if for every ppt adversary A the following inequality holds for some
negligible function negl:

AdvA(�, qsend) ≤ ε(�, qsend) + negl(�), (1)

where � is the security parameter and qsend is the number of different protocol
instances A queries the Send oracle with. The function ε is expected to be at
most linear in its second variable, i.e. the number of Send queries.

Forward Secrecy. We follow the spirit of the definition of forward secrecy from
[19], yet our definition is weaker: we consider the “weak corruption model” of [3]
in which corrupting a principal means only retrieving his long term secret keys.
Forward secrecy is then achieved if such corruption does not give the adversary
any information about previously agreed session keys. This same approach has
also been taken in [7,16].

Remark 3. Note that our definition of freshness allows for Test queries to in-
stances such that their (or their partners’) long term secret keys have been
revealed to the adversary by a Corrupt query as long as no Send query has been
asked to any of these instances (or their partners) after the Corrupt query. Thus,
the above definition of ε-security implies forward secrecy in this sense.

3 From Two to Group: A Compiler

In this section, we describe how an n-party AKE can be derived from any 2-
party AKE carrying over its essential security properties. Our compiler assumes

(Password) Authenticated Key Establishment 505

the availability of a 2-party key establishment that is ε-secure in the sense of
Definition 1, where ε is defined according to the authentication method used.
Our construction then yields an ε̂-secure n-party AKE where ε̂ is bounded by 4·ε.

3.1 Tools

For the actual compiler, black-box access to the authenticated 2-party key estab-
lishment suffices, and Fig. 1 captures this access with an oracle 2-AKE(·, ·) that
upon input of two principals Ui, Uj ∈ P (or rather their identities), returns the
respective output of the 2-party protocol. We assume this output to be either a
secret key κ ∈ {0, 1}k or a special symbol � indicating that the key establish-
ment failed (due to adversarial interference). Additionally, the tools involved in
our construction are:

– a non-interactive non-malleable commitment scheme [12] C, fulfilling
the following requirements:
1. it must be perfectly binding, i. e., every commitment c defines at most

one value decommit(c);
2. it must achieve non-malleability for multiple commitments—if an adver-

sary receives commitments to a (polynomial sized) set of values ν he
must not be able to output commitments to a (polynomial sized) set of
values β related to ν in a known way.

Note that in the CRS model with a common reference string ρ, the above
commitment schemes C = Cρ can be constructed from any public key en-
cryption scheme that is non-malleable and secure for multiple encryptions
(in particular, from any IND-CCA2 secure public key encryption scheme).

– a collision-resistant pseudorandom function family F = {F �}�∈N as
used by Katz and Shin [21]. We assume F � = {F �

η}η∈{0,1}L to be indexed by a
superpolynomial sized set {0, 1}L and denote by v0 = v0(�) a publicly known
value such no ppt adversary can find two different indices λ �= λ′ ∈ {0, 1}L

such that Fλ(v0) = Fλ′(v0). For deriving the session key we use another
public value v1 which fulfills the above collision-resistance condition as well
and is also encoded in the CRS (see [21] for more details).

– a family of universal hash functions UH that maps the concatenation
of bitstrings from {0, 1}kn and a partner pidsi

i onto {0, 1}L. The CRS selects
one universal hash function UH from this family. We use UH to select an
index within the aforementioned collision-resistant pseudorandom function
family.

3.2 Design Rationale

The idea of our compiler is inspired in the classical construction of Burmester and
Desmedt [8], where the trick of constructing a group key from pairwise agreed
keys among the group principals was first introduced. Further, our construction
in some sense generalizes the design of [6], that builds an n-party PAKE on

506 M. Abdalla et al.

Gennaro and Lindell’s 2-party PAKE. Once the pairwise key establishments
have been completed, each principal must commit to the XOR-value of the two
keys he shares with his neighbors. This value is disclosed in a subsequent round,
allowing all principals to derive each of the 2-party keys, from which both the
session identifier and the session key will be derived. Intuitively, if an adversary
has not been able to pervert the security of any of the 2-party protocol executions
involved, neither will he be able to retrieve any information about the resulting
group session key (for XORs of “randomly looking” elements should look as well
random to him). Moreover, integrity is also provided by an argument similar to
the one in [6].

