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Abstract

We identify and fill some gaps with regard to consistency (the extent to which false positives
are produced) for public-key encryption with keyword search (PEKS). We define computational
and statistical relaxations of the existing notion of perfect consistency, show that the scheme of [8]
is computationally consistent, and provide a new scheme that is statistically consistent. We also
provide a transform of an anonymous identity-based encryption (IBE) scheme to a secure PEKS
scheme that, unlike the previous one, guarantees consistency. Finally, we suggest three extensions
of the basic notions considered here, namely anonymous hierarchical identity-based encryption,
public-key encryption with temporary keyword search, and identity-based encryption with keyword
search.

Keywords: Foundations, Random-Oracle Model, Anonymity, Identity-Based Encryption, Search-
able Encryption.
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1 Introduction

There has recently been interest in various forms of “searchable encryption” [24, 8, 16, 18, 26]. In this
paper, we further explore one of the variants of this goal, namely public-key encryption with keyword
search (PEKS) as introduced by Boneh, Di Crescenzo, Ostrovsky and Persiano [8].

The killer application envisaged by Boneh et al. is that of intelligent email routing. We consider
emails as consisting of some header information, a body, and a list of keywords. Imagine Alice uses
different electronic devices to read her email, including a pager, a PDA, and a desktop computer. Alice
may prefer emails to be routed to her devices depending on the associated keywords. For example, she
may like to receive emails with the keyword “urgent” on her pager, emails with the keyword “agenda”
on her PDA, and all other emails on her desktop computer.

Existing mail server software could be updated to provide this type of service for plain, unencrypted
email. When Bob sends an email to Alice encrypted under her public key, however, routing becomes
much harder. One option would be for Bob to leave the list of keywords unencrypted; if Bob is a
colleague of Alice however, he may not like the gateway to know that he is exchanging emails with her
with the keyword “personal”. Alice is probably not willing to hand her decryption key to the gateway
either. Rather, she would like to give the gateway some piece of trapdoor information that allows it to
test whether the keyword “urgent” is among those in the list, without revealing any other information
about the email to the gateway. This is exactly the type of functionality provided by a PEKS scheme.
Bob can then use a standard public-key encryption scheme to encrypt the body of the email, and a
PEKS scheme to separately encrypt each of the keywords.

The routing configuration of the email gateway need not be static. Alternatively, Alice could send
the trapdoors for the keywords that she wants to receive at the time of login. This could be useful for
checking email over a low-bandwidth connection: when Alice is at a conference, for example, she may
want to download to her laptop only those emails tagged with keyword “urgent”.

As another application, Waters et al. [26] show how PEKS schemes can be used to let an un-
trusted logging device maintain an encrypted audit log of privacy-sensitive data (e.g. user actions on
a computer system) that is efficiently searchable by authorized auditors only. The entries in the audit
log are encrypted under the public key of a PEKS scheme, of which the corresponding secret key is
unknown to the logging device. If the device is ever confiscated, or if the logbook leaks, privacy of
users and their actions is maintained. The secret key is known only to a trusted audit escrow agent,
who provides (less trusted) authorized investigators with trapdoors for the keywords they want to
search for.

In this paper, we investigate some consistency-related issues and results of PEKS schemes, then
consider the connection to anonymous identity-based encryption (IBE), and finally discuss some new
extensions.

1.1 Consistency in PEKS

Any cryptographic primitive must meet two conditions. One is of course a security condition. The
other, which we will here call a consistency condition, ensures that the primitive fulfills its function.
For example, for public-key encryption, the security condition is privacy. (This could be formalized
in many ways, eg. IND-CPA or IND-CCA.) The consistency condition is that decryption reverses
encryption, meaning that if M is encrypted under public key pk to result in ciphertext C, then
decrypting C under the secret key corresponding to pk results in M being returned.

PEKS. In a PEKS scheme, Alice can provide a gateway with a trapdoor tw (computed as a function
of her secret key) for any keyword w of her choice. A sender encrypts a keyword w ′ under Alice’s
public key pk to obtain a ciphertext C that is sent to the gateway. The latter can apply a test
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function Test to tw , C to get back 0 or 1. The consistency condition as per [8] is that if w = w ′

then Test(tw , C) returns 1 and if w 6= w ′ it returns 0. The security condition is that the gateway
learn nothing about w ′ beyond whether or not it equals w . (The corresponding formal notion will be
denoted PEKS-IND-CPA.) The application setting is that C can be attached to an email (ordinarily
encrypted for Alice under a different public key), allowing the gateway to route the email to different
locations (eg. Alice’s desktop, laptop or pager) based on w while preserving privacy of the latter to
the largest extent possible.

Consistency of BDOP -PEKS . It is easy to see (cf. Proposition 3.1) that the main construction
of [8] (a random oracle (RO) model, bilinear Diffie-Hellman (BDH) based PEKS-IND-CPA secure
PEKS scheme that we call BDOP -PEKS) fails to meet the consistency condition defined in [8] and
stated above. (Specifically, there are distinct keywords w ,w ′ such that Test(tw , C) = 1 for any C that
encrypts w ′.) The potential problem this raises in practice is that email will be incorrectly routed.

New notions of consistency. It is natural to ask if BDOP -PEKS meets some consistency condi-
tion that is weaker than theirs but still adequate in practice. To answer this, we provide some new
definitions. Somewhat unusually for a consistency condition, we formulate consistency more like a
security condition, via an experiment involving an adversary. The difference is that this adversary is
not very “adversarial”: it is supposed to reflect some kind of worst case but not malicious behavior.
However this turns out to be a difficult line to draw, definitionally, so that some subtle issues arise.
One outcome of this approach is that it naturally gives rise to a hierarchy of notions of consistency,
namely perfect, statistical and computational. The first asks that the advantage of any (even compu-
tationally unbounded) adversary be zero; the second that the advantage of any (even computationally
unbounded) adversary be negligible; the third that the advantage of any polynomial-time adversary
be negligible. We note that perfect consistency as per our definition coincides with consistency as per
[8], and so our notions can be viewed as natural weakenings of theirs.

An analogy. There is a natural notion of decryption error for encryption schemes [17, Section 5.1.2].
A perfectly consistent PEKS is the analog of an encryption scheme with zero decryption error (the usual
requirement). A statistically consistent PEKS is the analog of an encryption scheme with negligible
decryption error (a less common but still often used condition [2, 13]). However, computational
consistency is a non-standard relaxation, for consistency conditions are typically not computational.
This is not because one cannot define them that way (one could certainly define a computational
consistency requirement for encryption) but rather because there has never been any motivation to do
so. What makes PEKS different, as emerges from the results below, is that computational consistency
is relevant and arises naturally.

Consistency of BDOP -PEKS , revisited. The counter-example (cf. Proposition 3.1) showing that
BDOP -PEKS is not perfectly consistent extends to show that it is not statistically consistent either.
However, we show (cf. Theorem 3.3) that BDOP -PEKS is computationally consistent. In the random-
oracle model, this is not under any computational assumption: the limitation on the running time of
the adversary is relevant because it limits the number of queries the adversary can make to the random
oracle. When the random oracle is instantiated via a hash function, we would need to assume collision-
resistance of the hash function. The implication of this result is that BDOP -PEKS is probably fine
to use in practice, in that incorrect routing of email, while possible in principle, is unlikely to actually
happen.

A statistically consistent PEKS scheme. We provide the first construction of a PEKS scheme
that is statistically consistent. The scheme is in the random oracle model, and is also
PEKS-IND-CPA secure assuming the BDH problem is hard. The motivation for the new scheme
was largely theoretical. From a foundational perspective, we wanted to know whether PEKS was an
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anomaly in the sense that only computational consistency is possible, or whether, like other primitives,
statistical consistency could be achieved. However, it is also true that while computational consis-
tency is arguably enough in an application, statistical might be preferable because the guarantee is
unconditional.

1.2 PEKS and anonymous IBE

BDOP -PEKS is based on the Boneh-Franklin IBE (BF -IBE) scheme [9]. It is natural to ask whether
one might, more generally, build PEKS schemes from IBE schemes in some blackbox way. To this end,
a transform of an IBE scheme into a PEKS scheme is suggested in [8]. Interestingly, they note that the
property of the IBE scheme that appears necessary to provide PEKS-IND-CPA of the PEKS scheme is
not the usual IBE-IND-CPA but rather anonymity. (An IBE scheme is anonymous if a ciphertext does
not reveal the identity of the recipient [3].) While [8] stops short of stating and proving a formal result
here, it is not hard to verify that their intuition is correct. Namely one can show that if the starting
IBE scheme IBE meets an appropriate formal notion of anonymity (IBE-ANO-CPA, cf. Section 4.1)
then PEKS = ibe-2-peks(IBE) is PEKS-IND-CPA, where ibe-2-peks denotes the transform suggested
in [8].

Consistency in ibe-2-peks. Unfortunately, we show (cf. Theorem 4.1) that there are IBE schemes
for which the PEKS scheme outputted by ibe-2-peks is not even computationally consistent. This
means that ibe-2-peks is not in general a suitable way to turn an IBE scheme into a PEKS scheme.
(Although it might be in some cases, and in particular is when the starting IBE scheme is BF -IBE ,
for in that case the resulting PEKS scheme is BDOP -PEKS .)

new-ibe-2-peks. We propose a randomized variant of the ibe-2-peks transform that we call new-ibe-2-peks,
and prove that if an IBE scheme IBE is IBE-ANO-CPA and IBE-IND-CPA then the PEKS scheme
new-ibe-2-peks(IBE) is PEKS-IND-CPA and computationally consistent (cf. Section 4.3). We do not
know of a transform where the resulting PEKS scheme is statistically or perfectly consistent.

Anonymous IBE schemes. The above motivates finding anonymous IBE schemes. Towards this, we
begin by extending Halevi’s condition for anonymity [19] to the IBE setting (cf. Section 4.4). Based
on this, we are able to give a simple proof that the (random-oracle model) BF -IBE scheme [9] is
IBE-ANO-CPA assuming the BDH problem is hard (cf. Theorem 4.4). (We clarify that a proof of this
result is implicit in the proof of security of the BF -IBE based BDOP -PEKS scheme given in [8]. Our
contribution is to have stated the formal definition of anonymity and provided a simpler proof via the
extension of Halevi’s condition.) Towards answering the question of whether there exist anonymous
IBE schemes in the standard (as opposed to random oracle) model, we present in Appendix A.1 an
attack to show that Water’s IBE scheme [25] is not IBE-ANO-CPA.

1.3 Extensions

Anonymous HIBE. We provide definitions of anonymity for hierarchical IBE (HIBE) schemes. Our
definition can be parameterized by a level, so that we can talk of a HIBE that is anonymous at level l.
We note that the HIBE schemes of [15, 7] are not anonymous, even at level 1. (That of [20] appears
to be anonymous at both levels 1 and 2 but is very limited in nature and thus turns out not to be
useful for our applications.) We modify the construction of Gentry and Silverberg [15] to obtain a
HIBE that is (HIBE-IND-CPA and) anonymous at level 1. The construction is in the random oracle
model and assumes BDH is hard.

PETKS. In a PEKS scheme, once the gateway has the trapdoor for a certain keyword, it can test
whether this keyword was present in any past ciphertexts or future ciphertexts. It may be useful to
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limit the period in which the trapdoor can be used. Here we propose an extension of PEKS that
we call public-key encryption with temporary keyword search (PETKS) that allows this. A trapdoor
here is created for a time interval [s, e] and will only allow the gateway to test whether ciphertexts
created in this time interval contain the keyword. We provide definitions of privacy and consistency
for PETKS, and then show how to implement it with overhead that is only logarithmic in the total
number of time periods. Our construction can use any HIBE that is anonymous at level 1. Using the
above-mentioned HIBE we get a particular instantiation that is secure in the random-oracle model if
BDH is hard.

IBEKS. We define the notion of an identity-based encryption with keyword search scheme. This is
just like a PEKS scheme except that encryption is performed given only the identity of the receiver and
a master public-key, just like in an IBE scheme. We show how to implement IBEKS given any level-2
anonymous HIBE scheme. The first suitable implementation of the latter primitive was proposed in
subsequent work by Boyen and Waters [11].

1.4 Remarks

peks-2-ibe. Boneh et. al. [8] showed how to transform a PEKS-IND-CPA PEKS scheme into an
IBE-IND-CPA IBE scheme. We remark that their transform requires the starting PEKS scheme to
be perfectly consistent. Unfortunately, no perfectly consistent PEKS schemes are known to date.
If it is only statistically or computationally consistent, the resulting IBE scheme will only meet a
corresponding statistical or computational relaxation of the consistency condition for IBE schemes.
Thus, the resulting scheme will not be an IBE scheme as per the standard definition of the latter [9].

Limited PEKS schemes. Boneh et. al. [8] also present a couple of PEKS schemes that avoid the RO
model but are what they call limited. Both use a standard public-key encryption scheme as a building
block. In the first scheme, the public key has size polynomial in the number of keywords that can be
used. In the second scheme, the key and ciphertext have size polynomial in the number of trapdoors
that can be securely issued to the gateway. Although these schemes are not very interesting due to their
limited nature, one could ask about their consistency. In [1], we extend our definitions of consistency to
this limited setting. Interestingly, we show that based on only a computational assumption about the
underlying standard public-key encryption scheme (namely, that it is IND-CPA, or even just one-way),
the first scheme is statistically consistent. We also show that the second scheme is computationally
consistent under the same assumption on the standard public-key encryption scheme, and present a
variant that is statistically consistent.

Consistency of other searchable encryption schemes. Of the other papers on searchable
encryption of which we are aware [24, 16, 18, 26], none formally define or rigorously address the notion
of consistency for their respective types of searchable encryption schemes. Goh [16] and Golle, Staddon,
and Waters [18] define consistency conditions analogous to BDOP’s “perfect consistency” condition,
but none of the constructions in [16, 18] satisfy their respective perfect consistency condition. Song,
Wagner, and Perrig [24] and Waters et al. [26] do not formally state and prove consistency conditions
for their respective searchable encryption schemes, but they, as well as Goh [16], do acknowledge and
informally bound the non-zero probability of a false positive.

Subsequent work. In a preliminary version of our work, we raised various open problems that
have subsequently been solved. The first one of these problems was to find a construction of an
(IBE-IND-CPA and) IBE-ANO-CPA IBE scheme with a proof of security in the standard model (i.e.,
without random oracles). This problem was solved independently by Gentry [14] and by Boyen and
Waters [11]. As a result, one can also obtain a PEKS-IND-CPA and computationally consistent PEKS
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scheme in the standard model due to Theorem 4.2.

Another interesting question that we raised was to find a HIBE scheme providing anonymity at
the second level, even in the RO model. This open problem was solved by Boyen and Waters [11],
who proposed a fully anonymous HIBE scheme in the standard model.

Finally, we raised the issue of building a searchable encryption scheme that allows for more ad-
vanced searching tools such as searches for simple boolean formulas on keywords (say w1 ∧ w2 ∨ w3).
First steps in this direction have been taken [18, 22, 10] by schemes that allow for conjunctive combi-
nations of keywords, range queries, and subset queries.

