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Abstract. In this paper we introduce a new primitive called identity-based encryption with wildcards, or
WIBE for short. It allows a sender to encrypt messages to a whole range of receivers whose identities match
a certain pattern. This pattern is defined through a sequence of fixed strings and wildcards, where any
string can take the place of a wildcard in a matching identity. Our primitive can be applied to provide an
intuitive way to send encrypted email to groups of users in a corporate hierarchy. We propose a full security
notion and give efficient implementations meeting this notion under different pairing-related assumptions,
both in the random oracle model and in the standard model.

1 Introduction

The concept of identity-based cryptography was introduced by Shamir as early as in 1984 [Sha85], and the
same paper proposed an identity-based signature scheme. However, it took nearly twenty years for an efficient
identity-based encryption (IBE) scheme to be proposed. In 2000 and 2001 respectively Sakai, Ohgishi and
Kasahara [SOK00] and Boneh and Franklin [BF03] proposed IBE schemes based on elliptic curve pairings. Also,
in 2001 Cocks proposed a system based on the quadratic residuosity problem [Coc01].

One of the main application areas proposed for IBE is that of email encryption. In this scenario, given
an email address, one can encrypt a message to the owner of the email address without needing to obtain an
authentic copy of the owner’s public key first. In order to decrypt the email the recipient must authenticate
itself to a trusted authority who generates a private key corresponding to the email address used to encrypt the
message.

1.1 Identity-Based Encryption with Wildcards

Our work is motivated by the fact that many email addresses correspond to groups of users rather than single
individuals. Consider the scenario where there is some kind of organisational hierarchy. Take as an example
an organisation called ECRYPT which is divided into virtual labs, say AZTEC and STVL. In addition, these
virtual labs are further subdivided into working groups WG1, WG2 and WG3. Finally, each working group may
consist of many individual members. There are several extensions of the IBE primitive to such a hierarchical
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setting (HIBE) [HL02,GS02]. The idea is that each level can issue keys to users on the level below. For example
the owner of the ECRYPT key can issue decryption keys for ECRYPT.AZTEC and ECRYPT.STVL.

Suppose that we wish to send an email to all the members of the AZTEC.WG1 working group, which includes
the personal addresses

– ECRYPT.AZTEC.WG1.Nigel,
– ECRYPT.AZTEC.WG1.Dario,
– ECRYPT.AZTEC.WG1.John.

Given a standard HIBE one would have to encrypt the message to each user individually. To address this
limitation we introduce the concept of identity-based encryption with wildcards (WIBE). The way in which
decryption keys are issued is exactly as in a standard HIBE scheme; what differs is encryption. Our primitive
allows the encrypter to replace any component of the recipient identity with a wildcard so that any identity
matching the pattern can decrypt. Denoting wildcards by *, in the example above the encrypter would use the
identity

– ECRYPT.AZTEC.WG1.*

to encrypt to all members of the AZTEC.WG1 group.
It is often suggested that identity strings should be appended with the date so as to add timeliness to the

message, and so try to mitigate the problems associated with key revocation. Using our technique we can now
encrypt to a group of users, with a particular date, by encrypting to an identity of the form

– ECRYPT.AZTEC.WG1.*.22Oct2006

for example. Thus any individual in the group

– ECRYPT.AZTEC.WG1

with a decryption key for 22nd October 2006 will be able to decrypt.
As another example, take a hierarchy of email addresses at academic institutions of the form

– name@department.university.edu,

i.e., the email address of John Smith working at the computer science department of Some State University would
be johnsmith@cs.ssu.edu. Using our primitive, one can send encrypted email to everyone in the computer
science department at Some State University by encrypting to identity *@cs.ssu.edu, to everyone at SSU by
encrypting to *@*.ssu.edu, to all computer scientists at any institution by encrypting to *@cs.*.edu, or to all
system administrators in the university by encrypting to sysadmin@*.ssu.edu.

1.2 Our Contributions

In this paper, we introduce the primitive of identity-based encryption with wildcards, or a WIBE for short.
We define appropriate security notions under chosen-plaintext and chosen-ciphertext attack, and present the
first instantiations of this primitive. In more detail, we present the syntax and security notions in Section 3.
To illustrate the relationship between WIBEs and other identity-based primitives, we show how WIBE schemes
can be built from HIBE schemes and from fuzzy identity-based encryption schemes.

As is the case for most public-key and identity-based encryption schemes, the non-hybrid WIBE schemes
can only be used to encrypt relatively short messages, typically about 160 bits. To encrypt longer messages, one
will have to resort to hybrid techniques: the sender uses the WIBE to encrypt a fresh symmetric key K and
encrypts the actual message under the key K. The basic construction has been used within the cryptographic
community for years, dating back to the work of Blum and Goldwasser in 1984 [BG85], but its security for
the case of public-key encryption was not properly analysed until the work of Cramer and Shoup [CS03]. One
would intuitively expect these results to extend to the case of WIBEs, which is indeed the case. We present the
syntax for a WIB-KEM in Section 4, along with the composition theorem which proves that the combination
of a secure WIB-KEM and a secure DEM results in a secure WIBE scheme.

We also give several constructions for a WIBE scheme, classified according to their security guarantees. We
first present the Boneh-Boyen WIBE (BB-WIBE – see Section 5.1) and the Boneh-Boyen-Goh WIBE (BBG-
WIBE – see Section 5.2). These schemes are IND-CPA secure in the selective identity model and do not require
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random oracles to be proven secure, although we do require random oracles in order to prove their security in the
full (non-selective-identity) model (see Section 5.4). We also present the Waters WIBE scheme (see Section 5.3)
which is secure in the non-selective-identity IND-CPA setting without random oracles.

The range of IND-CPA WIBE schemes available makes selection difficult. The Waters WIBE scheme has the
best security guarantees, but the worst performance. In particular, the number of elements in the master public
key depends upon the maximum length of an identity, which is typically of the order of 160 bits. Hence, even
with a small number of levels, the size of the master public key can be prohibitive. Both the BB-WIBE scheme
and the BBG-WIBE scheme have better performance characteristics, but their security (in the non-selective-
identity model) depends on random oracles. Furthermore, the BBG-WIBE scheme reduces to the less-studied
L-BDHI assumption, but has the best performance characteristics.

The construction of IND-CCA secure WIBE schemes is more difficult. We present two generic transformations
from an IND-CPA scheme into an IND-CCA scheme. The first transformation is based on the Canetti-Halevi-
Katz transform (see Section 6.1) which builds an L-level IND-WID-CCA secure WIBE from an (L + 1)-level
IND-WID-CPA WIBE. The disadvantage of our construction compared to the original CHK transform is that
our construction always encrypts messages under patterns of length L + 1. This often increases the space and
time complexity of the scheme in practical situations (as the worst performance characteristic are often obtained
for “full-length” patterns). The approach we present in this paper is different from the approach given in the
ePrint version of [ACD+06], which requires using 2L+ 2 levels as opposed to L+ 1. We thank the anonymous
referee for helping guide us to this improvement.

Our second transform is based on Dent’s construction of a KEM (see Section 6.2). This converts a weakly
secure (one-way) WIBE scheme into an IND-CCA secure WIB-KEM, but requires the random oracle model in
order to prove its security. We note that one-way security is implied by IND-CPA security (for sufficiently large
messages spaces). Consequently, we can use any of the IND-CPA constructions given in Section 5 to build an
IND-CCA secure scheme.

In [BDNS07] we also presented a WIB-KEM in the standard model based on the Kiltz-Galindo HIB-KEM
from [KG09]. Due to our improved CPA to CCA transform described above this is no longer as efficient as the
transformed Waters WIBE, hence we do not consider the Kiltz-Galindo WIB-KEM in this paper.

An overview of all the schemes we present is given in Table 1 and Table 2.

Scheme |mpk | |d | |C| Decrypt Assumption RO

Generic |mpkHIBE | 2L · |dHIBE | |CHIBE | DecryptHIBE IND-HID-CPA HIBE No

BB-WIBE 2L+ 3 L+ 1 2L+ 2 L+ 1 BDDH Yes

BBG-WIBE L+ 4 L+ 2 L+ 3 2 L-BDHI Yes

Waters-WIBE (n+ 1)L+ 3 L+ 1 (n+ 1)L+ 2 L+ 1 BDDH No

Table 1. Efficiency comparison between our CPA-secure schemes. We compare the generic scheme of Section 3.3, the
Waters-WIBE scheme of Section 5.3, the BB-WIBE scheme of Section 5.1, the BBG-WIBE scheme of Section 5.2, and
the Waters-WIBE scheme of Section 5.3. The schemes are compared in terms of master number of elements in the public
key (|mpk |), number of elements in the user secret key (|d |), number of element in the ciphertext (|C|), number of
pairing operations required for decryption (Decrypt), the security assumption under which the scheme is proved secure,
and whether this proof is in the random oracle model or not. The generic construction does not introduce any random
oracles, but if the security proof of the HIBE scheme is in the random oracle model, then the WIBE obviously inherits
this property. L is the maximal hierarchy depth and n is the bit length of an identity string. Figures are worst-case
values, usually occurring for identities at level L with all-wildcard ciphertexts.