The compiler does not rely on further authentication techniques than those
used in the basic 2-party AKE protocol, neither on any further idealization
assumption. Also, our design is symmetric in the sense that all users perform the
same steps. Fig. 1 shows the three rounds of our construction, adding 2 rounds
to those of the underlying 2-party AKE. For the sake of readability, we do not
explicitly refer to instances si of users. Also, we omit the pidsi

i -values, assuming
that when the protocol is initiated (via a Send or Execute call) each participant
involved receives a message informing him of the actual pid of the session, which
in addition makes him aware of his position in the “cycle” of involved principals
and therefore the 2-AKE step (Round 0) can be performed accordingly.

Remark 4. The compiler can be applied to any polynomial number of partici-
pants n ≥ 2. The case n = 2 is not excluded, but to some extent pathological:
Here the compiler executes the underlying 2-party AKE twice, so that each party
obtains two independent keys

−→
K i,

←−
K i, which are then combined to form the ac-

tual session key.

3.3 Security Analysis

Assume that we are given a correct and secure authenticated 2-party key es-
tablishment protocol. Assume further that C is a non-interactive non-malleable
commitment scheme and F a collision-resistant pseudorandom function family.
In the following, we show that under these assumptions the compiler in Fig. 1
yields a correct and secure group key establishment. In particular, this is true
when the underlying 2-party AKE protocol is based on passwords.

Theorem 1. Let F be a family of secure collision-resistant pseudorandom func-
tions, let C be a non-interactive perfectly binding non-malleable commitment
scheme, and let 2-AKE be a correct and ε-secure authenticated 2-party key es-
tablishment protocol. Then the protocol in Fig. 1 is a correct and 4 · ε-secure
authenticated group key establishment protocol, which also provides key integrity.

Proof. Correctness. In an honest execution of the protocol, it is easy to verify
that all participants in the protocol will terminate by accepting and computing
the same session identifier and session key.

Integrity. Owing to the collision-resistance of the family F , all oracles that accept
with identical session identifiers use with overwhelming probability the same

(Password) Authenticated Key Establishment 507

Round 0:
2-AKE: For i = 1, . . . , n execute 2-AKE(Ui, Ui+1).a Thus, each user Ui holds

two keys
−→
K i,

←−
K i shared with Ui+1 respectively Ui−1.

Round 1:
Computation: Each Ui computes

Xi :=
−→
K i ⊕ ←−

K i

and chooses a random ri to compute a commitment Ci = Cρ(i, Xi; ri).
Broadcast: Each Ui broadcasts M1

i := (Ui, Ci)

Round 2:
Broadcast: Each Ui broadcasts M2

i := (Ui, Xi, ri)
Check: Each Ui checks that X1 ⊕ X2 ⊕ · · · ⊕ Xn = 0 and the correctness of

the commitments. If at least one of these checks fails, set acci := false and
terminate the protocol execution.

Computation: Each Ui sets Ki :=
←−
K i and computes the n − 1 values

Ki−j :=
←−
K i ⊕ Xi−1 ⊕ · · · ⊕ Xi−j (j = 1, . . . , n − 1),

defines a master key

K := (K1, . . . , Kn, pidi),

and sets ski := FUH(K)(v1), sidi := FUH(K)(v0) and acci := true.

a All indices are to be taken in a cycle, i. e., Un+1 = U1, etc.

Fig. 1. A protocol compiler

index value UH(K) and therewith also derive the same session key and have
identical partner identifiers.