2 Some definitions

Notation and conventions. If x is a string then |x| denotes its length, and if S is a set then |S|
denotes its size. The empty string is denoted ε. Constructs in the RO model [5] might use multiple
random oracles, but since one can always obtain these from a single one [5], formal definitions will
assume just one RO. Unless otherwise indicated, an algorithm may be randomized. “PT” stands for
polynomial time and “PTA” for polynomial-time algorithm or adversary. We denote by N the set
of positive integers, and by k ∈ N the security parameter. A function ν : N → [0, 1] is said to be
negligible if for every c ∈ N there exists a kc ∈ N such that ν(k) ≤ k−c for all k > kc, and it is said to
be overwhelming if the function |1 − ν(k)| is negligible. A message space MsgSp is a map, assigning
to every k ∈ N a set of strings, such that {0, 1}k ⊆ MsgSp(k) ⊆ {0, 1}∗ for all k ∈ N and the following
conditions hold: first, there is a PTA that on input 1k,M returns 1 if M ∈ MsgSp(k) and 0 otherwise;
second, {0, 1}|M | ⊆ MsgSp(k) for all k ∈ N and M ∈ MsgSp(k).

PEKS. A public key encryption with keyword search (PEKS) scheme [8] PEKS = (KG,PEKS,Td,

Test) consists of PTAs. Via (pk , sk)
$

← KG(1k), where k ∈ N is the security parameter and KG is the

randomized key-generation algorithm, the receiver produces its keys; via C
$

← PEKSH(pk ,w) a sender

encrypts a keyword w to get a ciphertext; via tw
$

← TdH(sk ,w) the receiver computes a trapdoor tw
for keyword w and provides it to the gateway; via b ← TestH(tw ,C ) the gateway tests whether C

encrypts w , where b is a bit with 1 meaning “accept” or “yes” and 0 meaning “reject” or “no”. Here
H is a random oracle whose domain and/or range might depend on k and pk .

Consistency. The requirement of [8] can be divided into two parts. The first, which we call right

keyword consistency, is that Test(tw ,C ) always accepts when C encrypts w . More formally, for all
k ∈ N and all w ∈ {0, 1}∗,

Pr
[
TestH(TdH(sk ,w),PEKSH(pk ,w)) = 1

]
= 1 ,

where the probability is taken over the choice of (pk , sk)
$

← KG(1k), the random choice of H, and the
coins of all the algorithms in the expression above. Since we will always require this, it is convenient
henceforth to take it as an integral part of the PEKS notion and not mention it again, reserving the
term “consistency” to only refer to what happens when the ciphertext encrypts a keyword different
from the one for which the gateway is testing. In this regard, the requirement of [8], which we will
call perfect consistency, is that Test(tw ′ ,C ) always reject when C doesn’t encrypt w ′. More formally,
for all k ∈ N and all distinct w ,w ′ ∈ {0, 1}∗,

Pr
[
TestH(TdH(sk ,w ′),PEKSH(pk ,w)) = 1

]
= 0 ,

where the probability is taken over the choice of (pk , sk)
$

← KG(1k), the random choice of H, and the
coins of all the algorithms in the expression above. (We note that [8] provide informal rather than
formal statements, but it is hard to interpret them in any way other than what we have done.)
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Privacy. Privacy for a PEKS scheme [8] asks that an adversary should not be able to distinguish
between the encryption of two challenge keywords of its choice, even if it is allowed to obtain trapdoors
for any non-challenge keywords. Formally, we associate to an adversary A and a bit b ∈ {0, 1} the
following experiment:

Experiment Exppeks-ind-cpa-b
PEKS ,A (k)

WSet ← ∅ ; (pk , sk)
$

← KG(1k)
pick random oracle H

(w0,w1, state)
$

← ATrapd(·),H(find, pk)

C
$

← PEKSH(pk ,wb)

b′
$

← ATrapd(·),H(guess,C , state)
if {w0,w1} ∩WSet = ∅ then return b′ else return 0

Oracle Trapd(w)

WSet ←WSet ∪ {w}

tw
$

← TdH(sk ,w)
return tw

The PEKS-IND-CPA-advantage of A is defined as

Advpeks-ind-cpa
PEKS ,A (k) = Pr

[

Exppeks-ind-cpa-1
PEKS ,A (k) = 1

]

− Pr
[

Exppeks-ind-cpa-0
PEKS ,A (k) = 1

]

.

A scheme PEKS is said to be PEKS-IND-CPA-secure if the above advantage is a negligible function
in k for all PTAs A.

Parameter generation algorithms and the BDH problem. All pairing based schemes will
be parameterized by a pairing parameter generator. This is a PTA G that on input 1k returns the
description of an additive cyclic group G1 of prime order p, where 2k < p < 2k+1, the description of a
multiplicative cyclic group G2 of the same order, and a non-degenerate bilinear pairing e: G1×G1 →
G2. See [9] for a description of the properties of such pairings. We use G

∗
1 to denote G1 \ {0}, i.e. the

set of all group elements except the neutral element. We define the advantage of an adversary A in
solving the bilinear Diffie-Hellman (BDH) problem relative to a pairing parameter generator G as

Advbdh
G,A(k) = Pr

[

A(1k, (G1, G2, p, e), P, aP, bP, cP ) = e(P,P )abc :
(G1, G2, p, e)

$

← G(1k) ;

P
$

← G
∗
1 ; a, b, c

$

← Z
∗
p

]

.

We say that the BDH problem is hard relative to this generator if Advbdh
G,A is a negligible function in

k for all PTAs A.

3 Consistency in PEKS

We show that the BDOP -PEKS scheme is not perfectly consistent, introduce new notions of statistical
and computational consistency, and show that although BDOP -PEKS continues to fail the former it
does meet the latter. We then provide a new PEKS scheme that is statistically consistent.

3.1 Perfect consistency of BDOP -PEKS

Figure 1 presents the BDOP -PEKS scheme. It is based on a pairing parameter generator G.

Proposition 3.1 The BDOP -PEKS scheme is not perfectly consistent.

Proof: Since the number of possible keywords is infinite, there will certainly exist distinct keywords
w ,w ′ ∈ {0, 1}∗ such that H1(w) = H1(w

′). The trapdoors for such keywords will be the same, and so
TestH1,H2(Td(sk ,w),PEKSH1,H2(pk ,w ′)) will always return 1.
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KG(1k)

(G1, G2, p, e)
$

← G(1k) ; P
$

← G∗

1 ; s
$

← Z∗

p

pk ← (G1, G2, p, e, P, sP ) ; sk ← (pk , s)
return (pk , sk)

PEKSH1,H2(pk ,w)
parse pk as (G1, G2, p, e, P, sP )

r
$

← Z∗

p ; T ← e(H1(w), sP )r

C ← (rP, H2(T )) ; return C

TdH1(sk ,w)
parse sk as (pk = (G1, G2, p, e, P, sP ), s)
tw ← (pk , sH1(w)) ; return tw

TestH1,H2(tw ,C )
parse tw as ((G1, G2, p, e, P, sP ), X)
parse C as (U, V ) ; T ← e(X, U)
if V = H2(T ) then return 1
else return 0

Figure 1: Algorithms constituting the BDOP -PEKS scheme. G is a pairing parameter generator and
H1: {0, 1}

∗ → G1 and H2: G2 → {0, 1}
k are random oracles.

It is tempting to say that, since H1 is a random oracle, the probability of a collision is small, and thus
the above really does not matter. Whether or not this is true depends on how one wants to define
consistency, which is the issue we explore next.

3.2 New notions of consistency

We consider a possible relaxation of perfect consistency and argue that it is inadequate because it is
too weak. We then motivate and present our approach and definitions.

A possible relaxation of perfect consistency. One way to obtain a relaxed definition of
perfect consistency is by analogy with the definition of encryption with negligible decryption error [17,
Section 5.1.2]. This results in asking that there exist a negligible function ν(·) such that for all k and
all distinct keywords w ,w ′,

∀ w 6= w ′ : Pr
[
TestH(pk ,TdH(sk ,w ′),PEKSH(pk ,w)) = 1

]
≤ ν(k) , (1)

where the probability is taken over the choice of (pk , sk)
$

← KG(1k), the random choice of H, and the
coins of all the algorithms in the expression above. Now, since we are fixing w ,w ′ before taking the
probability, and the latter includes the choice of H1 in the BDOP -PEKS scheme, the probability that
H1(w) = H1(w

′) is at most 2−k. Our “attack” of Proposition 3.1 therefore no longer applies. And
in fact (using the techniques of our proof of Theorem 3.3) one can show that the BDOP scheme does

meet the above condition. However, Equation (1) is in our view an incorrect definition of consistency
because it does not allow w ,w ′ to depend on public quantities related to the receiver, such as its public
key, the hash functions being used, or queries to them if they are random oracles. Our claim is that,
as a result, the condition is too weak to guarantee that email is correctly routed by the gateway.

Our definitions. To define consistency, we take a different approach. Namely, we imagine the
existence of an adversary U that wants to make consistency fail. More precisely, let PEKS =
(KG,PEKS,Td,Test) be a PEKS scheme. We associate to an adversary U the following experiment:

Experiment Exppeks-consist
PEKS ,U (k)

(pk , sk)
$

← KG(1k) ; pick random oracle H

(w ,w ′)
$

← UH(pk) ; C
$

← PEKSH(pk ,w) ; tw ′

$

← TdH(sk ,w ′)

if w 6= w ′ and TestH(tw ′ ,C ) = 1 then return 1 else return 0

We define the advantage of U as

Advpeks-consist
PEKS ,U (k) = Pr

[

Exppeks-consist
PEKS ,U (k) = 1

]

,
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where the probability is taken over all possible coin flips of all the algorithms involved, and over all
possible choices of random oracle H. The scheme is said to be perfectly consistent if this advantage
is 0 for all (computationally unrestricted) adversaries U , statistically consistent if it is negligible for
all (computationally unrestricted) adversaries U , and computationally consistent if it is negligible for
all PTAs U . We remark that we have purposely re-used the term perfect consistency, for in fact the
above notion of perfect consistency coincides with the one from [8] recalled above.

Stronger notions? In giving the adversary U the public key and access to the random oracle, our
definition is already quite liberal. One could however, consider an even more liberal (i.e. stronger)
definition in which the adversary gets a trapdoor oracle and/or a test oracle under trapdoors for
keywords of its choice. To be able to tell whether or not this would be appropriate, we must ask
whether in “real-life” there could be an occasion in which the keywords chosen by a sender could
depend on information provided by these oracles. Given that the answer is not cut-and-dry and since
we believe that our current definition is already quite strong, we opted here not to consider these
stronger variants of our definition.

3.3 Statistical and computational consistency of BDOP -PEKS

Having formally defined the statistical and computational consistency requirements for PEKS schemes,
we return to evaluating the consistency of BDOP -PEKS . We first observe that Proposition 3.1 extends
to show:

Proposition 3.2 The BDOP -PEKS scheme is not statistically consistent.

Proof: Recall that in the proof of Proposition 3.1 we show that there there exist two distinct key-
words w ,w ′ ∈ {0, 1}∗ such that H1(w) = H1(w

′), and that, for these two keywords, Test(Td(sk ,w ′),
PEKS(pk ,w)) will always return 1. A computationally unbounded adversary can find two such key-
words by exhaustive search.

On the positive side, the following means that BDOP -PEKS is probably fine in practice:

Theorem 3.3 The BDOP -PEKS scheme is computationally consistent.

Proof: Let U be a PTA. Let (w ,w ′) denote the pair of keywords that U returns in the consistency
experiment, and assume without loss of generality that w 6= w ′. Let r ∈ Z

∗
p denote the value chosen

at random by PEKSH1,H2(pk ,w). Let T = e(H1(w), sP )r and let T ′ = e(H1(w
′), sP )r. Note that

U wins exactly when w 6= w ′ and H2(T ) = H2(T
′). Let w1, . . . ,wq1

be the queries of U to H1

and let WSet = {w1, . . . ,wq1(k)} ∪ {w ,w ′}. Let T1, . . . , Tq2(k) be the queries of U to H2 and let
TSet = {T1, . . . , Tq2(k)}∪ {T, T ′}. Let E1 be the event that there exist distinct v, v′ ∈WSet such that
H1(v) = H1(v

′), and let E2 be the event that there exist distinct x, x′ ∈ TSet such that H2(x) = H2(x
′).

If Pr [ · ] denotes the probability in the consistency experiment, then

Advpeks-consist
PEKS ,U (k) ≤ Pr [ E1 ] + Pr [ E2 ] + Pr

[

Exppeks-consist
BDOP-PEKS ,U(k) = 1 ∧ E1 ∧ E2

]

. (2)

Our definition of G required that |G1| > 2k, and hence the first and second terms are respectively upper
bounded via (q1+2)2/|G1| < (q1+2)2/2k and (q2+2)2/2k. Now we claim that if H1(w) 6= H1(w

′), then
T 6= T ′. Under this claim, the last term of Equation (2) is 0, since if E1 occurs, then H1(w) 6= H1(w

′)
and T 6= T ′, and if E2 also occurs, then H2(T ) 6= H2(T

′). To justify our claim above, note that
if H1(w) 6= H1(w

′), then H1(w) = αP and H1(w
′) = α′P for some distinct α,α′ ∈ Zp. Setting

g = e(P,P )rs, we can rewrite T, T ′ as T = gα and T ′ = gα′

. Since e(P,P ) is a generator of G2, since
G2 is of prime order p, and since p does not divide rs, g must also be a generator of G2. Thus T 6= T ′.
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KG(1k)

(G1, G2, p, e)
$

← G(1k) ; P
$

← G∗

1

s
$

← Z∗

p ; pk ← (1k, P, sP, G1, G2, p, e)
sk ← (pk , s) ; return (pk , sk)

PEKSH1,H2,H3,H4(pk ,w)
parse pk as (1k, P, sP, G1, G2, p, e)
if |w | ≥ f(k) then return w

r
$

← Z∗

p ; T ← e(sP, H1(w))r

K1 ← H4(T ) ; K2 ← H2(T )

K
$

← {0, 1}k ; c← K1 ⊕K
t← H3(K||w)
return (rP, c, t, K2)

TdH1(sk ,w)
parse sk as (pk = (1k, P, sP, G1, G2, p, e), s)
tw ← (pk , sH1(w),w)
return tw

TestH1,H2,H3,H4(tw ,C )
parse tw as ((1k, P, sP, G1, G2, p, e), sH1(w),w)
if |w | ≥ f(k) then

if C = w then return 1 else return 0
if C cannot be parsed as (rP, c, t, K2) then return 0
T ← e(rP, sH1(w))
K ← c⊕H4(T )
if K2 6= H2(T ) then return 0
if t = H3(K||w) then return 1 else return 0

Figure 2: Algorithms constituting the PEKS scheme PEKS -STAT . Here f(k) = klg(k), G is a pair-
ing parameter generator and H1: {0, 1}

∗ → G1, H2: G2 → {0, 1}3k , H3: {0, 1}
∗ → {0, 1}k, and

H4: {0, 1}
∗ → {0, 1}k are random oracles.