2 A Recap on Various Primitives

In this section, we recall basic notation and known results on different primitives that we will be using throughout
this paper. In particular, we will recall several constructions of Hierarchical Identity-Based Encryption schemes
(HIBEs) upon which out Wildcarded Identity-Based Encryption schemes (WIBEs) are based.
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Scheme |mpk | |d | |C| Encap Decap Security loss

OML(BB-WIBE) 2L+ 5 L+ 1 2L+ 3 2L+ 4 L+ 2 qL+1
H

OW (BB-WIBE) 2L+ 3 L+ 1 2L+ 2 2L+ 2 L+ 1 qLH
OML(BBG-WIBE) L+ 4 L+ 1 L+ 3 L+ 3 2 qL+1

H

OW (BBG-WIBE) L+ 4 L+ 1 L+ 3 L+ 3 2 qLH
OML(Waters) (n+ 1)(L+ 1) + 3 L+ 1 (n+ 1)L+ 3 (n+ 1)L+ 3 L+ 2 (2nqK)L+1

Table 2. Efficiency comparison between our CCA-secure schemes. The BB-WIBE scheme is the IND-WID-CPA scheme
given in 5.1; the BBG-WIBE scheme is the IND-WID-CPA scheme given in 5.2; the Waters scheme is the IND-WID-
CPA scheme given in 5.3. The OML(·) transformation refers to the (one more level) generic CCA-secure construction
of a CCA-secure WIBE from a CPA-secure WIBE presented in Section 6.1. The OW (·) transformation is our random-
oracle based construction of a WIB-KEM scheme from a CPA-secure WIBE presented in Section 6.2. We compare the
schemes in terms of number of elements in the master public key (|mpk |), number of elements in the user secret key (|d|),
number of elements in the ciphertext (|C|), number of exponentiations required for key encapsulation (Encap), number of
pairings required for key decapsulation (Decap), and the dominant factor lost in the security reduction to the underlying
assumption. L is the maximal hierarchy depth and n is the bit length of an identity string. The values qH and qK refer
to the number of queries made by an adversary to the random oracle and key derivation oracle, respectively.

2.1 Basic Notation

Let N = {0, 1, 2, . . .} be the set of natural numbers. Let ε be the empty string. If n ∈ N, then {0, 1}n denotes
the set of n-bit strings and {0, 1}∗ is the set of all finite bit strings. If s = (s1, . . . , sn) is an ordered sequence of
n elements of some set and 0 ≤ ` ≤ n, then s≤` is the ordered sequence consisting of the first ` elements of s,
i.e. s≤` = (s1, . . . , s`). Furthermore, if ID is an n-bit string, then we set

[ID i] = {1 ≤ j ≤ n : the jth bit of ID i is one} .

If S is a finite set, then y
$← S denotes the assignment to y of a randomly chosen element of the set S. If

A is a deterministic algorithm, then y ← A(x) denotes the assignment to y of the output A when run on the

input x. If A is a randomised algorithm, then y
$← A(x) denotes the assignment to y of the output of A on the

input x when the algorithm is run with fresh random coins.

2.2 Hash Functions

A hash function is a family of maps Fk : IP → OP index by a keyspace K in which the output space OP is
finite. The input space IP may be finite or infinite. Additionally, the key space may be empty or non-empty.
There are many security properties that can be ascribed to a hash function. We will only need to consider one
security property at this time (although we will introduce further security notions in later sections and may
model these hash functions as random oracles).

Definition 1. A (t, ε)-adversary A against the second pre-image resistance property of a family of hash func-
tions Fk : IP → OP with a finite input space IP is an algorithm that runs in time at most t and has advantage
at least ε, where the adversary’s advantage is defined to be:

Pr[x 6= y ∧ Fk(x) = Fk(y) : x
$← IP; k

$← K; y
$← A(k, x)] .

2.3 One-Time Signature Schemes

In order to amplify the security of a HIBE/WIBE (from IND-CPA security to IND-CCA security) we will make
use of a one-time signature scheme. A one-time signature scheme is a triple of algorithms (SigGen,Sign,Verify).
The key generation algorithm SigGen outputs signing and verification keys (sk , vk) for the signature scheme.
The signing algorithm takes as input a signing key sk and a message m ∈ {0, 1}∗, and outputs a signature
σ ∈ {0, 1}∗. The verification algorithm takes as input a verification key vk , a message m ∈ {0, 1}∗ and a
signature σ ∈ {0, 1}∗, and outputs either > (indicating a valid signature) or ⊥ (indicating an invalid signature).
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For correctness, we require that for all key pairs (sk , vk), messages m ∈ {0, 1}∗, and signatures σ
$← Sign(sk ,m),

we have that Verify(vk ,m, σ) = > with probability one.
The security notion for a one-time unforgeable signature scheme is captured by the following game played

between an adversary A = (A1,A2) and a hypothetical challenger:

1. The challenger generates a key pair (sk∗, vk∗)
$← SigGen.

2. The adversary runs A1 on input vk∗. The adversary outputs a message m∗ and some state information
state.

3. The challenger computes σ∗
$← Sign(sk∗,m∗).

4. The adversary runs A2 on σ∗ and state. The adversary outputs a message signature pair (m,σ).

The adversary wins the game if Verify(vk∗,m, σ) = > and (m,σ) 6= (m∗, σ∗). The adversary’s advantage is
defined to be Pr [A wins ].

Definition 2. A (t, ε)-adversary against the one-time unforgeability of the signature scheme is an algorithm
that runs in time t and has advantage at least ε in winning the above game.

2.4 Bilinear Maps and Related Assumptions

Let G,GT be multiplicative groups of prime order p with an admissible map ê : G × G → GT . By admissible
we mean that the map is bilinear, non-degenerate and efficiently computable. Bilinearity means that for all
a, b ∈ Zp and all g ∈ G we have ê(ga, gb) = ê(g, g)ab. By non-degenerate we mean that ê(g, g) = 1 if and only if
g = 1.

In such a setting we can define a number of computational problems. The first we shall be interested in
is called the bilinear decisional Diffie-Hellman (BDDH) problem [Jou04]: given a tuple (g, ga, gb, gc, T ), the
problem is to decide whether T = ê(g, g)abc or whether it is a random element of GT . More formally, we define
the following game between an adversary A and a challenger. The challenger first chooses a random generator

g
$← G∗, random integers a, b, c

$← Zp, a random element T
$← GT , and a random bit β

$← {0, 1}. If β = 1 it
feeds A the tuple (g, ga, gb, gc, ê(g, g)abc) as input; if β = 0 it feeds A the tuple (g, ga, gb, gc, T ) as input. The
adversary A must then output its guess β′ for β. The adversary has advantage ε in solving the BDDH problem
if ∣∣∣Pr

[
A
(
g, ga, gb, gc, ê(g, g)abc

)
= 1

]
− Pr

[
A
(
g, ga, gb, gc, T

)
= 1

] ∣∣∣ ≥ ε,

where the probabilities are over the random choice of g, a, b, c, T and over the random coins of A.

Definition 3. A (t, ε)-adversary A against the BDDH problem is an algorithm that runs in time at most t and
has advantage at least ε.

We note that throughout this paper we will assume that the time t of an adversary includes its code size, in
order to exclude trivial “lookup” adversaries.

A second problem we will use in our constructions is the `-bilinear Diffie-Hellman Inversion (`-BDHI) prob-

lem [BB04,MSK02]. The problem is to compute ê(g, g)1/α for random g
$← G∗ and α

$← Zp given g, gα, . . . , g(α`).
The decisional variant of this problem is to distinguish ê(g, g)1/α from a random element of GT . We say that
adversary A has advantage ε in solving the decisional `-BDHI problem if∣∣∣Pr

[
A
(
g, gα, . . . , g(α`), ê(g, g)1/α

)
= 1

]
− Pr

[
A
(
g, gα, . . . , g(α`), T

)
= 1

] ∣∣∣ ≥ ε ,

where the probability is over the random choice of g
$← G∗, α $← Zp, T

$← GT , and the coins of A.

Definition 4. A (t, ε)-adversary against the decisional `-BDHI problem is an algorithm that runs in time at
most t and has advantage at least ε in the above game.