Key secrecy. The proof of key secrecy will proceed in a sequence of games, start-
ing with the real attack against the key secrecy of the group key exchange pro-
tocol and ending in a game in which the adversary’s advantage is 0, and for
which we can bound the difference in the adversary’s advantage between any
two consecutive games. Following standard notation, we denote by Adv(A, Gi)
the advantage of the adversary A in Game i. Furthermore, for clarity, we clas-
sify the Send queries into 3 categories, depending on the stage of the protocol
to which the query is associated, starting with Send-0 and ending with Send-2.
Send-t denotes the Send query associated with round t for t = 0, 1, 2.

Game 0. This first game corresponds to a real attack, in which all the param-
eters, such as the public parameters in the common reference string and the
long-term secrets associated with each user, are chosen as in the actual scheme.
By definition, Adv(A, G0) = Adv(A).

508 M. Abdalla et al.

Game 1. In this game, for i = 1, . . . , n, we modify the simulation of the Send
and Execute oracles so that, whenever an instance Πsi

i is still considered fresh at
the end of Round 0, the keys

←−
K i and

−→
K i that it shares with instances Π

si−1
i−1 and

Π
si+1
i+1 are replaced with random values from the appropriate set. An instance

Πsi

i is considered fresh at the end of Round 0 if it has not halted or rejected and if
no query Corrupt(Uj) for some Uj ∈ pidsi

i has been asked by the adversary before
a query of the form Send(Uk, sk, M) for some Uk ∈ pidsi

i and some message M .
Note that the distance between this game and the previous one is bounded by

the probability that the adversary breaks the security of any of the underlying
2-AKE protocols. More precisely, we have

∣
∣Adv(A, G1) − Adv(A, G0)

∣
∣ ≤ 2 · Adv2-AKE(�, 2 · qsend),

where qsend represents the number of different protocol instances in Send queries.
The factor 2 multiplying qsend emerges because one instance in the group key
protocol builds on two instances of the 2-AKE protocol for the key establishment
with the right and left neighbor, respectively. The other factor 2 is due to the
security definition which states that the advantage of an adversary is twice its
success probability minus 1.

To prove this, we show how an adversary A2-AKE is constructed from a given
adversary A distinguishing Game G1 from Game G0.

A2-AKE is given access to a simulation of the 2-AKE protocol as outlined
in Section 2. To answer its queries, A2-AKE will associate each user instance
Πsi

i in the group protocol with two independent instances of the same user in
the 2-AKE protocol. Now, whenever A makes a Corrupt query, A2-AKE answers
it by querying the Corrupt oracle of the 2-AKE protocol and returns the same
answer. To answer an Execute query, A2-AKE first queries the Execute oracle of
the 2-AKE protocol with the corresponding instances to obtain the transcript for
Round 0. To simulate the following rounds, A2-AKE first queries the Test oracle
of the 2-AKE protocol with the corresponding instances and uses the returned
values as the keys

←−
K i and

−→
K i. To answer a Send-0 query, A2-AKE queries the

Send oracle of the 2-AKE protocol with the corresponding instance and returns
its response. To answer Send queries pertaining rounds 1 and 2, A2-AKE first
sets the values of the keys

←−
K i and

−→
K i by querying either the Test or Reveal

oracle of the 2-AKE protocol with the corresponding instances and proceeds
with the simulation as in the previous game. More precisely, if an instance Πsi

i

in the group protocol is still considered fresh at the beginning of Round 1, then
A2-AKE queries the Test oracle of the 2-AKE protocol with the corresponding
instances in the 2-AKE protocol. Otherwise, A2-AKE queries the Reveal oracle.

Finally, one can easily see that the view of A corresponds to Game G0 if
Test reveals the actually exchanged key and to Game G1 if Test returns a random
element from the key space. Thus, A succeeds distinguishing Game G0 and
Game G1 with a probability of at most Adv2-AKE(�, 2 · qsend).