3.4 A statistically consistent PEKS scheme

We present the first PEKS scheme that is (PEKS-IND-CPA and) statistically consistent. To define
the scheme, we first introduce the function f(k) = klg(k). (Any function that is super-polynomial but
sub-exponential would suffice. This choice is made for concreteness.) The algorithms constituting our
scheme PEKS -STAT are then depicted in Figure 2.

The scheme uses ideas from the BDOP -PEKS scheme [8] as well as from the BF -IBE scheme [9],
but adds some new elements. Note that the encryption algorithm is trivial, returning the keyword as
the ciphertext, when the keyword has length more than f(k). If not, the processing is more complex,
depending on some random choices and numerous random oracles. In particular the random choice of
“session” key K, and the fact that the random oracle H2 is length-increasing, are important.

The first thing we stress about the scheme is that the algorithms are PT. This is because PT
means in the length of the inputs, and the input of (say) the encryption algorithm includes w as well
as 1k, so it can test whether |w | ≥ f(k) in polynomial time. Now the following says that the scheme
is private:

Proposition 3.4 The PEKS -STAT scheme is PEKS-IND-CPA-secure assuming that the BDH prob-

lem is hard relative to generator G.

Before providing the proof, let us give some intuition. While sending w in the clear looks at first glance
like it violates privacy, the reason it does not is that this only happens when w has length at least f(k),
and the privacy adversary is poly(k) time and thus cannot even write down such a keyword in order to
query it to its challenge oracle. (This is where we use the fact that f(k) is super-polynomial. We will
use the fact that it is sub-exponential in the proof of statistical consistency.) The privacy adversary
is thus effectively restricted to attacking the scheme only on keywords of size at most f(k). Here,
privacy can be reduced to solving the BDH problem using techniques used to prove IBE-IND-CPA of
the BF -IBE scheme [9] and to prove anonymity of the same scheme (cf. Theorem 4.4).

Proof of Proposition 3.4: Let B be a PTA attacking the PEKS-IND-CPA security PEKS -STAT =
(KG,PEKS,Td,Test). Say it makes at most q queries to its Trapd(·, ·) oracle and at most qi queries to
Hi for i = 1, 2, 3. (These are actually functions of k, but we drop the argument to simplify notation.)
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Adversary A(1k, (G1, G2, p, e), P, sP, rP, αP )
pk ← (1k, P, sP, p, G1, G2, e) ; Q ← ∅

(w0,w1, state)
$

← BTrapd(·),H1,H2,H3,H4(find, pk )

b
$

← {0, 1} ; h← H1(wb)
if d[wb] = 0 then abort

K1
$

← {0, 1}k ; K2
$

← {0, 1}3k

K
$

← {0, 1}k ; c← K1⊕K ; t← H3(K‖wb)
C ← (rP, c, t, K2)

b′
$

← BTrapd(·),H1,H2,H3,H4(guess,C , state)

if Q 6= ∅ then T
$

← Q else abort

return T x[wb]
−1

Oracle Trapd(w)
h← H1(w)
if d[w ] = 1 then abort
tw ← (x[w ] · sP,w)
return tw

Oracle H1(w)
if h1[w ] is not defined then

flip biased coin d[w ] ∈ {0, 1} such that Pr[d[w ] = 1] = δ

x[w ]
$

← Zp

if d[w ] = 0 then define h1[w ]← x[w ] · P
else define h1[w ]← x[w ] · αP

return h1[w ]

Oracle H2(T )
if h2[T ] is not defined then

define h2[T ]
$

← {0, 1}3k

Q← Q∪ {T }
return h2[T ]

Oracle H3(X)
if h3[X ] is not defined then

define h3[X ]
$

← {0, 1}k

return h3[X ]

Oracle H4(T )
if h4[T ] is not defined then

define h4[T ]
$

← {0, 1}k

Q← Q∪ {T }
return h4[T ]

Figure 3: Adversary A attacking the BDH problem.

We construct a PTA A attacking the BDH relative to G such that

Advbdh
G,A(k) ≥

1

e(1 + q) · (q2 + q4)
·

(
1

2
·Advpeks-ind-cpa

PEKS ,B (k)−
q3

2k

)

. (3)

Our adversary A is shown in Figure 3. We show that A outputs the correct answer T = e(P,P )rsα

with probability at least the quantity on the right-hand-side of Equation (3).

Let t(k) be a polynomial which bounds the running time of B. So there is an integer N such that
t(k) < f(k) for all k ≥ N . Notice that the PEKS algorithm of the PEKS scheme in Figure 2 returns
w in the clear when |w | ≥ f(k). However, the keywords output by B in the find stage have length at
most t(k), so if k ≥ N , the encryption is done by the code for the case |w | < f(k) shown in PEKS.
Since it suffices to prove Equation (3) for all k ≥ N , we assume that the encryption is done by the
code for the case |w | < f(k) shown in PEKS.

Let Pr1 [ · ] denote the probability over the experiment for Advbdh
G,A(k) as defined in Section 2. Let

E1 denote the event in this experiment that A aborts in simulating the trapdoor oracle. Let E2

denote the event that d[wb] = 0 (which also causes A to abort). Let E3 denote the event that Q = ∅
(which also causes A to abort). Let E4 denote the event that B issues a query H2(e(rP, sH1(wb)))

or H4(e(rP, sH1(wb))). Let Pr2 [ · ] denote the probability over Exppeks-ind-cpa-b
PEKS ,B for a random choice

for b ∈ {0, 1}, and let b′ denote the output of B in this experiment. Let E5 be the event that B
issues a query H2(e(rP, sH1(wb))) or H4(e(rP, sH1(wb))) to its oracles in this experiment. Let E6

denote the event that B issues a query K‖wb to its oracle H3, where K is the random k-bit string that
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Exppeks-ind-cpa-b
PEKS ,B used in PEKS when replying B’s challenge after the find stage. Equation (3) follows

from the following claims.

Claim 1. Advbdh
G,A(k) ≥ Pr1 [¬E1 ∧ ¬E2 ∧ ¬E3 ∧ E4 ]/(q2 + q4).

In the above simulation if none of the events E1, E2 and E3 happens, then A will randomly choose an

element T
$

← Q and return T x[wb]
−1

. However, by definition of event E4, one of the elements in Q is
equal to e(P,P )srα·x[wb], thus A has at least the probability of 1/|Q| ≥ 1/(q2 + q4) to give the correct
answer to the BDH problem. 2

Claim 2. Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧E4] = Pr[E4|¬E1 ∧ ¬E2] · Pr[¬E1 ∧ ¬E2].

Notice that when event E4 happens, the set Q must contain at least one element, thus E3 is always
false. Therefore we have Pr1 [¬E1 ∧ ¬E2 ∧ ¬E3 ∧ E4 ] = Pr1 [¬E1 ∧ ¬E2 ∧ E4 ]. The claim follows by
conditioning off of the event ¬E1 ∧ ¬E2. 2

Claim 3. Pr1 [ E4 | ¬E1 ∧ ¬E2 ] = Pr2 [ E5 ].

Under the condition that A does not abort, the simulation is perfect, i.e. all A’s answers to the
simulated oracles Trapd(sk , ·), H1(·) . . . H4(·) have exactly the same distribution as those in the real
PEKS-IND-CPA experiment. 2

Claim 4. Pr2 [ E5 ] ≥ 1/2 ·Advpeks-ind-cpa
PEKS ,B (k)− q3 · 2

−k.

First observe that

Pr2
[
b = b′

]
= Pr2

[
b = b′ ∧ E5

]
+ Pr2

[
b = b′ ∧ ¬E5 ∧ E6

]
+ Pr2

[
b = b′ ∧ ¬E5 ∧ ¬E6

]

≤ Pr2 [ E5 ] + Pr2 [E6 ] + Pr2
[
b = b′ | ¬E5 ∧ ¬E6

]
· Pr2 [¬E5 ∧ ¬E6 ]

≤ Pr2 [ E5 ] + q3 · 2
−k + Pr2

[
b = b′ | ¬E5 ∧ ¬E6

]
· Pr2 [¬E5 ∧ ¬E6 ] (4)

≤ Pr2 [ E5 ] + q3 · 2
−k + 1/2 . (5)

Equation (4) comes from the fact that, by assumption, B makes at most q3 queries to H3. Equation (5)
comes from the fact that, if E5 and E6 both do not occur, B learns no information from the ciphertext.
Rearranging gives

Pr2 [E5 ] ≥ Pr2
[
b = b′

]
− 1/2− q3 · 2

−k = 1/2 ·Advpeks-ind-cpa
PEKS ,B (k)− q3 · 2

−k .

The last equality follows from the standard result that Advpeks-ind-cpa
PEKS ,B (k) = 2 · Pr2 [ b = b′ ]− 1. 2

Claim 5. Pr[¬E1 ∧ ¬E2] ≥ 1/(e(q + 1)) for δ = 1/(q + 1).

Since for every keyword w the biased coin d[w ] is flipped independently, and Pr[d[w ] = 1] = δ for all
w , let QT be the set of queries issued by B to the Trapd(sk , ·) oracle, then

Pr[¬E1 ∧ ¬E2] = δ ·
∏

w∈QT

(1− δ) = δ · (1− δ)|QT | ≥ δ · (1− δ)q

The last quantity is maximized at δ = 1/(q + 1) with value at least 1/e(q + 1).

Let us move to the more interesting claim, namely consistency:

Proposition 3.5 The PEKS -STAT scheme is statistically consistent.

Before providing the proof, let us give some intuition. The main issue is that the computationally
unbounded consistency adversary U can easily find any collisions that exist for the random-oracle hash
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functions. Let w ,w ′ denote the keywords output by the adversary U . We proceed via a case analysis.
One can show that if either w or w ′ have length at least f(k) then Test will not be wrong. The
interesting case is when w ,w ′ both have length at most f(k). Let (rP, c, t,K2) denote the challenge
ciphertext formed by encrypting w . Let T = e(rP,H1(w)) and let K = c⊕H4(T ) be the underlying
session key. Let T ′ = e(rP,H1(w

′)) and let K ′ = c⊕H4(T
′). Now consider two cases.

The first case is that H1(w) 6= H1(w
′). Properties of pairings imply T 6= T ′. Now we claim

that this means K2 = H2(T ) 6= H2(T
′) with high probability, and thus Test will correctly reject,

meaning U does not win. This is not merely because H2 is random, for remember the adversary is
not computationally bounded and can search for, and find, any collisions that exist. The reason is
that H2 is with high probability an injective function and collisions for it simply do not exist. The
reason for this is that its domain is G2 which has size p < 2k+1 (our definition of a pairing parameter
generator required this) but H2 outputs 3k bits, and thus a union bound can be used to show that H2

is injective except with probability 4 · 2−k.

The second case, which is the harder one, is that H1(w) = H1(w
′) (again, we cannot prevent U

from finding collisions in H1), and this is where we will use the fact that f(k) is sub-exponential.
Here the idea is that at the time it chooses w ,w ′, adversary U does not know the value of the session
key K that is randomly chosen later. We divide pairs (V, V ′) of strings of length at most f(k)
(candidate keywords) into two classes. A pair is heavy if there are “lots” of session keys L such that
H3(L ‖V ) = H3(L ‖V ′), and light otherwise, where “lots” is defined as 2k/2. Now we again consider
two cases. If (w ,w ′) is light then the randomly chosen K has only a 2−k/2 chance of being a session
key for which H3(K ‖w) = H3(K ‖w

′) and thus Test will most likely reject, so U does not win. Next
we use an occupancy problem based counting argument to show that the probability (over H3) that
a particular pair (V, V ′) of keywords is heavy is double exponentially small in k. But the number of
choices of keyword pairs is 2O(f(k)) which is sub-double-exponentially small by choice of f(k), and thus
a union bound allows us to conclude that (w ,w ′) is not likely to be heavy.

Proof of Proposition 3.5: Let U be a computationally unbounded adversary algorithm. We show
that there is a constant c > 0 such that

Advpeks-consist
PEKS ,U (k) ≤ O(2−ck) .

Consider the experiment Exppeks-consist
PEKS ,U (k). Let w ,w ′ denote the keywords output by U and assume

they are distinct, since otherwise U does not win. Let Win be the event that the experiment outputs
1. Let r,K be the random choices made by PEKSH1,H2,H3,H4(pk ,w) in the experiment. Then we let

T = e(rP, sH1(w)) T′ = e(rP, sH1(w
′))

c = K⊕H4(T) K′ = c⊕H4(T
′)

K2 = H2(T) K′
2 = H2(T

′)
t = H3(K ‖w) t′ = H3(K

′ ‖w ′) .

The random choices of H1,H2,H3,H4, r and K determine all these random variables. Let Bad be the
event that Test(tw ′ , (C, c, t,K2)) = 1. Let Big be the event that either w or w ′ has length greater
than or equal to f(k). Then

Advpeks-consist
PEKS ,U (k) = Pr [Bad ] ≤ Pr [Bad ∧Big ] + Pr [Bad ∧ ¬Big ]

≤ Pr [ Bad | Big ] + Pr [Bad ∧ ¬Big ] .

Suppose Big holds. If |w ′| ≥ f(k) then Test(tw ′ ,C) will return 1 only if C = w ′. But this will not
be the case because either |w | ≥ f(k) and C = w 6= w ′, or |w | < f(k) and, for large enough k,
|C| < f(k) ≤ |w ′|. On the other hand if |w | ≥ f(k) and |w ′| < f(k) then C = w and the latter
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cannot be parsed as an appropriate 4-tuple (rP, c, t,K2), so Test will return 0. We conclude that
Pr [ Bad | Big ] = 0 for all large enough k. We now want to bound

Pr [Bad ∧ ¬Big ]

= Pr
[
Bad ∧ ¬Big ∧H1(w) 6= H1(w

′)
]

︸ ︷︷ ︸

p1

+ Pr
[
Bad ∧ ¬Big ∧H1(w) = H1(w

′)
]

︸ ︷︷ ︸

p2

.

We bound p1, p2 in turn. We let S be the set of all distinct pairs (g, g′) of elements in G1. So p1 is at
most the sum, over all (g, g′) ∈ S, of the product terms

Pr
[
H2(e(rP, g)) = H2(e(rP, g′)) | (H1(w),H1(w

′)) = (g, g′)
]
· Pr

[
(H1(w),H1(w

′)) = (g, g′)
]

.

Properties of pairings tell us that g 6= g′ implies e(rP, g) 6= e(rP, g′). So due to the randomness of H2,
the first term of each product above is 2−3k. However, there are at most p2 choices for the pair (g, g′),
and we know that p < 2k+1. Thus we have

p1 ≤ p2 · 2−3k ≤ 22k+2−3k = 4 · 2−k .