We note that the BDDH problem is a weaker assumption than the `-BDHI assumption. Hence, all other
things being equal schemes which are based on the BDDH assumption are to be preferred to ones based on the
`-BDHI assumption. However, our most efficient constructions are based on the `-BDHI assumption as opposed
to the BDDH assumption. As the two assumptions are very different in nature, it is hard to compare precisely
various schemes; indeed the comparison would depends on the readers view with respect to the intepretation of
exact security results and the view of the relative hardness of the two underlying problems.
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2.5 Hierarchical Identity-Based Encryption

An identity-based encryption (IBE) scheme is a tuple of algorithms (Setup,KeyDer,Encrypt,Decrypt) providing
the following functionality. The trusted authority runs Setup to generate a master key pair (mpk ,msk). It
publishes the master public key mpk and keeps the master secret key msk private. When a user with identity ID

wishes to become part of the system, the trusted authority generates a decryption key dID
$← KeyDer(msk , ID),

and sends this key over a secure and authenticated channel to the user. To send an encrypted message m to the

user with identity ID , the sender computes the ciphertext C
$← Encrypt(mpk , ID ,m), which can be decrypted

by the user as m← Decrypt(dID , C). We refer to [BF03] for details on the security definitions for IBE schemes.
In this paper, we are more interested in the concept of Hierarchical Identity-Based Encryption (HIBE)

[HL02,GS02]. In a HIBE scheme, users are organised in a tree of depth L, with the root being the master trusted
authority. The identity of a user at level 0 ≤ ` ≤ L in the tree is given by a vector ID = (ID1, . . . , ID`) ∈
({0, 1}∗)`. A HIBE scheme is a tuple of algorithms (Setup,KeyDer,Encrypt,Decrypt) providing the same func-
tionality as in an IBE scheme, except that a user ID = (ID1, . . . , ID`) at level ` can use its own secret key

dID to generate a secret key for any of its children ID ′ = (ID1, . . . , ID`, ID`+1) via dID′
$← KeyDer(dID , ID`+1).

Note that by iteratively applying the KeyDer algorithm, user ID can derive secret keys for any of its descendants
ID ′ = (ID1, . . . , ID`+δ), δ ≥ 0. We will occasionally use the overloaded notation

dID′
$← KeyDer(dID , (ID`+1, . . . , ID`+δ))

to denote this process. The secret key of the root identity at level 0 is dε ← msk . Encryption and decryption
are the same as for IBE, but with vectors of bit strings as identities instead of ordinary bit strings.

The security of a HIBE scheme is defined through the following IND-HID-CPA game, played between an
adversary A = (A1,A2) and a hypothetical challenger:

1. The challenger generates a master key pair (mpk ,msk)
$← Setup.

2. The adversary runs A1 on mpk . The adversary is given access to a key derivation oracle that, on input of an

identity ID = (ID1, . . . , ID`), returns the secret key dID
$← KeyDer(msk , ID) corresponding to that identity.

The adversary outputs two equal-length messages (m0,m1) and a challenge identity ID∗ = (ID∗1, . . . , ID∗`∗),
along with some state information state.

3. The challenger chooses a bit β
$← {0, 1} and computes the ciphertext C∗

$← Encrypt(mpk , ID∗,mβ).
4. The adversary runs A2 on the input C∗ and the state information state. The adversary is given access to a

key derivation oracle as before. The adversary outputs a bit β′.

In most cases, we will suppress the state information passed between adversary algorithms and simply assume
that all necessary details are passed from one algorithm to the next. The adversary wins the game if β = β′ and
it never queries the key derivation oracle with any ancestor identity of ID∗, i.e. any identity ID = (ID∗1, . . . , ID∗` )
where ` ≤ `∗. The adversary’s advantage is defined to be equal to |2 · Pr [A wins ]− 1|.

Definition 5. A (t, qK , ε)-adversary against the IND-HID-CPA security of a HIBE scheme is an algorithm that
runs in time at most t, makes at most qK queries to the key derivation oracle, and has advantage at least ε in
winning the IND-HID-CPA game described above.

The IND-HID-CCA security game is identical to the IND-HID-CPA security game with the exception that
in the IND-HID-CCA security game the adversary additionally has access to a decryption oracle that, on input
of a ciphertext C and an identity ID , returns the decryption m← Decrypt(KeyDer(msk , ID), C). The adversary
wins the game if β = β′, it never queries the key derivation oracle with any ancestor identity of ID∗, and it
never queries the decryption oracle with the pair (C∗, ID∗) after the challenge ciphertext is computed.

Definition 6. A (t, qK , qD, ε)-adversary against the IND-HID-CCA security of the HIBE scheme is an algo-
rithm that runs in time at most t, makes at most qK queries to the key derivation oracle, makes at most qD
queries to the decryption oracle, and has advantage at least ε in winning the IND-HID-CCA game described
above.

In a selective-identity (sID) attack [BB04], the adversary has to output the challenge identity ID∗ at the
very beginning of the game, before even seeing the master public key. In other words, the adversary is considered
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to be a triple (A0,A1,A2), where A0 simply outputs the challenge identity (and some state information to be
passed to A1). The definitions for IND-HID-CPA and IND-HID-CCA security are otherwise identical to those
above. In the random oracle model [BR93], all algorithms, as well as the adversary, have access to a random
oracle mapping arbitrary bit strings onto a range that possibly depends on the master public key. All above
security definitions then take an extra parameter qH denoting the adversary’s maximum number of queries to
the random oracle.

We now recap on the main efficient HIBE constructions in the literature, namely the HIBE schemes of
Waters (W-HIBE), Boneh-Boyen (BB-HIBE), and Boneh-Boyen-Goh (BBG-HIBE).

2.6 The Boneh-Boyen HIBE

In this section, we present a variant of the HIBE scheme by Boneh and Boyen [BB04]. In this scheme, we assume
that identities are vectors of elements of Zp – if necessary this can be achieved by applying a collision-resistant
hash function h : {0, 1}∗ → Zp to binary identities before applying the scheme. The scheme is described in
Figure 1. The main difference between the original HIBE scheme of [BB04] and our variant above is that our
scheme uses a different value ui,1 for each level, while the original scheme uses the same value u1 for all levels.
Adding wildcard functionality to the original scheme would require us to include ur1 in the ciphertext, but this
ruins security as it can be used to change the identity for which a ciphertext is encrypted.

Algorithm Setup:

g1, g2
$← G ; α

$← Zp
h1 ← gα1 ; h2 ← gα2

ui,j
$← G for i = 1 . . . L, j = 0, 1

mpk ← (g1, g2, h1, u1,0, . . . , uL,1)
msk ← h2

Return (mpk ,msk)

Algorithm KeyDer(d(ID1,...,ID`), ID`+1):
Parse d(ID1,...,ID`) as (d0, . . . , d`)

r`+1
$← Zp

d ′0 ← d0 ·
(
u`+1,0 · u

ID`+1

`+1,1

)r`+1

d ′`+1 ← g
r`+1
1

Return (d ′0, d1, . . . , d`, d
′
`+1)

Algorithm Encrypt(mpk , ID ,m):
Parse ID as (ID1, . . . , ID`)

r
$← Zp ; C1 ← gr1

For i = 1, . . . , ` do

C2,i ←
(
ui,0 · uIDi

i,1

)r
C3 ← m · ê(h1, g2)r

Return (C1, C2,1, . . . , C2,`, C3)

Algorithm Decrypt(d(ID1,...,ID`), C):
Parse d(ID1,...,IDl) as (d0, . . . , d`)
Parse C as (C1, C2,1, . . . , C2,`, C3)

m′ ← C3 ·
∏`
i=1 ê(di,C2,i)

ê(C1,d0)

Return m′

Fig. 1. The Boneh-Boyen HIBE scheme.

For completeness, we prove the security of this new HIBE scheme, despite its similarities to scheme of Boneh
and Boyen [BB04].

Theorem 1. If there exists a (t, qK , ε)-adversary against the IND-sHID-CPA security of the BB-HIBE (with
hierarchy depth L) then there exists a (t′, ε′)-adversary against the BDDH problem in G, where ε′ ≥ ε − qK/p
and t′ ≤ t+O(L · qK · texp) and texp is the maximum time for an exponentiation in G and p is the order of G.

Proof. The present proof follows very closely the proof of security for the original scheme in [BB04]. As before,
we assume that there exist an adversary A = (A0,A1,A2) that breaks the IND-sID-CPA-security of the BB-
HIBE scheme and then we show how to efficiently build another adversary B that, using A as a subroutine,
manages to solve the BDDH problem in G.

Algorithm B first receives as input a random tuple (g,A = ga, B = gb, C = gc, Z) and its goal is to determine
whether Z = ê(g, g)abc or ê(g, g)z for a random element z in Zp. Algorithm B should output 1 if Z = ê(g, g)abc

and 0 otherwise. Algorithm B works as follows.
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Initialisation. Algorithm B starts by running algorithm A0, which responds with the challenge identity
ID∗ = (ID∗1, . . . , ID∗`∗) where 0 ≤ `∗ ≤ L. If `∗ = L then B sets ˜ID∗ ← ID∗. Otherwise, B randomly

generates ID∗`∗+1, . . . , ID∗L
$← Zp and sets ˜ID∗ ← (ID∗1, . . . , ID∗L).