Game 2. In this game, we change the simulation of the Send oracle so that a fresh
instance Πsi

i does not accept in Round 2 whenever one commitment Cj for j �= i
it receives in Round 1 was generated by the simulator but not generated by the

(Password) Authenticated Key Establishment 509

respective instance Π
sj

j , j �= i in the same session. At this, we take two instances
Π

sα0
α0 , Π

sαr
αr for being in the same session, if there is a sequence of instances

(Π
sαμ
αμ)0≤μ≤r such that for each μ = 0, . . . , r − 1 the instances Π

sαμ
αμ and Π

sαμ+1
αμ+1

are partnered through an execution of the underlying 2-party key establishment
(i. e., they hold a common 2-party session key

−→
Kαμ =

←−
Kαμ+1 associated with

the same session identifier and the same two protocol participants).
The adversary A can detect the difference to Game G1 if A replayed a com-

mitment that should have led to acceptance in Round 2 in that game. Because
the committed value Xi is a random value independent of previous messages,
the probability for this is negligible.

∣
∣Adv(A, G2) − Adv(A, G1)

∣
∣ ≤ negl(�)

To see why, note that given one session, an instance Πsi

i expects commitments
Cj to (j, Xj), such that X1 ⊕ · · · ⊕ Xn = 0. Πsi

i will only accept with negligible
probability if all commitments where generated by the simulator, however, not
being exactly the commitments Cj , j �= i by the respective oracles Π

sj

j , j �= i of
the session. This can be seen as follows: The equation

X1 ⊕ · · · ⊕ Xn = 0

results in ←−
K1 ⊕ −→

K1 ⊕ · · · ⊕ ←−
Kn ⊕ −→

Kn = 0.

For Πsi

i , Xi =
←−
K i ⊕ −→

K i is given where
←−
K i is shared with Ui−1 and

−→
K i is shared

with Ui+1. Because the commitment Cj includes the index of user Uj and is
perfectly binding, the adversary A cannot reveal the commitments if they are
permuted within the participants of the session. As by now all keys are random
values, the probability for any XOR sum of keys not consisting exactly of the
keys in one session (thus canceling each other w.r.t. XOR) to be 0 is only 1/2k.
The adversary A is at maximum capable of doing this qsend times, giving him a
probability qsend/2k of distinguishing the games.

Game 3. This game reproduces the modification also for adversary-generated
commitments: The simulation of the Send oracle changes so that a fresh instance
Πsi

i does not accept in Round 2 whenever one commitment Cj for j �= i it receives
in Round 1 was adversary-generated. The adversary’s advantage diverges only
negligibly from the previous game:

∣
∣Adv(A, G3) − Adv(A, G2)

∣
∣ ≤ negl(�)

To prove this, we construct a malleability attacker ACOM to the commitment
scheme from an adversary A that comes up with a commitment Cj to Πsi

i such
that Πsi

i would accept in Game G2 but not in Game G3. Our goal is to show
that the probability with which ACOM succeeds in outputting a related vector of
commitments is related to the probability with which A can distinguish Games
G3 from G2.

510 M. Abdalla et al.

ACOM is given commitments Ci = Cρ(i, Xi; ri) for i = 1, . . . , n where the
Xi values are random bitstrings fulfilling X1 ⊕ · · · ⊕ Xn = 0. For bitstrings X ′

i,
i = 1, . . . , n, the 2n-ary relation is given by

R(X1, . . . , Xn, X ′
1, . . . , X

′
n) = 1

if and only if

X ′
1 ⊕ · · · ⊕ X ′

n = 0 and Xi = X ′
i for at least one index i ∈ {1, . . . , n}.

ACOM starts by guessing the first instance Πsi

i to receive from A a set of com-
mitments C′

j , for j �= i, with at least one of these commitments being adversary-
generated. For all sessions other than the one in which Πsi

i is involved, ACOM

simulate the oracles exactly as it would in Game G2. For the session in which
Πsi

i is involved, ACOM uses the Ci values that it has received as input to answer
Send-1 queries. Then, as soon as A provides Πsi

i with a set of commitments C′
j

for j �= i, then ACOM halts the simulation and outputs this set along with Ci.
One can easily see that ACOM will succeed in outputting a set of related

commitments satisfying the relation R if it guesses correctly the first instance
to receive a set of commitments containing at least one adversary-generated
commitment and passing the verification test. This is true because games G3
and G2 are indistinguishable up to that point and the simulation of the oracles
by ACOM is perfect.