(As we discussed above, the intuition here is that with probability at least 1 − 4 · 2−k the function
H2 is injective.) We now proceed to bound p2. In this argument, we regard H1 as fixed. (Formally,
imagine that we condition on a particular choice of H1. This suffices since what follows holds for all
values of this choice.) Let U be the set of all pairs (V, V ′) of distinct keywords of length at most f(k)
each such that H1(V ) = H1(V

′). For any (V, V ′) ∈ U we let

Keys(V, V ′) = {A ∈ {0, 1}k : H3(A ‖V ) = H3(A ‖V ′) } .

We say that (V, V ′) is heavy if |Keys(V, V ′)| ≥ 2k/2, and light otherwise. We let Lt(V, V ′) denote the
event that (V, V ′) is light and Hw(V, V ′) the event that (V, V ′) is heavy, where the probability is over
the choice of H3 only. Then p2 ≤ pL + pH where

pL =
∑

(V,V ′)∈U

Pr
[
Bad ∧ (w ,w ′) = (V, V ′) ∧ Lt(V, V ′)

]

pH =
∑

(V,V ′)∈U

Pr
[
Bad ∧ (w ,w ′) = (V, V ′) ∧ Hw(V, V ′)

]
.

We bound these in turn. We have

pL =
∑

(V,V ′)∈U

Pr
[
Bad | (w ,w ′) = (V, V ′) ∧ Lt(V, V ′)

]
· Pr

[
(w ,w ′) = (V, V ′) ∧ Lt(V, V ′)

]

≤
∑

(V,V ′)∈U

2k/2

2k
· Pr

[
(w ,w ′) = (V, V ′) ∧ Lt(V, V ′)

]
(6)

= 2−k/2 ·
∑

(V,V ′)∈U

Pr
[
(w ,w ′) = (V, V ′) ∧ Lt(V, V ′)

]

≤ 2−k/2 .

Equation (6) is justified by the definition of the Test, the fact that K is chosen at random from {0, 1}k

and the fact that (V, V ′) is light. Now we turn to bounding pH .

Claim. For any (V, V ′) ∈ U ,

Pr
[
Hw(V, V ′)

]
≤ O(2−2k/2

) ,
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where the probability is only over the choice of H3.

Note the bound of the claim is double-exponentially small. We prove the claim later. Using it we can
conclude via the union bound:

pH =
∑

(V,V ′)∈U

Pr
[
Bad ∧ (w ,w ′) = (V, V ′) ∧ Hw(V, V ′)

]

≤
∑

(V,V ′)∈U

Pr
[
Hw(V, V ′)

]
≤ 22+2f(k) ·O(2−2k/2

) ≤ O(2−g(k)) ,

where g(k) = 2k/2 − 2− 2f(k) = Ω(2k/2). So certainly 2−g(k) is O(2−k).

Proof of Claim. We use an occupancy problem approach:

Pr
[
Hw(V, V ′)

]
=

2k
∑

i=2k/2

(
2k

i

)

· (2−k)i · (1− 2−k)2
k−i ≤

2k
∑

i=2k/2

(
2k

i

)

· (2−k)i

≤
2k
∑

i=2k/2

(
2k · e

i

)i

· (2−k)i ≤
2k
∑

i=2k/2

(e

i

)i
≤

∞∑

i=2k/2

(e

i

)i
.

Let x = e2−k/2. For k ≥ 6, we have x ≤ 1/2. So the above is at most

∞∑

i=2k/2

xi = x2k/2

·
∞∑

i=0

xi = x2k/2 1

1− x
≤

2

22k/2
,

as desired.

4 PEKS and anonymous IBE

We formally define anonymity of IBE schemes and investigate the relation between PEKS and anony-
mous IBE.

4.1 Definitions

IBE schemes. An identity-based encryption (IBE) scheme [23, 9] IBE = (Setup,KeyDer,Enc,Dec)

consists of four PTAs. Via (pk ,msk )
$

← Setup(1k) the master generates master keys for security

parameter k ∈ N; via usk [id ]
$

← KeyDerH(msk , id) the master computes the secret key for iden-

tity id ; via C
$

← EncH(pk , id ,M ) a sender encrypts a message M to identity id to get a cipher-
text; via M ← DecH(usk ,C ) the possessor of secret key usk decrypts ciphertext C to get back a
message. Here H is a random oracle with domain and range possibly depending on k and pk . As-
sociated to the scheme is a message space MsgSp obeying the conventions discussed in Section 2.
For consistency, we require that for all k ∈ N, all identities id and messages M ∈ MsgSp(k) we have
Pr[DecH(KeyDerH(msk , id),EncH(pk , id ,M )) = M ] = 1, where the probability is taken over the choice

of (pk ,msk)
$

← Setup(1k), the random choice of H, and the coins of all the algorithms in the expression
above.

Privacy and anonymity. Privacy (IBE-IND-CPA) follows [9] while anonymity (IBE-ANO-CPA) is
a straightforward adaptation of [3] to IBE schemes. Let IBE = (Setup,KeyDer,Enc,Dec) be an IBE
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scheme with associated message space MsgSp. To an adversary A and bit b ∈ {0, 1}, we associate the
following experiments:

Experiment Expibe-ind-cpa-b
IBE ,A (k)

IDSet ← ∅ ; (pk ,msk)
$

← Setup(1k)
pick random oracle H

(id ,M0,M1, state)
$

← AKeyDer(·),H(find, pk )
if {M0,M1} 6⊆ MsgSp(k) then return 0

C
$

← EncH(pk , id ,Mb)

b′
$

← AKeyDer(·),H(guess,C , state)
if id 6∈ IDSet and |M0| = |M1|
then return b′ else return 0

Experiment Expibe-ano-cpa-b
IBE ,A (k)

IDSet ← ∅ ; (pk ,msk)
$

← Setup(1k)
pick random oracle H

(id0, id1,M , state)
$

← AKeyDer,H(find, pk)
if M 6∈ MsgSp(k) then return 0

C
$

← EncH(pk , id b,M )

b′
$

← AKeyDer,H(guess,C , state)
if {id0, id1} ∩ IDSet = ∅
then return b′ else return 0

where the oracle KeyDer(id) is defined as

IDSet ← IDSet ∪ {id} ; usk [id ]
$

← KeyDerH(msk , id) ; Return usk [id ]

For prop ∈ {ind, ano}, we define the advantage of A in the corresponding experiment as

Advibe-prop-cpa
IBE ,A (k) = Pr

[

Expibe-prop-cpa-1
IBE ,A (k) = 1

]

− Pr
[

Expibe-prop-cpa-0
IBE ,A (k) = 1

]

.

IBE scheme IBE is said to be IBE-IND-CPA-secure (resp., IBE-ANO-CPA-secure) if the respective
advantage function is negligible for all PTAs A.

4.2 The ibe-2-peks transform

The ibe-2-peks transform suggested in [8] takes input an IBE scheme IBE = (Setup,KeyDer,Enc,Dec)
and returns a PEKS scheme PEKS = (KG,Td,PEKS,Test) as follows. The public key pk and secret
key sk of the receiver in the PEKS scheme are the master public and secret keys, respectively, of the
IBE scheme (i.e., KG = Setup). The trapdoor tw associated to keyword w is the secret key that the
IBE scheme would assign to the identity w (i.e., Td(sk ,w) = KeyDer(sk ,w)). A keyword w is PEKS-
encrypted by IBE-encrypting the message 0k for the identity w (i.e., PEKS(pk ,w) = Enc(pk ,w , 0k)).
Finally, testing is done by checking that the ciphertext decrypts to 0k (i.e., Test(tw ,C ) returns 1 iff
Dec(tw ,C ) = 0k).

We know that BF -IBE is anonymous (Theorem 4.4), that BDOP -PEKS = ibe-2-peks(BF -IBE),
and that BDOP -PEKS is not statistically consistent (Proposition 3.2). Thus, we can conclude that the
ibe-2-peks transform does not necessarily yield a statistically consistent PEKS scheme. Unfortunately,
as the following theorem shows, the ibe-2-peks transform does not necessarily yield a computationally
consistent PEKS scheme either (under the minimal assumption of the existence of some IBE-IND-CPA-
and IBE-ANO-CPA-secure IBE scheme). As a result, ibe-2-peks is not in general a suitable way to
obtain a PEKS scheme.

Theorem 4.1 Assume there exist IBE-ANO-CPA-secure and IBE-IND-CPA-secure IBE schemes.

Then there exists a IBE-ANO-CPA-secure and IBE-IND-CPA-secure IBE scheme IBE such that the

PEKS scheme PEKS derived from IBE via ibe-2-peks is not computationally consistent.

Proof (Sketch): The proof of Theorem 4.1 is quite simple and its details are omitted here. Instead,
we only provide the general intuition behind it. In order to show that ibe-2-peks does not necessarily
yield a computationally consistent PEKS scheme, we first assume the existence of a IBE-IND-CPA- and
IBE-ANO-CPA-secure IBE scheme IBE = (Setup,KeyDer,Enc,Dec) and then build an IBE scheme
IBE = (Setup,KeyDer,Enc,Dec) as shown in Figure 4. It is easy to see that the IBE-IND-CPA-
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Setup(1k)

(pk ,msk)
$

← Setup(1k)

R
$

← {0, 1}k

pk ← (pk , R) ; msk ← (msk , R)

return (pk ,msk )

KeyDer(msk , id)

parse msk as (msk , R)

usk
$

← KeyDer(msk , id)

usk ← (usk , R)

return usk

Enc(pk , id ,M )

parse pk as (pk , R)

C
$

← Enc(pk , id ,M ‖R)
return C

Dec(usk ,C )

parse usk as (usk , R)
X ← Dec(usk ,C )
parse X as M ‖R′ where |R′| = k
if R′ = R then return M

else return 0k

Figure 4: IBE scheme for proof of Theorem 4.1.

and IBE-ANO-CPA-security of IBE follows from simple reductions from the security of IBE . Now,
let PEKS denote the PEKS scheme outputted by ibe-2-peks on input IBE . Clearly, PEKS is not
computationally consistent as its test algorithm outputs 1 with overwhelming probability, when given
the trapdoor for the wrong keyword. The only case in which it outputs 0 when given the wrong
trapdoor is when the last k bits of the decryption of the ciphertext C with the wrong trapdoor
matches the random value R in the public key pk , but this only happens with negligible probability
due to the IBE-IND-CPA security of the IBE scheme IBE .

4.3 The new-ibe-2-peks transform

The negative result in Theorem 4.1 raises the question: Does the existence of IBE schemes imply the
existence of computationally consistent PEKS schemes? We answer that in the affirmative by present-
ing a revision of the ibe-2-peks transform, called new-ibe-2-peks, that transforms any IBE-IND-CPA-
and IBE-ANO-CPA-secure IBE scheme into a PEKS-IND-CPA-secure and computationally consistent
PEKS scheme. It is similar to ibe-2-peks except that instead of always using 0k as the message en-
crypted, the PEKS-encryption algorithm chooses and encrypts a random message R and appends R
in the clear to the ciphertext. In more detail, the new-ibe-2-peks transform takes input an IBE scheme
IBE = (Setup,KeyDer,Enc,Dec) and returns a PEKS scheme PEKS = (KG,Td,PEKS,Test) as follows.
The public key pk and secret key sk of the receiver in the PEKS scheme are the master public and
secret keys, respectively, of the IBE scheme. (I.e. KG = Setup.) The trapdoor associated to keyword w

is the secret key that the IBE scheme would assign to the identity w . (I.e. Td(sk ,w) = KeyDer(sk ,w).)

PEKS-encryption of keyword w is done as follows: PEKS(pk ,w) picks R
$

← {0, 1}k , lets C
$

← Enc(pk ,
w , R), and returns (C , R) as the ciphertext. Finally, Test(tw , (C , R)) returns 1 iff Dec(tw ,C ) = R.

Intuitively, this construction avoids the problem of oddly-behaving Dec algorithms by making sure
that the only way to ruin the consistency of the PEKS scheme is by correctly guessing the value
encrypted by a ciphertext, using the secret key of a different identity, which should not be possible for
an IBE-IND-CPA-secure IBE scheme. Hence, the consistency of the resulting PEKS scheme is due to
the data privacy property of the IBE scheme, while the data privacy property of the PEKS scheme
comes from the anonymity of the IBE scheme. The formal result statement and proof follow.

Theorem 4.2 Let IBE be an IBE scheme and let PEKS be the PEKS scheme derived from IBE via

new-ibe-2-peks. If IBE is IBE-IND-CPA-secure, then PEKS is computationally consistent. Further,

if IBE is IBE-ANO-CPA-secure, then PEKS is PEKS-IND-CPA-secure.
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Proof: Let U be any PTA attacking the computational consistency of PEKS , and consider the fol-
lowing PTA A attacking the IBE-IND-CPA-security of IBE . In its find stage, given master public
key pk , adversary A runs U(pk ) to get keywords w ,w ′. It returns w as the challenge identity and

R0, R1
$

← {0, 1}k as the challenge messages. In the guess stage, given challenge ciphertext C (that
encrypts Rb under identity w for challenge bit b ∈ {0, 1}), A uses its key-derivation oracle to obtain a
trapdoor tw ′ for w ′. If Dec(tw ′ ,C ) = R1 then it returns 1 else it returns 0. It is easy to see that

Pr
[

Expibe-ind-cpa-1
IBE ,A (k)] = 1

]

≥ Pr
[

Exppeks-consist
PEKS ,U (k) = 1

]

Pr
[

Expibe-ind-cpa-0
IBE ,A (k)] = 1

]

≤ 2−k .

Thus Advpeks-consist
PEKS ,U (k) ≤ Advibe-ind-cpa

IBE ,A (k) + 2−k, proving the first claim of the theorem.

Let B be any PTA attacking the PEKS-IND-CPA-security of PEKS , and consider the following PTA
A attacking the IBE-ANO-CPA-security of IBE . In its find stage, given master public key pk ,
adversary A runs B(find, pk) to get challenge keywords w0,w1, which it returns along with a message

R
$

← {0, 1}k . In the guess stage, given challenge ciphertext C (that encrypts R under identity wb

for challenge bit b ∈ {0, 1}), A runs B, in its guess stage, with challenge ciphertext (C , R), to get
its guess bit b′, which A returns. In both stages, A answers any trapdoor-oracle queries of B via its
key-derivation oracle. It is easy to see that for b = 0, 1,

Pr
[

Expibe-ano-cpa-b
IBE ,A (k) = 1

]

= Pr
[

Exppeks-ind-cpa-b
PEKS ,B (k) = 1

]

.

Thus Advpeks-ind-cpa
PEKS ,B (k) ≤ Advibe-ano-cpa

IBE ,A (k), proving the second claim of the theorem.

4.4 A sufficient condition for anonymity

Halevi [19] provides a simple sufficient condition for an IND-CPA public-key encryption scheme to
meet the notion of anonymity (a.k.a. key-privacy) of [3]. The condition is that even a computationally
unbounded adversary, given public keys pk0, pk 1 and the encryption of a random message under
pk b, have only a negligible advantage in determining the random challenge bit b. Towards finding
anonymous IBE schemes (a task motivated by Theorem 4.2) we extend Halevi’s condition to identity-
based encryption. In the process we also extend it in two other ways: first to handle the random oracle
model (the standard model is a special case) and second to weaken the statistical (i.e. information-
theoretic) requirement of [19] to a computational one. (The application of this paper does not need
the last extension, but it may be useful in other contexts.)