Setup. To generate the systems parameters, B first sets g1 ← g, h1 ← A, and g2 ← B. Algorithm B then

chooses α1,0, . . . , αL,0, α1,1, . . . , αL,1
$← Z∗p at random and sets ui,0 ← g

αi,0
1 · h−ID

∗
iαi,1

1 and ui,1 ← h
αi,1
1 for

i = 1, . . . , L. B defines the master public key to be mpk ← (g1, h1, g2, u1,0, . . . , uL,0, u1,1, . . . , uL,1). Note
that the corresponding master secret key msk = ga2 is unknown to B.

Phase 1. B runs A1 on input mpk . If A1 makes a key derivation oracle query on ID = (ID1, . . . , ID`), where

ID i ∈ Zp and ` ≤ L then ID cannot be a prefix of ID∗. Hence, if ID is a prefix of ˜ID∗ then A aborts; we

let E be the event that this occurs. Otherwise, let j be the smallest index such that IDj 6= ˜ID
∗
j . To reply to

this query, B first computes the key for identity ID ′ = (ID1, . . . , IDj) and then derive the key for ID using

the key derivation algorithm. To derive the key for identity ID ′, B chooses the values r1, . . . , rj
$← Zp at

random and sets dID′ = (a0, a1, . . . , aj) where

a0 ← g2

−αj,0
αj,1(IDj−ID∗

j
) ·

j∏
i=1

(
ui,0 · uIDi

i,1

)ri
ai ← gri1 for i = 1, . . . , j − 1

aj ← g2

−1
αj,1(IDj−ID∗

j
) · grj1

Algorithm A1 terminates and outputs two equal-length messages (m0,m1).

Challenge. Algorithm B then chooses a random bit β
$← {0, 1} and sends C∗ = (C,Cα1,0 , . . . , Cα`∗,0 ,mβ · Z)

to A as the challenge ciphertext. Since ui,0 · u
ID∗i
i,1 = g

αi,0
1 for all i, we have that

C∗ = (gc1, (u1,0 · u
ID∗i
1,1 )c, . . . , (u`∗,0 · u

ID∗`∗
`∗,1 )c,mβ · Z).

As a result, when Z = ê(g, g)abc = ê(h1, g2)c, C∗ is a valid encryption of message mβ for the challenge

identity ID∗ = (ID∗1, . . . , ID∗`∗). On the other hand, when Z = ê(g, g)z for a random value z
$← Zp, then the

challenge ciphertext is independent of β from the view point of the adversary.

Phase 2. B runs A2 on the challenge ciphertext C∗. If A2 makes any key derivation oracle queries, then they
are answered as in Phase 1. A2 terminates and outputs a bit β′.

Output. If β = β′ then B outputs 1, guessing that Z = ê(g, g)abc, otherwise B outputs 1.

Suppose E does not occur. Clearly, when Z = ê(g, g)abc, the view of A is identical to its view in a real attack
and, thus, the probability that b = b′ is exactly the probability that A wins the IND-sHID-CPA game. On the
other hand, when Z is a random group element in GT , then the probability that b = b′ is exactly 1/2. Hence,
if E does not occur then A wins with probability ε. If E does occur, then the simulator fails; however, for E to
occur then A must submit a key extraction query for an identity ID where ID∗ is a prefix of ID and ID is a
prefix of ˜ID

∗
. This implies that ID`∗+1 = ID∗`∗+1 but, since ID∗`∗+1 is chosen at random and hidden from the

execution of the attacker A, we have that Pr [E ] ≤ qK/p. From the above, the result announced in Theorem 1
follows immediately. ut

2.7 The Boneh-Boyen-Goh Scheme

In this section we present the HIBE scheme due to Boneh, Boyen and Goh [BBG05], referred to as the BBG-
HIBE scheme here. Again, we assume that identities are vectors of elements of Zp. The scheme is described in
Figure 2.

The following theorem about the security of the scheme was proved in (the full version of) [BBG05].
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Algorithm Setup:

g1, g2
$← G ; α

$← Zp
h1 ← gα1 ; h2 ← gα2

ui
$← G for i = 1, . . . , L

mpk ← (g1, g2, h1, u0, . . . , uL)
d0 ← h2

For i = 1, . . . , L+ 1 do
di ← 1

msk ← (d0, d1, . . . , dL, dL+1)
Return (mpk ,msk)

Algorithm KeyDer(d(ID1,...,ID`), ID`+1):
Parse d(ID1,...,ID`) as (d0, d`+1, . . . , dL, dL+1)

r`+1
$← Zp

d ′0 ← d0 · d
ID`+1

`+1 ·
(
u0

∏`
i=1 u

IDi
i

)r`+1

For i = `+ 2, . . . , L do
d ′i ← di · u

r`+1

i

d ′L+1 ← dL+1 · g
r`+1
1

Return (d ′0, d
′
`+2, . . . , d

′
L, d

′
L+1)

Algorithm Encrypt(mpk , ID ,m):
Parse ID as (ID1, . . . , ID`)

r
$← Zp ; C1 ← gr1

C2 ←
(
u0

∏`
i=1 u

IDi
i

)r
C3 ← m · ê(h1, g2)r

Return (C1, C2, C3)

Algorithm Decrypt(d(ID1,...,ID`), C):
Parse d(ID1,...,ID`) as (d0, d`+1, . . . , dL+1)
Parse C as (C1, C2, C3)

m′ ← C3 · ê(C2,dL+1)

ê(C1,d0)

Return m′

Fig. 2. The Boneh-Boyen-Goh HIBE scheme.

Theorem 2. If there exists a (t, qK , ε)-adversary against the IND-sHID-CPA security of the BBG-HIBE (with
hierarchy depth L) then there exists a (t′, ε′)-adversary against the L-BDHI problem in G, where ε′ ≥ ε and
t′ ≤ t+O(L · qK · texp) and texp is the time for an exponentiation in G.

2.8 The Waters Scheme

Waters [Wat05] argued that his IBE scheme can easily be modified into an L-level HIBE scheme as per [BB04].
Here we explicitly present this construction, that we refer to as the Waters-HIBE scheme. The scheme makes use
of n-bit identities and is described in Figure 3. The scheme makes use of group elements (u1,0, . . . , uL,n) which
are available as part of the scheme’s public parameters. These group elements define a series of hash functions
(F1, . . . , FL) where

Fi(ID i) = ui,0
∏

j∈[IDi]

ui,j .

Waters [Wat05] informally states that the above HIBE scheme is IND-HID-CPA secure under the BDDH
assumption, in the sense that if there exists a (t, qK , ε)-adversary against the HIBE, then there exists an algorithm
solving the BDDH problem with advantage ε′ = O((n · qK)Lε). We shall assume in what follows that the Waters
HIBE scheme is indeed IND-HID-CPA secure. However, the reader should be aware that any security results
we state for schemes derived from the Water HIBE scheme are conjectural relative to the above assumption.

2.9 Hierarchical Identity-Based Key Encapsulation

One efficient paradigm for producing HIBE schemes is to the hybrid KEM-DEM construction. In the public key
setting, this was first formally investigated by Cramer and Shoup [CS03] and extended to the identity-based
setting by Bentahar et al. [BFMLS08]. A hybrid construction consists of an asymmetric KEM and a symmetric
DEM.

A hierarchical identity-based KEM (HIB-KEM) consists of four algorithms (Setup,KeyDer,Encap,Decap).
The setup algorithm Setup and key derivation algorithm KeyDer have the same syntax as for a HIBE scheme.
The encapsulation algorithm Encap takes as input a master public key mpk and an identity ID = (ID1, . . . , ID`)
with 0 ≤ ` ≤ L; it outputs a symmetric key K ∈ {0, 1}λ and an encapsulation C. The decapsulation algorithm
Decap takes as input a private key dID and an encapsulation C, and outputs either a symmetric key K ∈ {0, 1}λ
or the error symbol ⊥.

The security models for a HIB-KEM is similar to those of a HIBE scheme. The IND-HID-CCA game for a
HIB-KEM, played between an attacker A = (A1,A2) and a challenger, is defined as follows:
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Algorithm Setup:

g1, g2
$← G ; α

$← Zp
h1 ← gα1 ; h2 ← gα2

ui,j
$← G for i = 1, . . . , L; j = 0 . . . n

mpk ← (g1, g2, h1, u1,0, . . . , uL,n)
msk ← h2

Return (mpk ,msk)

Algorithm KeyDer(d(ID1,...,ID`), ID`+1):
Parse d(ID1,...,ID`) as (d0, . . . , d`)

r`+1
$← Zp

d ′0 ← d0 · F`+1(ID`+1)r`+1

d ′`+1 ← g
r`+1
1

Return (d ′0, d1, . . . , d`, d
′
`+1)

Algorithm Encrypt(mpk , ID ,m):
Parse ID as (ID1, . . . , ID`)

r
$← Zp ; C1 ← gr1

For i = 1 . . . ` do
C2,i ← Fi(ID i)

r

C3 ← m · ê(h1, g2)r

Return (C1, C2,1, . . . , C2,`, C3)

Algorithm Decrypt(d(ID1,...,ID`), C):
Parse d(ID1,...,ID`) as (d0, . . . , d`)
Parse C as (C1, C2,1, . . . , C2,`, C3)

m′ ← C3 ·
∏`
i=1 ê(di,C2,i)

ê(C1,d0)

Return m′

Fig. 3. The Waters HIBE scheme.