By definition of non-malleability, the success probability of ACOM is only neg-
ligibly greater than that of an adversary who does not see the list of commitments
Ci for i = 1, . . . , n. If no commitments are given, an adversary’s probability to
send valid commitments Cj for j �= i such that X ′

1 ⊕ · · · ⊕ Xi ⊕ · · · ⊕ X ′
n = 0 is

qsend/2k as in the previous game. As a result, the non-malleability of the commit-
ment scheme guarantees that the adversary’s success probability with access to
these commitments is negligibly close to qsend/2k, thus, being negligible in total.

Game 4. Now the simulation of the Execute and Send oracles are modified at
the point of computing the session key. The simulator keeps a list of assignments
(K1, . . . , Kn, sksi

i). Once an instance receives the last Send-2 query, the simulator
computes K1, . . . , Kn and checks if for this sequence a master key was already
issued and assigns this key to the instance. If no such entry exists in the list, the
simulator chooses a session key sksi

i ∈ {0, 1}� uniformly at random.
The master key K = (K1, . . . , Kn, pidsi

i) has, once the Xi are public, suf-
ficient entropy such that the output of the pseudorandom function FUH(K) is
distinguishable from a random sksi

i with negligible probability only.
∣
∣Adv(A, G4) − Adv(A, G3)

∣
∣ ≤ negl(�).

In Game G4, all session keys are chosen uniformly at random and the adver-
sary has no advantage.

Adv(A, G4) = 0.

�

(Password) Authenticated Key Establishment 511

4 Applications and Comments

The above compiler allows for the construction of very efficient authenticated
group key exchange protocols adding up to the “base” 2-AKE only two rounds
of communication. As we have remarked, our compiler adds neither any authen-
tication tool nor any additional idealization assumptions to the base scheme.

Example 1. Applying our compiler to a password-authenticated 2-party key es-
tablishment offering forward secrecy, we immediately obtain a forward secure
password-authenticated group key establishment. It should be pointed out here,
however, that stronger notions of forward secrecy than ours can be consid-
ered [19]. Actually, it is an interesting question to explore whether the KOY
2-AKE from [19] (or variants of it) can be proven secure in our model—therewith
yielding through application of our compiler the first forward secure password-
authenticated group key establishment.

Of course, our compiler can also be applied in the random oracle model—in
practice this means to replace the “full-fledged” commitment scheme and the
family of collision resistant pseudorandom functions through the (more efficient)
use of a cryptographic hash function (cf. [21]). Going one step further, from
an engineering perspective it is tempting to apply the compiler to an efficient
authenticated 2-party key establishment, even if no security proof in the above
model is available. Of course, in this case our security analysis does not yield a
provable security statement on the resulting group key establishment.

Example 2. A natural starting point for applying our compiler would be the
(H)MQV family discussed in [27,23,26,22]. The resulting scheme could be rather
efficient in practice, but the available formal security analysis builds on a model
due to Canetti and Krawczyk [11]. We have not attempted to carry out a security
analysis in the model underlying the above discussion and consequently cannot
claim provable security guarantees of a derived group key establishment.

5 Conclusions

The compiler we presented allows the construction of authenticated group key
establishment schemes based on any provably secure authenticated 2-party key
establishment. At this forward secrecy is taken into account, and the suggested
compiler does not introduce new idealizing assumptions or tools for authentica-
tion, like an existentially unforgeable signature scheme. In terms of efficiency,
adding only two additional rounds to a 2-party solution seems acceptable, too,
and renders the compiler an interesting tool for practical protocol design.