We begin by defining a relevant (new) notion of security that we call IBE-ANO-RE-CPA. Let
IBE = (Setup,KeyDer,Enc,Dec) be an IBE scheme with associated message space MsgSp. We associate
to an adversary A and bit b ∈ {0, 1} the following experiment:

Experiment Expibe-ano-re-b
IBE ,A (k)

IDSet ← ∅ ; (pk ,msk )
$

← Setup(1k)
pick random oracle H

(id0, id1,M , state)
$

← AKeyDer(·),H(find, pk)
if M 6∈ MsgSp(k) then return 0

R
$

← {0, 1}|M | ; C
$

← EncH(pk , id b, R)

b′
$

← AKeyDer(·),H(guess,C , state)
if {id0, id1} ∩ IDSet = ∅ then return b′

else return 0

Oracle KeyDer(id)

IDSet ← IDSet ∪ {id}

usk [id ]
$

← KeyDerH(msk , id)
return usk [id ]
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Setup(1k)

(G1, G2, p, e)
$

← G(1k) ; P
$

← G
∗
1 ; s

$

← Z
∗
p

pk ← (G1, G2, p, e, P, sP ) ; msk ← s
return (pk ,msk)

KeyDerH1(msk , id)
sk [id ]← sH1(id)
return sk [id ]

EncH1,H2(pk , id ,M )

r
$

← Z
∗
p ; T ← e(H1(id), sP )r

C ← (rP,M⊕H2(T ))
return C

DecH2(sk [id ],C )
parse C as (U, V )
T ← e(sk [id ], U) ; M ← V⊕H2(T )
return M

Figure 5: Algorithms of the IBE scheme BF -IBE = (Setup,KeyDer,Enc,Dec). Here G is a pairing
parameter generator and H1: {0, 1}

∗ → G
∗
1 and H2: G2 → {0, 1}

k are random oracles. The message
space is defined by MsgSp(k) = {0, 1}k for all k ∈ N.

The IBE-ANO-RE-CPA-advantage of an adversary A in violating the anonymity of the scheme IBE
is defined as

Advibe-ano-re
IBE ,A (k) = Pr

[

Expibe-ano-re-1
IBE ,A (k) = 1

]

− Pr
[

Expibe-ano-re-0
IBE ,A (k) = 1

]

.

A scheme IBE is said to be IBE-ANO-RE-CPA-secure if the above advantage is a negligible function
in k for all PTAs A.

Lemma 4.3 Let IBE be an IBE scheme that is IBE-IND-CPA and IBE-ANO-RE-CPA-secure. Then

it is also IBE-ANO-CPA-secure.

Proof of Lemma 4.3: The proof is a simple hybrid argument. Let A be a PTA attacking the
IBE-ANO-CPA-security of IBE . It is easy to construct PTAs A1,A3 attacking the IBE-IND-CPA-
security of IBE , and PTA A2 attacking the IBE-ANO-RE-CPA-security of IBE , such that

Pr
[

Expibe-ano-cpa-1
IBE ,A (k) = 1

]

− Pr
[

Expibe-ano-re-1
IBE ,A (k) = 1

]

≤ Advibe-ind-cpa
IBE ,A1

(k)

Pr
[

Expibe-ano-re-1
IBE ,A (k) = 1

]

− Pr
[

Expibe-ano-re-0
IBE ,A (k) = 1

]

≤ Advibe-ano-re
IBE ,A2

(k)

Pr
[

Expibe-ano-re-0
IBE ,A (k) = 1

]

− Pr
[

Expibe-ano-cpa-0
IBE ,A (k) = 1

]

≤ Advibe-ind-cpa
IBE ,A3

(k) .

Summing concludes the proof. We omit the details, save to remark that we use here the second
convention about message spaces noted in Section 2.

4.5 Anonymity of BF -IBE

The Boneh-Franklin BasicIdent IBE scheme [9] is shown in Figure 5. We apply Lemma 4.3 to give a
simple proof that it is IBE-ANO-CPA.

Theorem 4.4 The BF -IBE scheme is IBE-ANO-CPA-secure assuming that the BDH is hard relative

to generator G.

Proof: Given Lemma 4.3, and given that the BF -IBE scheme is IBE-IND-CPA-secure [9], it suffices
to show that the scheme is IBE-ANO-RE-CPA-secure. Notice that the ciphertext C in Figure 5 has
two parts, namely U = rP and V = M ⊕ H2(T ). The value U is chosen uniformly at random from
G

∗
1 by the encryption algorithm. If the message M is chosen uniformly at random from {0, 1}k, then
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V is also uniformly distributed in {0, 1}k and independent of the H2(T ). Thus in both the 0- and
1- worlds of the IBE-ANO-RE-CPA-security game, the challenge ciphertext C has exactly the same
distribution. Therefore any adversary against IBE-ANO-RE-CPA-security will have 0 advantage.

5 Anonymous HIBE

5.1 Definitions

HIBE schemes. A hierarchical identity-based encryption (HIBE) scheme [20, 15, 7] is a generalization
of an IBE scheme in which an identity is a vector of strings id = (id1, . . . , id l) with the understanding
that when l = 0 this is the empty vector (). The number of components in this vector is called the level
of the identity and is denoted |id |. If 0 ≤ i ≤ l then id |i = (id1, . . . , id i) denotes the vector containing
the first i components of id . If |id ′| ≥ l + 1 (l ≥ 0) and id ′|l = id then we say that id is an ancestor
of id ′, or equivalently, that id ′ is a descendant of id . If the level of id ′ is l + 1 then id is a parent of
id ′, or, equivalently, id ′ is a child of id . For any id with |id | ≥ 1 we let par(id) = id ||id |−1 denote its
parent. Two nodes id = (id1, . . . , id l) and id ′ = (id ′

1, . . . , id
′
l) at level l are said to be siblings iff id |l−1

= id ′|l−1. Moreover, if id l < id ′
l in lexicographic order, then id is a left sibling of id ′ and id ′ is a right

sibling of id . An identity at level one or more can be issued a secret key by its parent. (And thus an
identity can issue keys for any of its descendants if necessary.)

Formally a HIBE scheme HIBE = (Setup,KeyDer,Enc,Dec) consists of four PTAs. Via (pk ,msk =

usk [()])
$

← Setup(1k), where k ∈ N is a security parameter, the root generates master keys, with the se-

cret key being associated to the (unique) identity () at level 0. Via usk [id ]
$

← KeyDerH(usk [par(id)], id)
the parent of an identity id with |id | ≥ 1 can compute a secret key for id . Note that by it-
eratively applying the KeyDer algorithm a user id can derive secret keys for any of its descen-

dants id ′; we occasionally use the notation usk [id ′]
$

← KeyDerH(usk [id ], id ′) to denote this process.

Via C
$

← EncH(pk , id ,M ) a sender encrypts a message M to identity id to get a ciphertext; via
M ← DecH(usk [id ],C ) the identity id decrypts ciphertext C to get back a message. Here H is a
random oracle with domain and range possibly depending on k and pk . Associated to the scheme is
a message space MsgSp obeying the conventions discussed in Section 2. For consistency, we require
that for all k ∈ N, all identities id with |id | ≥ 1 and all messages M ∈ MsgSp(k),

Pr
[
DecH(KeyDerH(usk [par(id)], id),EncH(pk , id ,M )) = M

]
= 1 ,

where the probability is taken over the choice of (pk , usk [()])
$

← Setup(1k), the random choice of H,
and the coins of all the algorithms in the expression above.

Privacy and anonymity. The notion of privacy for HIBE schemes is analogous to that for IBE
schemes (IBE-IND-CPA) but using identity vectors rather than identity strings and where the ad-
versary is not allowed to query the KeyDer oracle for the secret key of any ancestor of the identity
under attack. Since we will deal with schemes where privacy holds only up to some level, the notion is
parameterized by a maximum depth function d: N→ N, and all identities id (in queries or challenges)
must have |id | ≤ d(k). To allow a fine-grained treatment of anonymity we introduce the concept of
anonymity at a set L(k) of levels, meaning that in an experiment the adversary A is challenged to
distinguish two distinct identities differing only at levels l ∈ L(k). (Here for each k, L(k) is a finite set
of integers. For ease of notation, we will write l rather than {l} when L(k) = {l} is a singleton set.)

Formally, let HIBE = (Setup,KeyDer,Enc,Dec) be an identity-based encryption scheme with mes-
sage space MsgSp, let d : N → N be the maximum depth, and let L be a set of levels. Let diff(·, ·)
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be the function that returns the set of coordinates at which the input identities differ, and anc(·) the
function returning the set of ancestors of the input identity. To any bit b ∈ {0, 1} and any adversary
A, we associate the experiments:

Experiment Exp
hibe-ind-cpa-b[d]

HIBE ,A
(k)

IDSet ← ∅ ; (pk ,msk)
$

← Setup(1k )
pick random oracle H

(id ,M0,M1, state)
$

← AKeyDer(·),H(find, pk)
if |M0| 6= |M1| or |id | > d(k)

or {M0,M1} 6⊆ MsgSp(k)
then return 0

C
$

← EncH(pk , id ,Mb)

b′
$

← AKeyDer(·),H(guess,C , state)
if IDSet ∩ anc(id) = ∅

then return b′ else return 0

Experiment Exp
hibe-ano-cpa-b[L,d]

HIBE ,A
(k)

IDSet ← ∅ ; (pk ,msk )
$

← Setup(1k )
pick random oracle H

(id0, id1,M , state)
$

← AKeyDer(·),H(find, pk )
if |id0| 6= |id1| or |id0| > d(k)

or |id1| > d(k) or M 6∈ MsgSp(k)
then return 0

C
$

← Enc(pk , id b,M )

b′
$

← AKeyDer(·),H(guess,C , state)
if IDSet ∩ (anc(id0) ∪ anc(id1)) = ∅ and

diff(id0, id1) ⊆ L(k)
then return b′ else return 0

where the oracle KeyDer(·) is defined as

if |id | > d(k) then return ⊥ ; IDSet ← IDSet ∪ {id} ; return KeyDer(msk , id) .

We define the advantage of A in the corresponding experiments as

Adv
hibe-ind-cpa[d]

HIBE ,A
(k) = Pr

[

Exp
hibe-ind-cpa-1[d]

HIBE ,A
(k) = 1

]

− Pr
[

Exp
hibe-ind-cpa-0[d]

HIBE ,A
(k) = 1

]

Adv
hibe-ano-cpa[L,d]

HIBE ,A
(k) = Pr

[

Exp
hibe-ano-cpa-1[L,d]

HIBE ,A
(k) = 1

]

− Pr
[

Exp
hibe-ano-cpa-0[L,d]

HIBE ,A
(k) = 1

]

The scheme HIBE is said to be HIBE-IND-CPA[d]-secure (resp. HIBE-ANO-CPA[L, d]-secure) if the
respective advantage function is negligible for all PTAs A.

5.2 A sufficient condition for anonymity

We further extend Lemma 4.3 to the hierarchical case. To this end, we introduce a new notion
HIBE-ANO-RE-CPA[L, d] as follows. Let HIBE = (Setup,KeyDer,Enc,Dec) be a HIBE scheme with
message space MsgSp, let L be a set of levels, and let d be the maximum hierarchy depth. To an
adversary A and a bit b, we associate the following experiment:

Experiment Exp
hibe-ano-re-b[L,d]

HIBE ,A
(k)

IDSet ← ∅ ; (pk ,msk )
$

← Setup(1k)
pick random oracle H

(id0, id1,M , state)
$

← AKeyDer(·),H(find, pk )
if |id0| 6= |id1| or |id0| > d(k) or |id1| > d(k)

or M 6∈ MsgSp(k) then return 0

R
$

← {0, 1}|M | ; C
$

← EncH(pk , id b, R)

b′
$

← AKeyDer(·),H(guess,C , state)
if IDSet ∩ ({id0, id1} ∪ anc(id0) ∪ anc(id1)) = ∅

and diff(id0, id1) ⊆ L(k) then return b′ else return 0

Oracle KeyDer(id)

if |id | > d(k) then return ⊥
IDSet ← IDSet ∪ {id}
return KeyDerH(msk , id)
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The HIBE-ANO-RE-CPA[L, d]-advantage of an adversary A in violating the level-L anonymity of the
scheme HIBE with depth d(k) is defined as

Adv
hibe-ano-re[L,d]

HIBE ,A
(k) = Pr

[

Exp
hibe-ano-re-1[L,d]
IBE ,A (k) = 1

]

− Pr
[

Exp
hibe-ano-re-0[L,d]
IBE ,A (k) = 1

]

.

A scheme HIBE is said to be HIBE-ANO-RE-CPA[L, d]-secure if this advantage is a negligible function
in k for all PTAs A. The following lemma follows from a hybrid argument similar to that of Lemma 4.3.

Lemma 5.1 Let HIBE be a HIBE scheme that is HIBE-IND-CPA[d] and HIBE-ANO-RE-CPA[L, d]-
secure for some set of levels L and hierarchy depth d. Then HIBE is also HIBE-ANO-CPA[L, d]-
secure.

5.3 Construction

The HIBE scheme of [20] appears to be anonymous, but supports only two levels of identities, and is
only resistant against limited collusions at the second level, and hence is not usable for our construc-
tions that follow. Since the HIBE of [15], here denoted GS -HIBE , is equivalent to the Boneh-Franklin
IBE scheme [9] when restricted to the first level, and since the latter is provably anonymous as per
Theorem 4.4, one could hope that GS -HIBE is level-1 anonymous, but this turns out not to be true,
and the HIBE of [7] is not level-1 anonymous either. To see why, consider the following. The GS -HIBE
encryption of a message M under identity id = (id1, . . . , id l) is a tuple

(
rP, rH1(id |2), . . . , rH1(id |l), H2(e(rP,H1(id1)))⊕m

)
(7)

where H1,H2 are random oracles, P is a generator of a pairing group that is part of pk , and r is
chosen at random from Zp by the encryption algorithm. Anonymity is violated because an adversary
can decide whether a given ciphertext (C1,C2,C3) is intended for id = (id1, id2) or id ′ = (id ′

1, id2) by
checking whether e(C2, P ) equals e(C1,H1(id)) or e(C1,H1(id

′)).
The lack of anonymity in GS -HIBE stems from the fact that the hashes in the first l components

of the ciphertext depend on the first component of the recipient’s identity. In Figure 6, we present
a modified mGS -HIBE scheme that uses a different random oracle H1,l for each level l, and that
computes ciphertexts as

(
rP, rH1,2(id2), . . . , rH1,l(id l), H2(e(rP,H1,1(id1))) ⊕m

)
.