1. The challenger generates a master key pair (mpk ,msk)
$← Setup.

2. The adversary runs A1 on mpk . The adversary is given access to a key derivation oracle that, on input

of an identity ID = (ID1, . . . , ID`), returns the secret key dID
$← KeyDer(msk , ID) corresponding to that

identity. The adversary is also given access to a decryption oracle that will, on input of an identity ID =
(ID1, . . . , ID`) and a ciphertext C, return Decap(KeyDer(msk , ID), C). The adversary outputs a challenge
identity ID∗ = (ID∗1, . . . , ID∗`∗) and some state information state.

3. The challenger chooses a bit β
$← {0, 1}, computes the encapsulation (C∗,K0)

$← Encap(mpk , ID∗) and

chooses a random key K1
$← {0, 1}λ.

4. The adversary runs A2 on the input (C∗,Kβ) and the state information state. The adversary is given access
to a key derivation oracle and decryption oracle as before. The adversary outputs a bit β′.

The adversary wins the game if β = β′, it never queries the key derivation oracle with any ancestor identity of
ID∗, and if it doesn’t query the decryption oracle on the pair (ID∗, C∗) after it receives the challenge ciphertext.
As usual, the adversary’s advantage is defined to be equal to |2 · Pr [A wins ]− 1|.

Definition 7. A (t, qK , qD, ε)-adversary against the IND-HID-CCA security of the HIB-KEM is an algorithm
that runs in time at most t, makes at most qK queries to the key derivation oracle, makes at most qD queries
to the decryption oracle, and has advantage at least ε in winning the IND-HID-CCA game described above.

Again, if the random oracle model [BR93] is used in the analysis of a scheme, then the above security
definitions take an extra parameter qH as input. This parameter denotes the adversary’s maximum number of
queries to the random oracle.

A DEM is a pair of deterministic algorithms (Enc,Dec). The encryption algorithm Enc takes as input a
symmetric key K ∈ {0, 1}λ and a message m of arbitrary length, and outputs a ciphertext C ← Dec(K,C). The
decryption algorithm Dec takes as input a symmetric key K ∈ {0, 1}λ and a ciphertext C, and returns either a
message m or the error symbol ⊥. The DEM must satisfy the following soundness property: for all K ∈ {0, 1}λ
and for all m ∈ {0, 1}∗, we have that Dec(K,Enc(K,m)) = m.

The only security model which will concern us for DEMs is the (one-time) IND-CCA security game, which
is played between an adversary A = (A1,A2) and a challenger:

1. The challenger generates a key K
$← {0, 1}λ.

2. The adversary runs A1. The adversary outputs two equal-length messages (m0,m1) and some state infor-
mation state.

3. The challenger chooses a bit β
$← {0, 1} and computes the ciphertext C∗ ← Enc(K,mβ).

4. The adversary runs A2 on input C∗ and the state information state. The adversary may query a decryption
oracle which will, on input of a ciphertext C 6= C∗, return Dec(K,C). The adversary outputs a bit β′.
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The adversary wins if β = β′ and its advantage is defined to be |2 · Pr [A wins ]− 1|.

Definition 8. A (t, qD, ε)-adversary against the (one-time) IND-CCA security of the DEM is an algorithm that
runs in time at most t, makes at most qD decryption oracle queries, and has advantage at least ε in winning the
IND-CCA game described above.

A HIB-KEM and a DEM can be “glued” together to form a complete HIBE scheme. Further details can be
found in [BFMLS08].

2.10 The Canetti-Halevi-Katz Transform

We shall, in one of our constructions of a CCA WIBE scheme, make use of the techniques behind the Canetti-
Halevi-Katz transform [CHK04]. To aid the reader we recap on this here. This is a transform to turn a
weakly secure (IND-sID-CPA) IBE scheme into a fully secure (IND-CCA) public key encryption scheme. We let
(Setup,KeyDer,Encrypt,Decrypt) denote the key-generation, extraction, encryption, and decryption algorithms
of the IBE scheme, and (Setup′,Encrypt′,Decrypt′) denote the key-generation, encryption, and decryption algo-
rithms of the derived public key scheme. The transform also makes use of a one-time signature scheme, defined
by a tuple of algorithms (SigGen,Sign,Verify).

The algorithm Setup′ is defined to be equal to Setup, i.e. public/private key of the PKE scheme is the
master public/private keys, (mpk ,msk), of the IBE scheme. Algorithm Encrypt′ is defined as follows: First a
key-pair (sk , vk) for the one-time signature scheme is created by calling SigGen; then the message is encrypted
via Encrypt(mpk , vk ,m) with respect to the “identity” vk to produce c. The resulting ciphertext c is then signed
with sk to produce σ = Sign(sk , c). The tuple (vk , c, σ) is the ciphertext for our PKE.

To decrypt the recipient first verifies σ is a valid signature on c with respect to the verification key vk , by
calling Verify(vk , c, σ). If it is then the function KeyDer is called with respect to the “identity” vk , using private
key of the PKE (i.e. msk). Then the ciphertext can be decrypted using the algorithm Decrypt.

3 Wildcard Identity-Based Encryption

3.1 Syntax

Identity-based encryption with wildcards (WIBE) schemes are essentially a generalisation of HIBE schemes
where at the time of encryption, the sender can decide to make the ciphertext decryptable by a whole range
of users whose identities match a certain pattern. Such a pattern is described by a vector P = (P1, . . . , P`) ∈
({0, 1}∗ ∪ {*})`, where * is a special wildcard symbol. We say that identity ID = (ID1, . . . , ID`′) matches P ,
denoted ID ∈* P , if and only if `′ ≤ ` and for all i = 1, . . . , `′ we have that ID i = Pi or Pi = *. Note that
under this definition, any ancestor of a matching identity is also a matching identity. This is reasonable for our
purposes because any ancestor can derive the secret key of a matching descendant identity anyway.

If P = (P1, . . . , P`) is a pattern, then we define W (P ) to be the set of wildcard positions in P , i.e.

W (P ) = {1 ≤ i ≤ ` : Pi = *} .

Formally, a WIBE scheme is a tuple of algorithms (Setup,KeyDer,Encrypt,Decrypt) providing the follow-
ing functionality. The Setup and KeyDer algorithms behave exactly as those of a HIBE scheme. To create
a ciphertext of a message m ∈ {0, 1}∗ intended for all identities matching pattern P , the sender computes

C
$← Encrypt(mpk , P,m). Any of the intended recipients ID ∈* P can decrypt the ciphertext using its own

decryption key as m← Decrypt(dID , C).
Note that we implicitly assume that the pattern P used to encrypt the message is included within the

ciphertext. This is because any parent of the pattern should be able to decrypt the message, and hence the
parent will need to be able to fill in the non-wildcarded entries in the pattern for decryption. For example,
suppose the pattern is P = (ID1, *, ID3) and that the decryptor has identity ID = (ID1, ID2). Then by our
definition of a matching pattern we have ID ∈* P , and so the decryptor will need to be informed of ID3 so as
to be able to decrypt the ciphertext. Note that an anonymous version of the definitions can be presented, but
we do not consider this further in this paper for simplicity.
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Correctness requires that for all key pairs (mpk ,msk) output by Setup, all messages m ∈ {0, 1}∗, all 0 ≤ ` ≤
L, all patterns P ∈ ({0, 1}∗ ∪ {*})`, and all identities ID ∈* P , we have

Decrypt( KeyDer(msk , ID) , Encrypt(mpk , P,m) ) = m

with probability one.

3.2 Security Notions

We define the security of WIBE schemes analogously to that of HIBE schemes, but with the adversary choosing
a challenge pattern instead of an identity to which the challenge ciphertext will be encrypted. To exclude trivial
attacks, the adversary is not able to query the key derivation oracle on any identity that matches the challenge
pattern, nor is it able to query the decryption oracle on the challenge ciphertext in combination with any identity
matching the challenge pattern.

More formally, the IND-WID-CPA security model is defined through the following game, played between an
adversary A = (A1,A2) and a challenger:

1. The challenger generates a master key pair (mpk ,msk)
$← Setup.

2. The adversary runs A1 on mpk . The adversary is given access to a key derivation oracle that, on input of an

identity ID = (ID1, . . . , ID`), returns the secret key dID
$← KeyDer(msk , ID) corresponding to that identity.

The adversary outputs two equal-length messages (m0,m1) and a challenge pattern P ∗, along with some
state information state.

3. The challenger chooses a bit β
$← {0, 1} and computes the ciphertext C∗

$← Encrypt(mpk , P ∗,mβ).
4. The adversary runs A2 on the input C∗ and the state information state. The adversary is given access to a

key derivation oracle as before. The adversary outputs a bit β′.