Both from a theoretical and from a practical point of view, it seems worthwhile
to explore the tightness of the above security proof more closely, when applying
the compiler to specific protocols. In the described form, the compiler restricts
to black-box access to the underlying two-party key establishment, but for a
specific use case, there is no need for such a restriction.

512 M. Abdalla et al.

Also, we have not explored the behaviour of our compiler within the universal
composability framework. In particular, it would be interesting to explore the
security level achieved applying our compiler to universally composable password
based two party key exchange protocols, along the lines of [10].

Acknowledgements

The first author was supported in part by the European Commission through the
IST Program under Contract IST-2002-507932 ECRYPT and by France Telecom
R&D as part of the contract CIDRE, between France Telecom R&D and École
normale supérieure.

References

1. Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-Based
Authenticated Key Exchange in the Three-Party Setting. In Serge Vaudenay,
editor, Public Key Cryptography – PKC 2005, volume 3386 of Lecture Notes in
Computer Science, pages 65–84. Springer, 2005.

2. Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-Based
Authenticated Key Exchange in the Three-Party Setting. IEE Proceedings – In-
formation Security, 153(1):27–39, March 2006.

3. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Ex-
change Secure Against Dictionary Attacks. In Bart Preneel, editor, Advances in
Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Sci-
ence, pages 139–155. Springer, 2000.

4. Mihir Bellare and Phillip Rogaway. Entitiy Authentication and Key Distribution.
In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO ’93, volume 773
of Lecture Notes in Computer Science, pages 232–249. Springer, 1994.

5. Jens-Matthias Bohli, Maŕıa Isabel González Vasco, and Rainer Steinwandt. Secure
Group Key Establishment Revisited. Cryptology ePrint Archive, Report 2005/395,
2005. Available at http://eprint.iacr.org/2005/395/ .

6. Jens-Matthias Bohli, Maŕıa Isabel González Vasco, and Rainer Steinwandt.
Password-Authenticated Constant-Round Group Key Establishment with a Com-
mon Reference String . Cryptology ePrint Archive: Report 2006/214, 2006. Avail-
able at http://eprint.iacr.org/2006/214.

7. Victor Boyko, Philip D. MacKenczie, and Sarvar Patel. Provable-Secure Password-
Authenticated Key Exchange Using Diffie-Hellman. In Bart Preneel, editor, Ad-
vances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Com-
puter Science, pages 156–171. Springer, 2000.

8. Mike Burmester and Yvo Desmedt. A Secure and Efficient Conference Key Dis-
tribution System. In Alfredo De Santis, editor, Advances in Cryptology – EU-
ROCRYPT’94, volume 950 of Lecture Notes in Computer Science, pages 275–286.
Springer, 1995.

9. Mike Burmester and Yvo G. Desmedt. Efficient and Secure Conference-Key Dis-
tribution. In T. Mark A. Lomas, editor, Proceedings of the International Workshop
on Security Protocols, volume 1189 of Lecture Notes in Computer Science, pages
119–129. Springer, 1996.

http://eprint.iacr.org/2005/395/
http://eprint.iacr.org/2006/214

(Password) Authenticated Key Establishment 513

10. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip MacKenzie.
Universally Composable Password-Based Key Exchange. In Ronald Cramer, editor,
Advances in Cryptology – EUROCRYPT 2005, volume 3495 of Lecture Notes in
Computer Science, pages 404–421. Springer, 2005.

11. Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels. In Birgit Pfitzmann, editor, Advances in Cryp-
tology – EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science,
pages 453–474. Springer, 2001.

12. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryptography.
SIAM Journal of Computing, 30(2):391–437, 2000.

13. Ratna Dutta and Rana Barua. Password-Based Encrypted Group Key Agreement.
International Journal of Network Security, 3(1):23–34, July 2006.

14. Rosario Gennaro and Yehuda Lindell. A Framework for Password-Based Authenti-
cated Key Exchange. Cryptology ePrint Archive: Report 2003/032, 2003. Available
at http://eprint.iacr.org/2003/032.