The following implies in particular that mGS -HIBE is the first full HIBE scheme providing anonymity
at any level. The restriction on d is inherited from [15]. We note that, subsequently to our work,
Boyen and Waters [11] proposed a HIBE scheme that is anonymous at all levels in the standard (i.e.,
non-random-oracle) model.

Theorem 5.2 For any d(k) = O(log(k)), the mGS -HIBE scheme is HIBE-ANO-CPA[1, d]-secure

and HIBE-IND-CPA[d]-secure in the random oracle model assuming the BDH problem is hard relative

to the generator G.

We split up the proof in the following two lemmas. The proof of the first is given in Appendix B, and
recycles ideas from [15, 9]. We use Lemma 5.1 to prove the second lemma.

Lemma 5.3 For any d(k) = O(log(k)), the mGS -HIBE scheme is HIBE-IND-CPA[d]-secure in the

random oracle model assuming the BDH problem is hard relative to the generator G.

Lemma 5.4 For any d(k) = O(log(k)), the mGS -HIBE scheme is HIBE-ANO-CPA[1, d]-secure in

the random oracle model assuming the BDH problem is hard relative to the generator G.
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Setup(1k)

(G1, G2, p, e)
$

← G(1k) ; P
$

← G∗

1

s0
$

← Z∗

p ; S0 ← 0 ; Q0 ← s0P
pk ← (G1, G2, p, e, P, Q0)
msk ← (pk , (), S0, s0)
return (pk ,msk)

KeyDerH1,1,...,H1,l(usk , id)
parse id as (id1, . . . , id l+1)
parse usk as (pk , id |l, Sl, Q1, . . . , Ql−1, sl)
parse pk as (G1, G2, p, e, P, Q0)
Sl+1 ← Sl + slH1,l+1(id l+1)

Ql ← slP ; sl+1
$

← Z∗

p

return (pk , id , Sl+1, Q1, . . . , Ql, sl+1)

EncH1,1,...,H1,l,H2(pk , id ,M )
parse pk as (G1, G2, p, e, P, Q0)
parse id as (id1, . . . , id l)

r
$

← Z∗

p ; C1 ← rP
for i = 2, . . . , l do Ci ← rH1,i(id i)
Cl+1 ← M ⊕H2(e(rH1,1(id1), Q0))
return (C1, . . . ,Cl+1)

DecH2(usk ,C )
parse usk as (pk , id , Sl, Q1, . . . , Ql−1, sl)
parse id as (id1, . . . , id l)
parse pk as (G1, G2, p, e, P, Q0)
parse C as (C1, . . . ,Cl+1)

κ← e(Sl,C1) ·
∏l

i=2 e(Qi−1,Ci)
−1

return Cl+1 ⊕H2(κ)

Figure 6: Algorithms of the mGS -HIBE scheme. G is a pairing parameter generator and
H1,i: {0, 1}

∗ → G
∗
1 and H2: G2 → {0, 1}

k are random oracles.

Proof: Given Lemmas 5.1 and 5.3, it suffices to show that mGS -HIBE is HIBE-ANO-RE-CPA[1, d]-
secure. In the challenge ciphertext (C ∗

1 , . . . ,C ∗
l+1), the first component C1 is chosen uniformly at

random from G
∗
1. Component C ∗

i for 2 ≤ i ≤ l is uniquely defined by C ∗
1 and the i-th component

of the identity, which is the same for both challenge identities since they can only differ at level 1.
Finally, if the message M is chosen uniformly at random from {0, 1}k , then the last component C ∗

l+1

is also uniformly distributed over {0, 1}k , independent of H2(e(rH1,1(id1), Q0)). Hence, the challenge
ciphertext is identically distributed in both worlds, and the advantage of any adversary is 0.

6 Public-key encryption with temporary keyword search

In a PEKS scheme, once the gateway has the trapdoor for a certain keyword, it can test whether this
keyword was present in past ciphertexts, and can test its presence in any future ciphertexts. It may
be useful to limit the period in which the trapdoor can be used. Here we propose an extension of
PEKS that allows this. We call it public-key encryption with temporary keyword search (PETKS)
or temporarily searchable encryption for short. A trapdoor here is created for a time interval [s, e]
and will only allow the gateway to test whether ciphertexts created in this time interval contain the
keyword.

6.1 Definitions

PETKS schemes. Public-key encryption with temporary keyword search (PETKS) is a general-
ization of PEKS in which a trapdoor can be issued for any desired window of time rather than
forever. Formally, the scheme PETKS = (KG,Td,PETKS,Test, N) consists of four PTAs and a

function N : N → N. Via (pk , sk)
$

← KG(1k), the receiver generates its public and secret key; via

C
$

← PETKSH(pk ,w , i) a sender encrypts a keyword w in time period i ∈ [0, N(k) − 1] to get a ci-

phertext; via tw
$

← TdH(sk ,w , s, e) the receiver computes a trapdoor tw for keyword w in period [s, e]
where 0 ≤ s ≤ e ≤ N(k) − 1, and provides it to the gateway; via b← TestH(tw ,C ) the gateway tests
whether C encrypts w , where b is a bit with 1 meaning “accept” or “yes” and 0 meaning “reject” or
“no”. Here H is a random oracle whose domain and/or range might depend on k and pk . We require
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that for all k ∈ N, all s, e, i with 0 ≤ s ≤ i ≤ e ≤ N(k)− 1, and all w ∈ {0, 1}∗,

Pr
[
TestH(TdH(sk ,w , s, e),PETKSH(pk ,w , i)) = 1

]
= 1 ,

where the probability is taken over the choice of (pk , sk)
$

← KG(1k), the random choice of H, and the
coins of all the algorithms in the expression above.

Consistency. Consistency for PETKS schemes requires that no user U can output keywords w,w′

and time period indices s, e, i ∈ [1, N(k) − 1] such that w 6= w′ or i 6∈ [s, e], yet still an encryption of
w for time period i tests positively under a trapdoor for keyword w′ and time period [s, e]. We define

the advantage Advpetks-consist
PETKS ,U

(k) as the probability that U succeeds in doing so. Just like for standard
PEKS schemes, we distinguish between perfect, statistical and computational consistency.

Privacy. Privacy for a PETKS scheme asks that an adversary be unable to distinguish between the
encryption of two challenge keywords of its choice in a time period i ∈ [0, N(k)− 1] of its choice, even
if it is allowed not only to obtain trapdoors for non-challenge keywords issued for any time interval,
but also is allowed to obtain trapdoors for any keywords (even the challenge ones), issued for time
intervals not containing i. The formal experiment and the definition of PETKS-IND-CPA-advantage
and security are otherwise analogous to those of standard PEKS schemes, and hence are omitted here.

6.2 Constructions for PETKS schemes

Constructions with linear complexity. PETKS is reminiscent of forward-security [4, 12], and,
as in these works, there are straightforward solutions with keys or trapdoors of length linear in N(k).
One such solution is to use a standard PEKS scheme and generate a different key pair (pk i, sk i) for each
time period i ∈ [0, N(k) − 1]. Let pk = (pk 0, . . . , pkN(k)−1) be the PETKS public key and sk = (sk0,
. . . , skN(k)−1) be the PETKS secret key. During time period i, the sender encrypts a keyword w

by encrypting w under pk i using the PEKS scheme. The trapdoor for a keyword w in the interval
[s, e] consists of all PEKS trapdoors for w of periods s, . . . , e. A somewhat more efficient solution is
to let the PETKS master key pair be a single key pair for the standard PEKS scheme, and append
the time period to the keyword (making sure that the string is uniquely decodable, e.g. by using
a special separator symbol) when encrypting or computing trapdoors. This scheme achieves short
public and secret keys, but still has trapdoor length linear in N(k), because the PETKS trapdoor still
contains PEKS trapdoors for all time periods s, . . . , e. Note that both these construction only work
for polynomially bounded N(k).

The hibe-2-petks transform. We now present a transformation hibe-2-petks of a HIBE scheme into a
PETKS scheme that yields a PETKS scheme with complexity logarithmic in N(k) for all parameters.
The construction is very similar to the generic construction of forward-secure encryption from binary-
tree encryption [12]. The number of time periods is N(k) = 2t(k) for some polynomially bounded
function t : N→ N. If i ∈ [0, N(k)−1], then let i1 . . . it(k) denote its binary representation as a t(k)-bit
string. Intuitively, our construction instantiates a HIBE of depth t(k) + 1 with keywords as the first
level of the identity tree and the time structure on the lower levels. The trapdoor for keyword w and
interval of time periods [s, e] consists of the user secret keys of all identities from (w , s1, . . . , st(k)) to
(w , e1, . . . , et(k)), but taking advantage of the hierarchical structure to include entire subtrees of keys.

More precisely, let HIBE = (Setup,KeyDer,Enc,Dec) be a HIBE scheme. Then we associate to it
a PETKS scheme PETKS = hibe-2-petks(HIBE , t(k)) = (KG,Td,PETKS,Test, N) such that N(k) =

2t(k), KG(1k) = Setup(1k) and PETKS(pk ,w , i) = (i, R,C ) where R
$

← {0, 1}k and C ← Enc(pk , (w , i1,
. . . , it(k)), R). The trapdoor algorithm Td(sk ,w , s, e) first constructs a set T of identities as follows. Let
j be the smallest index so that sj 6= ej . Then T is the set containing (w , s1, . . . , st(k)), (w , e1, . . . , et(k)),
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the right siblings of all nodes on the path from (w , s1, . . . , sj+1) to (w , s1, . . . , st(k)), and the left
siblings of all nodes on the path from (w , e1, . . . , ej+1) to (w , e1, . . . , et(k)). If j does not exist, meaning
s = e, then T ← {(w , s1, . . . , st(k))}. The trapdoor tw is the set of tuples ((w , i1, . . . , ir),KeyDer(sk ,
(w , i1, . . . , ir))) for all (i1, . . . , ir) ∈ T . To test a ciphertext (i, R,C ), the Test algorithm looks up a tuple
((w , i1, . . . , ir), usk [(w , i1, . . . , ir)]) in tw . It returns 0 when no such tuple is found. Otherwise, it derives
usk [(w , i1, . . . , it(k))] using repetitive calls to the KeyDer algorithm, and returns 1 iff Dec(usk [(w , i1, . . . ,
it(k))],C ) = R.

Theorem 6.1 Let HIBE be a HIBE scheme, and let PETKS = hibe-2-petks(HIBE , t(k)) for some

polynomially bounded function t : N → N. If HIBE is HIBE-ANO-CPA[1, t(k) + 1]-secure, then

PETKS is PETKS-IND-CPA-secure. Furthermore, if HIBE is HIBE-IND-CPA[t(k) + 1]-secure, then

PETKS is computationally consistent.

We split the proof of the theorem over the following two lemmas.

Lemma 6.2 Let HIBE be a HIBE scheme, and let PETKS = hibe-2-petks(HIBE , t(k)) for some

polynomially bounded function t : N → N. If HIBE is HIBE-ANO-CPA[1, t(k) + 1]-secure, then

PETKS is PETKS-IND-CPA-secure.

Proof: Let HIBE = (Setup,KeyDer,Enc,Dec) be a level-1 anonymous (HIBE-ANO-CPA[1, t(k) + 1]-
secure) HIBE scheme, and let PETKS = hibe-2-petks(HIBE , t(k)) = (KG,Td,PETKS,Test, N) be the
associated PETKS scheme. Given an adversary A breaking the PETKS-IND-CPA security of PETKS ,
we construct an adversary B breaking the HIBE-ANO-CPA[1, t(k) + 1] security of HIBE as follows.
On input public parameters pk , B runs A on inputs (find, pk). When A queries its Trapd oracle for
the trapdoor of keyword w for interval [s, e], then B constructs a set T exactly as the Td algorithm
does, and constructs the corresponding trapdoor by querying its KeyDer oracle for the user secret
keys corresponding to all identities in T .

When A outputs challenge keywords w0,w1 and time period i, B outputs challenge identities id0 =
(w0, i1, . . . , it(k)), id1 = (w1, i1, . . . , it(k)) and a randomly chosen message M of length k. Note that
identities id0 and id1 differ on level 1, but are otherwise equal, as required for level-1 anonymity. Upon
receiving challenge ciphertext C , adversary B sends (i, R,C ) to A and runs it until A outputs a bit b′

(responding to A’s oracle queries the same way as before). Adversary B outputs the same bit b′.

It is easy to see that, due to the ordered structure of the time tree, adversary B does not need to
corrupt any ancestors of its challenge identities. Therefore, adversary B succeeds whenever A does,
and we have

Advpetks-ind-cpa
PETKS ,A

(k) ≤ Adv
hibe-ano-cpa[1,t(k)+1]

HIBE ,B
(k)

for all k ∈ N, from which the lemma follows.

Lemma 6.3 Let HIBE be a HIBE scheme, and let PETKS = hibe-2-petks(HIBE , t(k)) for some

polynomially bounded function t : N→ N. If HIBE is HIBE-IND-CPA[t(k) + 1]-secure, then PETKS
is computationally consistent.

Proof: Let A be an adversary of the consistency of PETKS . We construct an HIBE-IND-CPA
adversary B of HIBE as follows.

Adversary BKeyDer(·)(find, pk )

(w ,w ′, s, e, i)
$

← A(pk)
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R,R′ $

← {0, 1}k (where {0, 1}k is the message space of HIBE)
id ← (w , i1, . . . , it(k))

M0 ← R ; M1 = R′

state ← (pk ,w ,w ′, R,R′, s, e, i)
return (id ,M0,M1, state)

Adversary BKeyDer(·)(guess, C, state)
parse C as (i, R,C ′)

tw ′

$

← KeyDer((w ′, i1, . . . , it(k))) ; X ← Dec(tw ′ , C ′)

if X = R′ then return 1 else return 0

Since, by construction, Test(tw ,C ) returns 0 whenever i /∈ [s, e], we can assume that w′ 6= w and
i ∈ [s, e]. Then, exactly as in Theorem 4.2, we have

Pr
[

Exp
hibe-ind-cpa-1[t(k)+1]

HIBE ,B
(k) = 1

]

≥ Pr
[

Exppetks-consist
PETKS ,A

(k) = 1
]

(8)

Pr
[

Exp
hibe-ind-cpa-0[t(k)+1]

HIBE ,B
(k) = 1

]

≤ 2−l. (9)

Equation (8) and Equation (9) give us

Advpetks-consist
PETKS ,A (k) ≤ Adv

hibe-ind-cpa[t(k)+1]

HIBE ,B
(k) + 2−l.

The result follows.

Complexity. Since the mGS -HIBE has user secret keys and ciphertexts of size linear in the depth
of the tree, our resulting PETKS scheme has public and secret keys of size O(1), ciphertexts of
size O(log N(k)) and trapdoors of size O(log2 N(k)). We note that in this case a user can decrypt
ciphertexts intended for any of its descendants directly, without needing to derive the corresponding
secret key first. This makes the call to the KeyDer algorithm in the Test algorithm superfluous, thereby
improving the efficiency of Test. Note that since the mGS -HIBE scheme is only secure for tree depths
d(k) = O(log(k)), the derived PETKS scheme is restricted to a polynomial number of time periods.