The adversary wins the game if β = β′ and it never queries the decryption oracle on any identity ID which
matches the pattern P ∗, i.e. any identity ID ∈* P ∗. The adversary’s advantage is defined as |2 ·Pr [A wins ]−1|.

Definition 9. A (t, qK , ε)-adversary against the IND-WID-CPA security of the WIBE scheme is an algorithm
that runs in time at most t, makes at most qK key derivation oracle queries, and has advantage at least ε in the
IND-WID-CPA game described above.

In the IND-WID-CCA security model is identical to the IND-WID-CPA security model with the exception
that the adversary has access to a decryption oracle, which will, on input of an identity ID and a ciphertext
C, return Decrypt(KeyDer(msk , ID), C). The adversary wins the game if β = β′, it never queries the decryption
oracle on any identity ID ∈* P ∗, and the adversary doesn’t query the decryption oracle the combination of any
identity ID ∈* P ∗ and the ciphertext C∗. The adversary’s advantage is defined as |2 · Pr [A wins ]− 1|.

Definition 10. A (t, qK , qD, ε)-adversary against the IND-WID-CCA security of the WIBE scheme is an algo-
rithm that runs in time at most t, makes at most qK key derivation oracle queries, makes at most qD decryption
oracle queries, and has advantage at least ε in the IND-WID-CCA game described above.

As for the case of HIBEs, we also define a weaker selective-identity (sWID) security notion, in which the
adversary commits to the challenge pattern at the beginning of the game, before the master public key is made
available. The notions of IND-sWID-CPA and IND-sWID-CCA security are defined analogously to the above.
In the random oracle model, the additional parameter qH denotes the adversary’s maximum number of queries
to the random oracle, or the total number of queries to all random oracles when it has access to multiple ones.

If the WIBE scheme has a finite message spaceM, then we may also define a one-way notion for encryption
security (OW-WID-CPA). This is formally defined via the following game, played between an adversary A =
(A1,A2) and a challenger:

1. The challenger generates a master key pair (mpk ,msk)
$← Setup.

2. The adversary runs A1 on input mpk . The adversary is given access to a key derivation oracle as in the
IND-WID-CPA game. The adversary outputs a challenge pattern P ∗ and some state information state.

3. The challenger generates m
$←M and computes the ciphertext C∗

$← Encrypt(mpk , P ∗,m).
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4. The adversary runs A2 on the input C∗ and the state information state. The adversary is given access to a
key derivation oracle as before. It output a message m′.

The adversary wins the game if m = m′ and the adversary never queries the key derivation oracle on an identity
ID ∈* P ∗. The adversary’s advantage is defined to be |2 · Pr [A wins ]− 1|.

Definition 11. A (t, qK , ε)-adversary against the OW-WID-CPA security of the WIBE scheme is an algorithm
that runs in time at most t, makes at most qK key derivation oracle queries, and has advantage at least ε in
winning the OW-WID-CPA game described above.

3.3 Constructing a WIBE from a HIBE

In order to clarify the relationship between HIBEs and WIBEs, we first point out a generic construction of a
WIBE scheme from any HIBE scheme. However, this WIBE scheme has a secret key size that is exponential in
the depth of the hierarchy tree. Let “*” denote a dedicated bitstring that cannot occur as a user identity. Then
the secret key of a user with identity (ID1, . . . , ID`) in the WIBE scheme contains the 2` HIBE secret keys of
all patterns matching this identity. For example, the secret key of identity (ID1, ID2) contains four HIBE secret
keys, namely those corresponding to identities

(ID1, ID2), (“*”, ID2), (ID1, “*”), (“*”, “*”) .

To encrypt to a pattern (P1, . . . , P`), one uses the HIBE scheme to encrypt to the identity obtained by replacing
each wildcard in the pattern with the “*” string, i.e. the identity (ID1, . . . , ID`) where ID i = “*” if Pi = * and
ID i = Pi otherwise. The final WIBE ciphertext consists of the pattern and the HIBE ciphertext. Decryption
is done by selecting the appropriate secret key from the list and using the decryption algorithm of the HIBE
scheme.

Theorem 3. If there exists a (t, qK , ε) attacker against the IND-WID-CPA security of the WIBE scheme (with
hierarchy depth L) then there exists a (t′, 2LqK , ε)-adversary against the IND-HID-CPA security of the corre-
sponding HIBE scheme, where t′ ≤ t+ 2LqKtK and tK is the time taken to compute a key derivation query. If
there exists a (t, qK , qD, ε) attacker against the IND-WID-CCA security of the WIBE scheme (with hierarchy
depth L) then there exists a (t′, 2LqK , qD, ε)-adversary against the IND-HID-CCA security of the corresponding
HIBE scheme, where t′ ≤ t+ 2LqKtK + qDtD, tK is the time taken to compute a key derivation query, and tD
is the time taken to compute a decryption query.

Notice that the appearance of the term 2L in the security reduction means that this construction is only
guaranteed to be secure when the number of levels grows poly-logarithmically in the secure parameter. This
restriction occurs in the security analysis of all the HIBE schemes that we consider.

The efficiency of the WIBE scheme obtained with this construction is roughly the same as that of the
underlying HIBE scheme, but with the major disadvantage that the size of the secret key is 2` times that of a
secret key in the underlying HIBE scheme. This is highly undesirable for many applications, especially since the
secret key may very well be kept on an expensive secure storage device. It is interesting to investigate whether
WIBE schemes exist with overhead polynomial in all parameters. We answer this question in the affirmative here
by presenting direct schemes with secret key size linear in `. Unfortunately, for all of our schemes, this reduction
in key size comes at the cost of linear-size ciphertexts, while the generic scheme can achieve constant-size
ciphertexts when underlain by a HIBE with constant ciphertext size, e.g. that of [BBG05].

3.4 The Relationship Between WIBEs and Generalized Identity-Based Encryption, Fuzzy
Identity-Based Encryption, and Attribute Based Encryption

As we have seen WIBEs are closely related to HIBEs. They are also related to a concept called Generalised
Identity-Based Encryption (GIBE) [BH08]. In a GIBE one has a set of policies P and a set of roles R. The roles
are partially ordered so that a “higher” role can delegate its abilities to a “lower” role. Whether a party can
decrypt a ciphertext depends on whether a predicate defined on the set P × R evaluates to true. In particular
a ciphertext is encrypted to a policy π ∈ P , and it can be decrypted by a role ρ if and only if the predicate
evaluated on (π, ρ) evaluates to true. It is easy to see that the roles in a GIBE correspond to the identities in
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a WIBE, whilst the policies correspond to the wildcarded patterns. Hence, a WIBE is a specific example of a
GIBE. However, the expressive nature of a GIBE being greater than that of a WIBE comes at a cost, in that
one can construct WIBE schemes which are more secure than the equivalent GIBE.

Another related primitive is fuzzy identity-based encryption (FIBE) [SW05], which allows a ciphertext
encrypted to identity ID to be decrypted by any identity ID ′ that is “close” to ID according to some metric.
In the schemes of [SW05], an identity is a subset containing n elements from a finite universe. Two identities
ID and ID ′ are considered “close” if |ID ∩ ID ′| ≥ d for some parameter d. A FIBE with n = 2L and d = L
can be used to construct a WIBE scheme (without hierarchical key derivation) by letting the decryption key
for identity (ID1, . . . , ID`) correspond to the decryption key for the set

{1‖ID1, . . . , `‖ID`, (`+ 1)‖ε, . . . , L‖ε,
1‖“*”, . . . , L‖“*”} .

Suppose that “⊥” is a unique string which cannot occur as a user identity and distinct from “*”. One can
encrypt to pattern P = (P1, . . . , P`) by encrypting to the set

{1‖P ′1, . . . , `‖P ′` , (`+ 1)‖ε, . . . , L‖ε, 1‖“⊥”, . . . , L‖“⊥”},

where the P ′i ← Pi if i /∈ W (P ) and P ′i ← “*” if i ∈ W (P ). The dummy symbols “⊥” are only used to ensure
that the size of the encryption set is exactly 2L (as required by the definition of the FIBE scheme). We stress
that this construction does not give a full WIBE scheme as it does not permit hierarchical key derivation. This
also implies that a “parent” identity cannot decrypt message sent to its “children” identities as it cannot derive
the key for the child.

Fuzzy-IBE, GIBEs, and WIBEs are themselves examples of a policy-based encryption mechanisms. In such
systems access to encrypted data is provided as long as the recipient has a key (or set of keys) which correspond
to some policy. The power of identity-based mechanisms to enable policy-based access control to encrypted
data was realised very early on in the history of pairing-based IBE [Sma03]. In recent years this idea has been
formalised under the heading of Attribute Based Encryption.

In Attribute Based Encryption [SW05], or, more correctly, Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) [BSW07,GPSW06], a recipient is issued keys corresponding to a number of credentials. An encryptor
will encrypt a message under a policy, i.e. a set of credentials which are required by any user who wishes to
obtain access to the message. Any recipient which has credential key which meet the policy statement has
access to the encrypted data. The defining characteristic of CP-ABE is that the policies are embedded in the
ciphertexts.