15. Rosario Gennaro and Yehuda Lindell. A Framework for Password-Based Authen-
ticated Key Exchange (Extended Abstract). In Eli Biham, editor, Advances in
Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Sci-
ence, pages 524–543. Springer, 2003.

16. Oded Goldreich and Yehuda Lindell. Session-key generation using human pass-
words only. In Advances in Cryptology – CRYPTO ’01, pages 408–432, London,
UK, 2001. Springer-Verlag.

17. Jung Yeon Hwang, Su-Mi Lee, and Dong Hoon Lee. Scalable key exchange trans-
formation: from two-party to group. Electronic Letters, 40(12):728–729, 2004.

18. Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient Password-
Authenticated Key Exchange Using Human-Memorable Passwords. In Birgit Pfitz-
mann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lec-
ture Notes in Computer Science, pages 475–494. Springer, 2001.

19. Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Forward Secrecy in Password-
Only Key Exchange Protocols. In Stelvio Cimato, Clemente Galdi, and Giuseppe
Persiano, editors, Security in Communication Networks: Third International Con-
ference, SCN 2002, volume 2576 of Lecture Notes in Computer Science, pages
29–44. Springer, 2003.

20. Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient and Secure
Authenticated Key Exchange Using Weak Passwords, 2006. Available at
http://www.cs.umd.edu/∼jkatz/papers/password.pdf.

21. Jonathan Katz and Ji Sun Shin. Modeling Insider Attacks on Group Key-Exchange
Protocols. Cryptology ePrint Archive: Report 2005/163, 2005. Available at
http://eprint.iacr.org/2005/163.

22. Hugo Kawczyck. HMQV: A High-Performance Secure Diffie-Hellman Pro-
tocol. Cryptology ePrint Archive: Report 2005/176, 2005. Available at
http://eprint.iacr.org/2005/176.

23. Hugo Krawczyck. HMQV: A High-Performance Secure Diffie-Hellman Protocol.
In Victor Shoup, editor, Advances in Cryptology – CRYPTO ’05, volume 3621 of
Lecture Notes in Computer Science, pages 546–566. Springer, 2005.

24. Su Mi Lee, Jung Yeon Hwang, and Dong Hoon Lee. Efficient Password-Based
Group Key Exchange. In Sokratis Katsikas, Javier Lopez, and Günther Pernul,
editors, Trust and Privacy in Digital Business: First International Conference,
TrustBus 2004, volume 3184 of Lecture Notes in Computer Science, pages 191–
199. Springer, 2004.

http://eprint.iacr.org/2003/032
http://www.cs.umd.edu/~jkatz/papers/password.pdf
http://eprint.iacr.org/2005/163
http://eprint.iacr.org/2005/176

514 M. Abdalla et al.

25. Alain Mayer and Moti Yung. Secure Protocol Transformation via “Expansion”:
From Two-party to Groups. In Proceedings of the 6th ACM conference on Computer
and Communications Security CCS ’99, pages 83–92. ACM Press, 1999.

26. Alfred Menezes. Another look at HMQV. Cryptology ePrint Archive: Report
2005/205, 2005. Available at http://eprint.iacr.org/2005/205.

27. Alfred Menezes, Minghua Qu, and Scott A. Vanstone. Some new key agreement
protocols providing mutual implicit authentication. In Workshop on Selected Areas
in Cryptography, pages 22–32, July 1995.

28. Qiang Tang and Kim-Kwang Raymond Choo. Secure password-based authen-
ticated group key agreement for data-sharing peer-to-peer networks. In ACNS,
volume 3989 of Lecture Notes in Computer Science, pages 162–177. Springer, 2006.

http://eprint.iacr.org/2005/205

	Introduction
	Security Model and Security Goals
	Communication Model and Adversarial Capabilities
	Correctness, Integrity and Secrecy

	From Two to Group: A Compiler
	Tools
	Design Rationale
	Security Analysis

	Applications and Comments
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