Unbounded time periods. Using the techniques of [21], one can create a variant of our scheme
with efficiency depending on the number of elapsed time periods, rather than the maximal number of
time periods N(k). This means that there is no efficiency penalty for overestimating N(k), so that a
sufficiently high value can be chosen when setting up the system. However, for security reasons the
number of time periods remains limited to a maximum of N(k) ≤ 2d(k)−⌈log d(k)⌉−1 periods, where d(k)
is the maximum depth of the underlying HIBE scheme.

7 Identity-based encryption with keyword search

In this section, we show how to combine the concepts of identity-based encryption and PEKS to obtain
identity-based encryption with keyword search (IBEKS) or ID-based searchable encryption for short.
Like in IBE schemes, this allows to use any string as a recipient’s public key for the PEKS scheme.

7.1 Definitions

IBEKS schemes. An identity-based encryption with keyword search scheme IBEKS = (Setup,

KeyDer,Td, IBEKS,Test) is made up of five algorithms. Via (pk ,msk)
$

← Setup(1k), where k ∈ N is the
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security parameter, the master generates the master keys; via usk [id ]
$

← KeyDerH(msk , id), the master

computes the secret key for identity id ; via C
$

← IBEKSH(pk , id ,w), a sender encrypts a keyword w

to identity id to get a ciphertext; via tw
$

← TdH(usk [id ],w), the receiver computes a trapdoor tw for
keyword w and identity id and provides it to the gateway; via b ← TestH(tw ,C ), the gateway tests
whether C encrypts w , where b is a bit with 1 meaning “accept” or “yes” and 0 meaning “reject” or
“no”. As usual H is a random oracle whose domain and/or range might depend on k and pk . For
correctness, we require that for all k ∈ N, all identities id , and all w ∈ {0, 1}∗,

Pr
[
TestH(TdH(KeyDerH(msk , id),w), IBEKSH(pk , id ,w)) = 1

]
= 1 ,

where the probability is taken over the choice of (pk ,msk)
$

← Setup(1k), the random choice of H, and
the coins of all algorithms in the expression above.

Consistency. The notion of consistency for IBEKS is similar to the one given for PEKS. The
advantage of a user U is defined as the probability that, on input the master public key pk , it can
output keywords w,w′ and identities id , id ′ such that w 6= w′ or id 6= id ′, yet still an encryption of
w under identity id tests positively under a trapdoor derived for keyword w′ and identity id ′. We
again distinguish between perfect, statistical and computational consistency. Note that this definition
also considers it a consistency problem if a trapdoor for identity id ′ tests positively for a ciphertext
intended for identity id 6= id ′. This type of problems is easily avoided by having the KeyDer, Td and
IBEKS algorithms include the intended identity into the user secret keys, trapdoors and ciphertexts,
respectively.

Privacy. We define privacy for IBEKS schemes says that an adversary should not be able to distin-
guish between the encryption of two different challenge keywords w0, w1 of its choice for any identity
id of its choice. Moreover, this should be the case even if the adversary is allowed to obtain trapdoors
for non-challenge keywords issued for any identity and to obtain trapdoors for w0, w1 for identi-
ties other than id . The advantage function Advibeks-ind-cpa

IBEKS ,A (k) of an adversary A and the notion of
IBEKS-IND-CPA security are defined analogously to standard PEKS schemes.

7.2 A generic transformation from anonymous HIBE schemes

We now propose a generic transform, called hibe-2-ibeks, to convert any HIBE scheme with two levels
into an IBEKS scheme. To obtain an IBEKS that is IBEKS-IND-CPA-secure, it is sufficient to start
with a HIBE that is anonymous at level 2. Moreover, if the underlying HIBE is HIBE-IND-CPA[2]-
secure, then the resulting IBEKS is also computationally consistent.

The hibe-2-ibeks transform. Given a HIBE scheme HIBE = (Setup,KeyDer,Enc,Dec) with two
levels, hibe-2-ibeks returns the IBEKS scheme IBEKS = (Setup,KeyDer, IBEKS,Td,Test) such that

KeyDer(msk , id) = (usk , id) where usk
$

← KeyDer(msk , id), IBEKS(pk , id ,w) = (id , R,C ) where R
$

←

{0, 1}k and C = Enc(pk , (id ,w), R), Td(usk = (usk , id),w) = (id , tw ) where tw
$

← KeyDer(usk , (id ,
w)) and Test(tw = (id , tw ), (id ′, R,C )) returns 1 iff Dec(tw ,C ) = R and id = id ′.

Theorem 7.1 Let HIBE be a HIBE scheme and let IBEKS = hibe-2-ibeks(HIBE). If HIBE is

HIBE-IND-CPA[2]-secure, then IBEKS is computationally consistent. Furthermore, if HIBE is

HIBE-ANO-CPA[2, 2]-secure, then IBEKS is IBEKS-IND-CPA-secure.

The proof of Theorem 7.1 follows from Lemma 7.2 and Lemma 7.3.

Lemma 7.2 Let HIBE be a HIBE scheme and let IBEKS = hibe-2-ibeks(HIBE). If HIBE is

HIBE-ANO-CPA[2, 2]-secure, then IBEKS is IBEKS-IND-CPA-secure.
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Proof: Given an adversary A breaking the IBEKS-IND-CPA-security of IBEKS , we construct an
HIBE-ANO-CPA[2, 2]-adversary B breaking HIBE as follows. On input a public key pk , algorithm
B runs A on the same input, answering A’s KeyDer(·) queries by forwarding the output of its own
KeyDer(·) oracle, and answering A’s Trapd(id ,w) oracle queries by querying its own KeyDer(·)
oracle for the secret key corresponding to identity (id ,w). When A outputs a challenge identity id⋆

and two challenge keywords w⋆
0 ,w⋆

1 , adversary B chooses a random message M ⋆ ∈ {0, 1}k and outputs
M ⋆ as the challenge message and id⋆

0 = (id⋆,w⋆
0 ) and id⋆

1 = (id⋆,w⋆
1 ) as the challenge identities, which

in fact differ only in the second entry. Let C ⋆ be the challenge ciphertext that B receives at the
beginning of its guess phase. Adversary B returns (M ⋆,C ⋆) to A, and continues to run A (answering
Trapd queries the same way as before) until it outputs a bit b′. Algorithm B then outputs the same
bit b′ as its own output.

It is clear from the construction that B’s simulation of A’s environment is perfect. Since A cannot
query its Trapd oracle on keywords (id⋆,w⋆

0 ) and (id⋆,w⋆
1 ), B will not be forced to query its KeyDer

on identities id⋆
0 and id⋆

1, and hence wins the game whenever A does. Therefore, we have that

Advibeks-ind-cpa
IBEKS ,A (k) ≤ Adv

hibe-ano-cpa[2,2]

HIBE ,B
(k) ,

from which the theorem follows for CPA security. This proves the lemma.

Lemma 7.3 Let HIBE be a HIBE scheme and let IBEKS = hibe-2-ibeks(HIBE). If HIBE is

HIBE-IND-CPA[2]-secure, then IBEKS is computationally consistent.

Proof: Let A1 be an adversary of the consistency of IBEKS . We construct an HIBE-IND-CPA[2]
adversary B1 of HIBE as follows.

Adversary B
KeyDer(·)
1 (find, pk)

(w ,w ′, id , id ′)
$

← A1(pk) ; R,R′ $

← {0, 1}l (where {0, 1}l is the message space of HIBE)
id = (id ′,w)
w0 = R ; w1 = R′

state = (pk ,w ,w ′, R,R′)
return (id ,w0,w1, state)

Adversary B
KeyDer(·)
1 (guess,C , state)

tw ′

$

← KeyDer((id ′,w ′)) ; X ← Dec(tw ′ ,C )
if X = R′ then return 1 else return 0

Since, by construction, Test(tw ,C ) returns 0 whenever id 6= id ′, we can assume that w′ 6= w and
id ′ = id . Thus, exactly as in Theorem 4.2, we have

Pr
[

Exp
hibe-ind-cpa-1[2]
HIBE ,B1

(k) = 1
]

≥ Pr
[

Expibeks-consist
IBEKS ,A (k) = 1

]

(10)

Pr
[

Exp
hibe-ind-cpa-0[2]
HIBE ,B1

(k) = 1
]

≤ 2−l. (11)

Equation (10) and Equation (11) give us

Advibeks-consist
IBEKS ,A1

(k) ≤ Adv
hibe-ind-cpa[2]

HIBE ,B1
(k) + 2−l.

The result follows.
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7.3 Concrete instantiations

Neither the GS -HIBE scheme of [15] nor the mGS -HIBE scheme of Figure 6 are anonymous at
the second level. For the GS -HIBE scheme, consider an adversary A who outputs challenge identities
id = (id1, id2) and id ′ = (id1, id

′
2) for any id1, id2, id

′
2 ∈ {0, 1}

∗ such that id2 6= id ′
2, and any challenge

message M ∈ {0, 1}k . When given the challenge ciphertext C = (C1,C2,C3), A checks whether
e(C1,H1(id)) = e(P,C2). (See Equation (7) for how ciphertexts are created in the GS -HIBE scheme.)
If the test succeeds, then A returns 0, otherwise it returns 1. It is easy to see that the advantage of A

is Adv
hibe-ano-cpa[2,2]

GS-HIBE ,A
(k) ≥ 1 − 2−k. A similar attack can be mounted on the mGS -HIBE scheme by

checking whether e(C1,H1,2(id2)) = e(P,C2).

In Appendix A.3, we show that the recently introduced HIBE scheme by Boneh et al. [7] is not
level-2 anonymous either (and actually, not anonymous at any level). Subsequent to our work, Boyen
and Waters [11] proposed a fully anonymous HIBE scheme that, when used to instantiate our generic
construction, immediately yields an IBEKS scheme with security and consistency in the standard
model.

7.4 Identity-based encryption with temporary keyword search

The ideas of Sections 6 and 7 can be further combined to create an identity-based encryption scheme
with temporary keyword search. This can be constructed from a level-2 anonymous HIBE scheme by
putting the users’ identities at the first level of the hierarchy, the keywords at the second, and a binary
tree of time frames on the levels below.
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Setup(1k)

(G1, G2, p, e)
$

← G(1k)

P,Q
$

← G
∗
1 ; α

$

← Zp ; P1 ← αP ; Q1 ← αQ

U [0 . . . n]
$

← G
n+1
1 ; E ← e(P,Q)

pk ← (G1, G2, p, e, P, P1,U , E) ; msk ← (pk , Q1)
return (pk ,msk)

KeyDer(msk , id)
parse msk as ((G1, G2, p, e, P, P1,U , E), Q1)

r
$

← Zp ; V ← U [0] +
∑n

i=1 id [i]U [i]
usk [id ]← (Q1 + rV, rP )
return usk [id ]

Enc(pk , id ,M )
parse pk as (G1, G2, p, e, P, P1,U , E)
V ← U [0] +

∑n
i=1 id [i]U [i]

t
$

← Zp ; T ← Et

C ← (T ·M , tP, tV )
return C

Dec(usk [id ],C )
parse usk [id ] as (S1, S2), C as (C1,C2,C3)
T ′ ← e(S1,C2) · e(S2,C3)

−1

return T ′−1 · C1

Figure 7: The algorithms constituting W -IBE . Identities are represented as bit strings id =
id [1, . . . , n] ∈ {0, 1}n.

[26] Brent R. Waters, Dirk Balfanz, Glenn Durfee, and Diana K. Smetters. Building an encrypted and
searchable audit log. In ISOC Network and Distributed System Security Symposium – NDSS 2004,
San Diego, California, USA, February 4–6, 2004. The Internet Society. (Cited on page 2, 5.)

A Attacks against the anonymity of existing schemes

A.1 Waters’ IBE scheme

We recall Waters’ IBE scheme [25] W -IBE = (Setup,KeyDer,Enc,Dec) in Figure 7. Associated with
W -IBE is a polynomial n. It is assumed that all user identities are n(k)-bit (e.g. 160-bit) strings (for
instance obtained by hashing the actual identity using a collision-resistant hash function), which are
written as id = id [1]id [2] . . . id [n], where each id [i] (1 ≤ i ≤ n) is a bit id [i] ∈ {0, 1}. (We drop the
argument k to n when k is understood.) The message space is defined by MsgSp(k) = {0, 1}k , and
messages are encoded as elements of G2 in the scheme.

We now describe a PTA A against the IBE-ANO-CPA-security of W -IBE . In the find stage it
gets input a public key (G1, G2, p, e, P, P1,U , E), and returns any two distinct n-bit strings id0, id1

as challenge identities, along with any k-bit challenge message. In the guess phase, given a challenge
ciphertext C = (C1,C2,C3) formed by encrypting M under idb, where b ∈ {0, 1} is the challenge bit,
it computes V ′ ← U [0] +

∑n
i=1 id1[i]U [i]. If e(P,C3) = e(C2, V

′) then it returns 1 else it returns 0.

It is easy to see that Advibe-ano-cpa
W -IBE ,A

(k) ≥ 1− 2−k.

A.2 Boneh-Boyen’s IBE scheme

The IBE scheme by Boneh and Boyen [6], here referred to as BB-IBE , is depicted in Figure 8. An
identity is represented by a vector of n(k) symbols id [1 . . . n] ∈ Σn where Σ is an alphabet of size s.
In the original scheme, these are obtained as the output of an admissible hash function, but we ignore
this here as it is irrelevant to the attack.

Consider a PTAA that, on input pk = (G1, G2, p, e, P, P1, Q,U), outputs any two distinct identities
id0, id1 ∈ Σn, and any message M ∈ {0, 1}k . Let i ∈ {1, . . . , n} be an index so that id0[i] 6= id1[i].
When A is given the challenge ciphertext C = (C1, . . . ,Cn+2), it checks whether e(C2,U [i, id0[i]]) =

e(P,Ci+2). If so, thenA returns 0, else it returns 1. It is easily verified that Advibe-ano-cpa
BB-IBE ,A (k) ≥ 1−2−k.

32



Setup(1k)

(G1, G2, p, e)
$

← G(1k)

P,Q
$

← G
∗
1 ; α

$

← Zp ; P1 ← αP ; Q1 ← αQ

U [1 . . . n, 1 . . . s])
$

← G
n×s
1

pk ← (G1, G2, p, e, P, P1, Q,U) ; msk ← (pk , Q1)
return (pk ,msk )

KeyDer(msk , id)
parse msk as ((G1, G2, p, e, P, P1,U , Q), Q1)

r1, . . . , rn
$

← Zp ; V ←
∑n

i=1 riU [i, id [i]]
usk [id ]← (Q1 + V, r1P, . . . , rnP )
return usk [id ]

Enc(pk , id ,M )
parse pk as (G1, G2, p, e, P, P1,U , Q)

t
$

← Zp ; T ← e(P1, Q)t

C ← (T ·M , tP, tU [1, id [1]], . . . , tU [n, id [n]])
return C

Dec(usk [id ],C )
parse usk [id ] as (S1, S2, . . . , Sn+1)
parse C as (C1, . . . ,Cn+2)
T ′ ← e(S1,C2) ·

∏n
i=1 e(Si+1,Ci+2)

−1

return T ′−1 · C1

Figure 8: The algorithms constituting BB-IBE . Identities are represented as vectors of symbols
id = id [1, . . . , n] ∈ Σn, where |Σ| = s.