In the context of WIBEs the policy is that the user should have a key (credential) which matches the pattern.
For a pattern such as (ID1, *, ID3) this can be interpreted as having a credential for an identity with ID1 in the
first position and an identity with ID3 in the third position. However, a CP-ABE scheme would offer separate
credentials (keys) for each position, whereas a WIBE compresses all of these credentials in a single key. Hence,
ABE is clearly a more powerful concept than a WIBE, as it allows more expressive policies, but WIBE schemes
are often simpler to construct.

4 Identity-based Key Encapsulation with Wildcards

We can also define a notion of Identity-Based Key Encapsulation Mechanism with Wildcards (WIB-KEM). A
WIB-KEM consists of the following four algorithms (Setup,KeyDer,Encap,Decap). The algorithms Setup and
KeyDer are defined as in the WIBE case. The encapsulation algorithm Encap takes the master public key mpk of
the system and a pattern P , and returns (C,K), where K ∈ {0, 1}λ is a symmetric key and C is an encapsulation
of the key K. Again we assume that the encapsulation includes a public encoding of the pattern P under which
the message has been encrypted. Finally, the decapsulation algorithm Decap(mpk , dID , C) takes a private key
dID and an encapsulation C, and returns either a secret key K or the error symbol ⊥.

A WIB-KEM must satisfy the following soundness property: for all pairs (mpk ,msk) output by Setup, all
0 ≤ ` ≤ L, all patterns P ∈ ({0, 1}∗ ∪ {∗})`, and all identities ID ∈* P , we have

Pr
[
K ′ = K : (C,K)

$← Encap(mpk , P );K ′
$← Decap(KeyDer(msk , ID), C)

]
= 1 .
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The IND-WID game for WIB-KEMs is similar to both the IND-WIB game for WIBEs and the IND-HIB
game for HIB-KEMs. The IND-WIB-CCA game is played between an adversary A = (A1,A2) and a challenger:

1. The challenger generates a master key pair (mpk ,msk)
$← Setup.

2. The adversary runs A1 on mpk . The adversary is given access to a key derivation oracle that, on input of an

identity ID = (ID1, . . . , ID`), returns the secret key dID
$← KeyDer(msk , ID) corresponding to that identity.

The adversary is also given access to a decryption oracle that will, on input of an identity ID = (ID1, . . . , ID`)
and a ciphertext C, return Decap(KeyDer(msk , ID), C). The adversary outputs a challenge pattern P ∗ and
some state information state.

3. The challenger chooses a bit β
$← {0, 1}, computes the encapsulation (C∗,K0)

$← Encap(mpk , P ∗) and

chooses a random key K1
$← {0, 1}λ.

4. The adversary runs A2 on the input (C∗,Kβ) and the state information state. The adversary is given access
to a key derivation oracle and decryption oracle as before. The adversary outputs a bit β′.

The adversary wins the game if β = β′, it never queries the key derivation oracle on any identity ID ∈* P ∗, and
if it doesn’t query the decryption oracle on the pair (ID , C∗) for some ID ∈* P ∗ after it receives the challenge
ciphertext. As usual, the adversary’s advantage is defined to be equal to |2 · Pr [A wins ]− 1|.

Another common form for writing the advantage of an IND-WID-CCA adversary for a WIB-KEM is given
by the following simple lemma.

Lemma 1. If A is a (t, qK , qD, ε)-adversary against the IND-WID-CCA security of the WIB-KEM and β, β′

are as in the IND-WID-CCA security game, then

ε = |Pr [β′ = 1 | β = 1 ]− Pr [β′ = 1 | β = 0 ]|

Definition 12. A (t, qK , qD, ε)-adversary against the IND-WID-CCA security of a HIB-KEM is an algorithm
that runs in time t, makes at most qK queries to the key derivation oracle, makes at most qD queries to the
decryption oracle, and has advantage at least ε in winning the IND-WID-CCA game described above.

We may combine a WIB-KEM (Setup,KeyDer,Encap,Decap) with a DEM (Enc,Dec) (see Section 2.9) to form
a complete WIBE scheme (Setup,KeyDer,Encrypt,Decrypt), where the encryption and decryption algorithms are
as follows:

– Encrypt(mpk , P ∗,m):

1. Compute (C1,K)
$← Encap(mpk , P ∗).

2. Compute C2 ← Enc(K,m).
3. Output the ciphertext C = (C1, C2).

– Decrypt(dID , C):
1. Parse C as (C1, C2).

2. Compute K
$← Decap(dID , C1). If K = ⊥ then output ⊥.

3. Compute m← Dec(K,C2).
4. Output m.

Theorem 4. If there exists a (t, qK , qD, ε)-adversary A = (A1,A2) against IND-WID-CCA security of the
hybrid WIBE, then there is a (tB, qK , qD, εB)-adversary B = (B1,B2) against the IND-WID-CCA security of the
WIB-KEM and a (tB′ , qD, εB′)-adversary B′ = (B′1,B′2) against the IND-CCA security of the DEM such that:

tB ≤ t+ qDtDec + tEnc

tB′ ≤ t+ qD(tDec + tDecap + tKeyDer) + qKtKeyDer

+tEncap + tSetup

ε ≤ 2εB′ + εB

where tEnc is the time to run the DEM’s Enc algorithm, tDec is the time to run the DEM’s Dec algorithm, tSetup
is the time to run the KEM’s Setup algorithm, tDecap is the time to run the KEM’s Decap algorithm and tKeyDer

is the time to run the KEM’s KeyDer algorithm.
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Proof. This proof mirrors the proofs of Cramer and Shoup [CS03] and Bentahar et al. [BFMLS08]. We prove this
result in two stages. First, we change the nature of the security game. Let Game 1 be the normal IND-WID-CCA
game for the WIBE scheme. Let Game 2 be the slight adaptation of the IND-WID-CCA game:

1. The challenger generates a master key pair (mpk ,msk)
$← Setup.

2. The adversary runs A1 on mpk . The adversary is given access to a key derivation oracle that, on input of an

identity ID = (ID1, . . . , ID`), returns the secret key dID
$← KeyDer(msk , ID) corresponding to that identity.

The adversary is also given access to a decryption oracle that, on input of an identity ID and a ciphertext
C, returns Decrypt(KeyDer(msk , ID), C). The adversary outputs two messages (m0,m1) of equal length and
a challenge pattern P ∗, along with some state information state.

3. The challenger chooses a bit β
$← {0, 1} and a key K∗

$← {0, 1}λ, then computes the ciphertext (C∗1 ,K)
$← Encap(mpk , P ∗) and C2 ← Enc(K∗,mβ). The challenge ciphertext is C∗ ← (C∗1 , C

∗
2 ).

4. The adversary runs A2 on the input C∗ and the state information state. The adversary is given access to
a key derivation oracle as before. The adversary is also given to a decryption oracle that, on input of an
identity ID and a ciphertext C = (C1, C2), returns{

Decrypt(KeyDer(msk , ID), C) if ID 6∈* P ∗ or C1 6= C∗1
Dec(K∗, C2) if ID ∈* P ∗ and C1 = C∗1 )

.

The adversary outputs a bit β′.

Note that the only two differences between the game and the IND-WID-CCA game are that a random key is
used to compute the challenge ciphertext and to decrypt certain ciphertexts after the challenge ciphertext is
issued.

We show that any change in the actions of A between Game 1 and Game 2 give rise to an adversary
B = (B1,B2) against the IND-WID-CCA security of the WIB-KEM. We describe the algorithm B1 below:

1. B1 takes as input the master public key mpk .
2. B1 runs A1 on mpk . If A1 makes a key derivation oracle query, then B1 forwards this query to its own oracle

and returns the result. If A1 makes a decryption oracle query on an identity ID and a ciphertext (C1, C2),
the B1 forwards C1 to its decapsulation oracle and receives a key K in return. B1 returns Dec(K,C2) to A.
A1 outputs a challenge pattern P ∗ and two equal-length messages (m0,m1).

3. B1 outputs the challenge pattern P ∗.

The challenger then computes a challenge encapsulation (C∗1 ,K
∗) where K∗ is either the decapsulation of C∗1

or a random key. The algorithm B2 runs as follows:

1. B2 takes as input the challenge encapsulation (C∗1 ,K
∗). B2 chooses a bit β

$← {0, 1} and computes the
remainder of the challenge ciphertext C∗2 ← Enc(K∗,mβ).

2. B2 runs A2 on the challenge ciphertext C∗ = (C∗1 , C
∗
2 ). If A2 makes a key derivation oracle query, then B2

forwards this query to its own oracle and returns the result. If A2 makes a decryption oracle query on an
identity ID ∈* P ∗ and a ciphertext (C∗1 , C2), then B2 returns Dec(K∗, C2) to A2. Otherwise, if A2 makes a
decryption oracle query on an identity ID and a ciphertext (C1, C2), then B2 answers the query as before,
by querying its own oracle to find the decapsulation of C1 and decrypting C2 itself. A2 outputs a bit β′.