A.3 Boneh-Boyen-Goh’s HIBE scheme

The recently proposed BBG -HIBE scheme [7], depicted in Figure 9, is not anonymous at any single
level, and therefore not at any set of multiple levels either. This can be seen from the following adver-
sary A that breaks the anonymity at level l. On input pk = (G1, G2, p, e, P, P1, Q,Q2,U), adversary
A outputs challenge identities (id1, . . . , id l−1, id l) and (id1, . . . , id l−1, id

′
l) for any id1, . . . , id l, id

′
l ∈ Zp

such that id l 6= id ′
l, and any challenge message M ∈ {0, 1}k . When given the challenge ciphertext

C = (C1,C2,C3), A checks whether e(C2, id1U [1] + . . . + id lU [l] + Q2) = e(P,C3). If this is the case,

then A returns 0, otherwise it returns 1. It is easily verified that Adv
hibe-ano-cpa[l,d]

BBG-HIBE ,A
(k) ≥ 1− 2−k.

B Proof of Lemma 5.3

Suppose that there is an adversary A of mGS -HIBE that breaks its HIBE-IND-CPA[d] security. We
will show how to use A in the construction of a simulator B that solves the bilinear Diffie-Hellman
problem. Let n1,i be the number of queries that A makes to the H1,i oracle, let n2 be the number
of queries to the H2 oracle, let ne be the number of queries to the key extraction oracle, and let

nh =
∑d(k)

i−1 n1,i + n2 be the total number of hash queries.

The simulator is given as input (P, aP, bP, cP ). It sets Q0 ← bP as the public key and then runs
A(find, pk). The simulator responds to A’s queries as described below. To maintain consistency
between queries it keeps lists L1,1, . . . , L1,d(k), L2 and L3. All lists are initially empty. At the very

beginning the simulator chooses n∗
1,i

$

← {1, . . . , n1,i} and s∗i , x
∗
i

$

← Z
∗
p, and it computes Q∗

i ← s∗i (bP )
for 1 ≤ i ≤ d(k).

For the description of the simulation we distinguish between H1,1 queries and H1,i queries for i ≥ 2.
Without loss of generality, we assume that before querying the KeyDer oracle to obtain the secret
key of id = (id1, . . . , id l), adversary A first queried H1,i(id i) for all 1 ≤ i ≤ l.

H1,1 Queries: To respond to a query id1, proceed as follows.

• If L1,1 contains (id1, P1, ∗) for some P1, respond with P1.

• If this is the n∗
1,1-th call to the H1,1 oracle, let id∗

1 ← id1, add (id∗
1, aP,⊥) to L1,1 and

respond with aP .
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Setup(1k)

(G1, G2, p, e)
$

← G(1k)

P
$

← G1 ; α
$

← Zp ; P1 ← αP

Q,Q2
$

← G1 ; Q1 ← αQ

U [1 . . . d(k)])
$

← G
d(k)
1

pk ← (G1, G2, p, e, P, P1, Q,Q2,U)
msk ← (pk , Q1, 0, . . . , 0)
return (pk ,msk )

KeyDer(usk , id)
l← |id | ; parse usk as (pk , A,B, Sl, . . . , Sd(k))

parse pk as (G1, G2, p, e, P, P1, Q,Q2,U)

parse id as (id1, . . . , id l) ; r
$

← Zp

A′ ← A + id lSl + r(id1U [1] + . . . + id lU [l] + Q2)
B′ ← B + rP
for l + 1 ≤ i ≤ d(k) do S′

i ← Si + rU [i]
return (pk , A′, B′, S′

l+1, . . . , S
′
d(k))

Enc(pk , id ,M )
parse pk as (G1, G2, p, e, P, P1, Q,Q2,U)
parse id as (id1, . . . , id l)

t
$

← Zp ; T ← e(P1, Q)t

C3 ← t(id1U [1] + . . . + id lU [l] + Q2)
C ← (T ·M , tP,C3)
return C

Dec(usk ,C )
parse usk as (pk , A,B, Sl, . . . , Sd(k))

parse pk as (G1, G2, p, e, P, P1, Q,Q2,U)
parse C as (C1,C2,C3)
T ′ ← e(A,C2) · e(B,C3)

−1

return T ′−1 · C1

Figure 9: The algorithms constituting BBG -HIBE with maximum hierarchy depth d(k). An identity
at level l is represented as a vector id = (id1, . . . , id l) ∈ Zl

p.

• Else, randomly choose an integer x1
$

← Z
∗
p, add (id1, x1P, x1) to L1,1 and reply with x1P .

H1,i Queries, i ≥ 2: To respond to a query id i, proceed as follows.

• If L1,i contains (id i, Pi, ∗) for some Pi then respond with Pi.

• If this is the n∗
1,i-th query to the H1,i oracle, let id∗

i ← id i, add (id∗
i , x

∗
i P, x∗

i ) to L1,i and
respond with x∗

i P .

• Else, choose an integer xi
$

← Z
∗
p and compute Pi ← xiP − s∗i−1

−1(aP +
∑i−1

j=2 s∗j−1x
∗
jP ). If

Pi = 0, then abort; else, add (id i, Pi, xi) to L1,i and reply with Pi.

H2 Queries: To respond to a query κ, proceed as follows.

• If (κ,K) ∈ L2 for some K, respond with K.

• Else, choose K uniformly at random from {0, 1}n, respond with K and add (κ,K) to L2.

KeyDer Queries: To respond to a query id = (id1, . . . , id l), proceed as follows.

• If (id1, . . . , id l) = (id∗
1, . . . , id

∗
l ), then B aborts.

• Let j be the largest integer 1 ≤ j ≤ l so that (id |j, Sj , Q1, . . . , Qj−1, sj) ∈ L3, or let j = 0
if such element does not exist.

• For i = j + 1, . . . , l, do the following:

– Find (id i, Pi, xi) ∈ L1,i.

– If i = 1 and id1 = id∗
1, then add (id∗

1,⊥,⊥) to L3. If i = 1 and id1 6= id∗
1, then compute

S1 ← xi(bP ), choose s1
$

← Z
∗
p, and add (id1, S1, s1) to L3.

– If i > 1 and Si−1 6= ⊥, then look up (id i, Pi, xi) in L1,i, compute Si ← Si−1 + si−1Pi,

Qi−1 ← si−1P , choose si
$

← Z
∗
p, and add (id |i, Si, Q1, . . . , Qi−1, si) to L3.
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– If i > 1 and Si−1 = ⊥ and id i = id∗
i , then compute Qi−1 ← s∗i−1(bP ) and add

(id |i,⊥, Q1, . . . , Qi−1,⊥) to L3.

– If i > 1, Si−1 = ⊥ and id i 6= id∗
i , then look up (id i, Pi, xi) in L1,i, compute Si ←

s∗i−1xiP , let Qi−1 ← s∗i−1(bP ), choose si
$

← Z
∗
p, and add (id |i, Si, Q

∗
1, . . . , Q

∗
i−1, si) to

L3.

• Find (id , Sl, Q1, . . . , Ql−1, sl) ∈ L3 and return (id , Sl, Q1, . . . , Ql−1, sl).

At some point A outputs (id = (id1, id2, . . . , id l),M0,M1, state). Without loss of generality, we assume
that the adversary submitted id i to the H1,i oracle before for all 1 ≤ i ≤ l. If id 6= (id∗

1, . . . , id
∗
l ), then

B aborts. Otherwise, he sets C ∗
1 ← cP , C ∗

2 ← x∗
2(cP ), . . . , Cl ← x∗

l (cP ), he chooses C ∗
l+1 uniformly at

random from {0, 1}n, and lets C ∗ ← (C ∗
1 ,C ∗

2 , . . . ,C ∗
l+1). He then proceeds to run A(guess,C ∗, state).

Once A completes its attack by outputting its guess b′, the simulator chooses a random element (κ,K)
from L2 and outputs κ as its solution to the bilinear Diffie-Hellman problem.

We first show that our simulator B provides a real attack environment for A as long as B doesn’t
abort. The public key pk given to A is correctly distributed because the challenge elements aP, bP, cP
are random elements from G

∗
1. The responses to H1,i queries are uniformly distributed over G

∗
1 due

to the independent random choices of xi (when simulating queries H1,i(id i), id i 6= id∗
i , 1 ≤ i ≤ d(k)),

of x∗
i (which is used to simulate H1,i(id

∗
i ) queries, 2 ≤ i ≤ d(k)) and due to the uniform distribution

of aP (which is used to simulate H1,1(id
∗
1)). Responses to H2 queries are easily seen to be correctly

distributed. The way KeyDer queries are handled requires a bit more explanation. For all level-
1 identities id1 6= id∗

1, the returned secret key (S1, s1) contains the unique group element S1 such
that e(Q0,H1,1(id1)) = e(S1, P ) and a uniformly distributed scalar s1, as in the real game. For all
descendants of id1 6= id∗

1, the secret keys are derived from (S1, s1) exactly as in the real scheme.
Now consider identity (id∗

1, . . . , id
∗
i−1, id i) with id i 6= id∗

i , for which a tuple (Si, Q1, . . . , Qi−1, si) is
returned as the secret key. The values Q1, . . . , Qi−2 are inherited from the ancestors, as in the real
scheme; Qi−1 is a random group element due to the random choice of s∗i−1; and si is a random
element in Z

∗
p. The simulated value Si = s∗i−1xi(bP ) is then the unique group element such that

e(H1,1(id
∗
1), Q0) = e(Si, P )·

∏i−1
j=2 e(H1,j(id

∗
j ), Qj−1)

−1 ·e(H1,i(id i), Qi−1)
−1, as required by the scheme.

This can be seen from:

e(H1,1(id
∗
1), Q0) ·

i−1∏

j=2

e(H1,j(id
∗
j ), Qj−1) · e(H1,i(id i), Qi−1)

= e(aP, bP ) ·
i−1∏

j=2

e(x∗
jP, s∗j−1bP ) · e

(
xiP − s∗i−1

−1(aP +
∑i−1

j=2 s∗j−1x
∗
jP ), s∗i−1bP

)

= e(aP, bP ) · e
(∑i−1

j=2s
∗
j−1x

∗
jP, bP

)
· e

(
s∗i−1xiP − aP −

∑i−1
j=2 s∗j−1x

∗
jP, bP

)

= e(S3, P ) .

The secret keys of descendants of these nodes are derived from (Si, Q1, . . . , Qi−1, si) as dictated by
the scheme, and hence are correctly distributed as well.

The only part of A’s environment left to analyze is the challenge ciphertext C ∗ = (C ∗
1 , . . . ,C ∗

l+1).
The first component C ∗

1 = cP is uniformly distributed over G
∗
1, and the second to l-th components are

the unique group elements such that e(C ∗
i , P ) = e(C ∗

1 ,H1,i(id
∗
i )) for 2 ≤ i ≤ l. The last component

C ∗
l+1 however may deviate from the distribution in a real game, depending on A’s H2 queries. In

the following, we show that this does not harm our analysis, intuitively because the only way A can
distinguish between the real and the simulated game is by making an H2 query that helps B solve the
BDH problem.
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Let s0 be the master secret key of the scheme in a real HIBE-IND-CPA[d] attack on mGS -HIBE ,
and let D ← e(s0H1,1(id1), C ∗

1 ). Let Ask be the event that A queries the H2 oracle on point D. Let
Pr R [ · ] denote the probability of an event taking place in a real attack on mGS -HIBE , and let Pr B [ · ]
denote the probability in the environment simulated by B. We argue that Pr R [Ask ] = Pr B [Ask ],
as long as B doesn’t abort. Let Aski be the event that A queries H2(D) within the first i queries to
H2. Obviously, Pr R [Ask0 ] = Pr B [Ask0 ] = 0. Now assume that Pr R [Aski−1 ] = Pr B [Aski−1 ].
We have that

Pr R [Aski ] = Pr R [ Aski | Aski−1 ] · Pr R [Aski−1 ]

+ Pr R [ Aski | ¬Aski−1 ] · Pr R [¬Aski−1 ]

= Pr R [Aski−1 ] + Pr R [ Aski | ¬Aski−1 ] · Pr R [¬Aski−1 ] .

We know that Pr R [Aski−1 ] = Pr B [Aski−1 ], so we only have to show that Pr R [ Aski | ¬Aski−1 ] =
Pr B [ Aski | ¬Aski−1 ]. Given that ¬Aski−1 and that B’s simulation didn’t abort, the simulated pub-
lic key, the oracle responses and the first l components of the ciphertext provided by B are distributed
exactly as in a real attack, as we explained before. Moreover, since A did not query for H2(D) yet, from
A’s point of view the last ciphertext component C ∗

l+1 is a random string in {0, 1}n, both in the real
attack and in the simulated environment. Since all the information on which A can base its decision
for its next H2 query is identically distributed in both environments, the probability that A chooses
to query D is the same in both environments as well. Hence, we have that Pr R [Aski ] = Pr B [Aski ],
and by induction that Pr R [Ask ] = Pr B [Ask ].

The probability that A wins a real attack against mGS -HIBE can be written as

Pr R [A wins ] = Pr R [A wins ∧Ask ] + Pr R [A wins ∧ ¬Ask ]

= Pr R [A wins ∧Ask ] +
1

2

≤ Pr R [Ask ] +
1

2
,

where the second equation is true because in the event ¬Ask, the distribution of the challenge cipher-
text is completely independent of M0,M1, and hence the probability that A guesses correctly is 1/2.
Since Pr R [Ask ] = Pr B [Ask ] and moreover

Pr R [A wins ] =
1

2
·Adv

hibe-ind-cpa[d]

mGS-HIBE ,A
(k) +

1

2
,

it follows that

Pr B [Ask ] ≥
1

2
·Adv

hibe-ind-cpa[d]

mGS-HIBE ,A
(k) .

Now we only have to relate B’s advantage in solving the BDH problem to Pr B [Ask ]. In the game
simulated by B, the probability that B guesses the correct identities such that id = (id∗

1, . . . , id
∗
l )

1/
∏l

i=1 n1,i ≥ n
−d(k)
h ; the probability that B guesses the correct H2 query is 1/n2 ≥ n−1

h ; and the

probability that B aborts when answering H1,i queries is
∑d(k)

i=1 n1,i/(p − 1) ≤ nh/2k. The advantage
of B in solving the BDH problem is

Advbdh
G,B (k) ≥

1

n
d(k)+1
h

·
(

1−
nh

2k

)

· Pr B [Ask ]

and hence
Adv

hibe-ind-cpa[d]

mGS-HIBE ,A
(k) ≤ 2 · n

d(k)+1
h ·Advbdh

G,B (k) +
nh

2k
,

from which the theorem follows.
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