3. If β = β′ then B2 outputs 1; otherwise B2 outputs 0.

If K∗ is the decapsulation of C∗1 then B simulates Game 1 for A; whereas if K∗ is a random key then B
simulates Game 2 for A. Thus we have,

|Pr [A wins in Game 1 ]− Pr [A wins in Game 2 ]| = εB

by virtue of Lemma 1.
However, the security of Game 2 depends only on the (one-time) IND-CCA security of the DEM. We give an

algorithm B′ = (B′1,B′2) reduces the security of the WIBE in Game 2 to the security of the DEM. We describe
the algorithm B′1 below:
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1. B′1 computes (mpk ,msk)← Setup.
2. B′1 runs A1 on mpk . If A1 makes a key derivation or decryption oracle query, then B′1 computes the correct

answer using its knowledge of the master private key msk . A1 outputs a challenge pattern P ∗ and two
equal-length messages (m0,m1).

3. B′1 outputs the messages (m0,m1).

The challenger chooses a bit β
$← {0, 1} and computes the challenge encryption C∗2

$← Enc(K∗,mβ) using a

randomly chosen (and hidden) key K∗
$← {0, 1}λ. The algorithm B′2 runs as follows:

1. B′2 takes C∗2 as input. B′2 computes the encapsulation (C∗1 ,K)
$← Encap(mpk , P ∗) and sets the challenge

ciphertext C∗ ← (C∗1 , C
∗
2 ).

2. B′2 runs A2 on the input C∗. If A2 makes a key derivation oracle query, then B′2 answers it correctly using
its knowledge of the master private key msk . If A2 makes a decryption oracle query on an identity ID ∈* P ∗
and a ciphertext (C∗1 , C2) then B′2 computes the correct answer by querying its own decryption on C2 and
returning the result. Otherwise, if A2 makes a decryption oracle query on an identity ID and a ciphertext
C, then B′2 computes the correct answer using its knowledge of the master private key msk . A2 outputs a
bit β′.

3. B′2 outputs the bit β′.

B′ correctly simulates Game 2 for A. Furthermore, A wins in Game 2 if and only if B wins the IND-CCA
game for a DEM. Hence,

|2 · Pr [A wins Game 2 ]− 1| = εB′

and so we have that

ε = |2 · Pr [A wins Game 1 ]− 1|
≤ 2 · |Pr [A wins in Game 1 ]− Pr [A wins in Game 2 ]|

+|2 · Pr [A wins in Game 2 ]− 1|
= 2εB + εB′ .

ut

5 IND-WID-CPA Secure WIBEs

In this section, we propose several WIBE schemes which are IND-WID-CPA secure, based on three existing HIBE
schemes from the Boneh-Boyen family (BB-HIBE, BBG-HIBE, Waters-HIBE). These three direct constructions
all utilize a similar technique of modifying a HIBE’s ciphertext generation to include some extra data related
to each wildcard. The security proof then reduces the security of the resulting WIBE to that of the underlying
HIBE. These schemes are all proven secure using the same “projection” technique and so we only prove the
security of one scheme (Waters-WIBE) relative to the security of the underlying HIBE (in this case Waters-
HIBE). Note, in that due to our earlier comment on the lack of a full security proof for the Waters-HIBE, we
obtain a full security theorem only for the cases of the BB- and BBG-based WIBE’s.

Each of these three schemes is proven secure, relative to the underlying HIBE, in the standard model;
however, two of these schemes are only proven secure in the IND-sWID-CPA model. We therefore give a generic
transformation from an IND-sWID-CPA secure scheme to an IND-WID-CPA secure scheme which uses the
random oracle model.

5.1 The Boneh-Boyen WIBE

Our first construction is based on the slight variant of the BB-HIBE [BB04] which we prove secure in Section 2.6.
As with the BB-HIBE scheme, the BB-WIBE makes use of identities which are vectors of elements of Zp. The
scheme is described in Figure 4. Note that the decryption algorithm can determine if i ∈ W (P ) by checking
whether C2,i contains one group element or two.
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Algorithm Setup:

g1, g2
$← G ; α

$← Zp
h1 ← gα1 ; h2 ← gα2

ui,j
$← G for i = 1 . . . L, j = 0, 1

mpk ← (g1, g2, h1, u1,0, . . . , uL,1)
msk ← h2

Return (mpk ,msk)

Algorithm KeyDer(d(ID1,...,ID`), ID`+1):
Parse d(ID1,...,ID`) as (d0, . . . , d`)

r`+1
$← Zp

d ′0 ← d0 ·
(
u`+1,0 · u

ID`+1

`+1,1

)r`+1

d ′`+1 ← g
r`+1
1

Return (d ′0, d1, . . . , d`, d
′
`+1)

Algorithm Encrypt(mpk , P,m):
Parse P as (P1, . . . , P`)

r
$← Zp ; C1 ← gr1

For i = 1, . . . , ` do

If i /∈W (P ) then C2,i ←
(
ui,0 · uPii,1

)r
If i ∈W (P ) then C2,i ← (uri,0, u

r
i,1)

C3 ← m · ê(h1, g2)r

Return (P,C1, C2,1, . . . , C2,`, C3)

Algorithm Decrypt(d(ID1,...,ID`), C):
Parse d(ID1,...,IDl) as (d0, . . . , d`)
Parse C as (P,C1, C2,1, . . . , C2,`, C3)
For i = 1, . . . , ` do

If i /∈W (P ) then C′2,i ← C2,i

If i ∈W (P ) then
Parse C2,i as (v1, v2)

C′2,i ← v1 · vIDi2

m′ ← C3 ·
∏`
i=1 ê(di,C

′
2,i)

ê(C1,d0)

Return m′

Fig. 4. The Boneh-Boyen WIBE scheme.

The BB-WIBE can actually be seen as a close relative of the Waters-WIBE scheme (see Section 5.3) with
the hash function Fi(ID i) being defined as

Fi(ID i) = ui,0 · uIDi
i,1 .

Its security properties are different though since the BB-WIBE scheme can be proved secure in the selective-
identity model only. We reduce its security to that of the BB-HIBE scheme, which in its turn is proved IND-
sHID-CPA secure under the BDDH assumption in Section 2.6. The proof of the theorem below is analogous to
that of Theorem 7, and hence omitted. One important difference with Theorem 7 is that the reduction from the
BB-HIBE scheme is tight: because we prove security in the selective-identity model, we do not lose a factor 2L

due to having to guess the challenge pattern upfront.

Theorem 5. If there exists a (t, qK , ε)-adversary against the IND-sWID-CPA security of a BB-WIBE (with
hierarchy depth L) then there exists a (t′, q′K , ε

′)-adversary against the IND-sHID-CPA security of the BB-HIBE,
where

t′ ≤ t+ 2L(1 + qK) · texp , q′K ≤ qK and ε′ ≥ ε ,

where texp is the time required to compute an exponentiation in G.

In terms of efficiency, the BB-WIBE scheme easily outperforms the Waters-WIBE scheme: the master public
key contains 2L + 3 group elements. Encryption to a recipient pattern of length ` and w wildcards involves
`+w+2 (multi-)exponentiations and produces ciphertexts containing `+w+2 group elements, or 2L+2 group
elements in the worst case that ` = w = L. Decryption requires the computation of `+ 1 pairings, just like the
Waters-WIBE scheme. However, this scheme is outperformed by the BBG-WIBE.

5.2 The Boneh-Boyen-Goh WIBE

Our second construction is based on the BBG-HIBE [BBG05] (see Section 2.7). The BBG-HIBE scheme has
the advantage of constant-sized ciphertexts. Our BBG-WIBE scheme does not have this advantage, but does
have the advantage that a pattern with w wildcards leads to a ciphertext with w + 3 elements and is secure
under the same decisional L-BDHI problem as the BBG-HIBE. Again, identities are considered to be vectors of
elements of Zp and the scheme is given in Figure 5.
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Algorithm Setup:

g1, g2
$← G ; α

$← Zp
h1 ← gα1 ; h2 ← gα2

ui
$← G for i = 1, . . . , L

mpk ← (g1, g2, h1, u0, . . . , uL)
d0 ← h2

For i = 1, . . . , L+ 1 do
di ← 1

msk ← (d0, d1, . . . , dL, dL+1)
Return (mpk ,msk)

Algorithm KeyDer(d(ID1,...,ID`), ID`+1):
Parse d(ID1,...,ID`) as (d0, d`+1, . . . , dL, dL+1)

r`+1
$← Zp

d ′0 ← d0 · d
ID`+1

`+1 ·
(
u0

∏`
i=1 u

IDi
i

)r`+1

For i = `+ 2, . . . , L do
d ′i ← di · u

r`+1

i

d ′L+1 ← dL+1 · g
r`+1
1

Return (d ′0, d
′
`+2, . . . , d

′
L, d

′
L+1)

Algorithm Encrypt(mpk , P,m):
Parse P as (P1, . . . , P`)

r
$← Zp ; C1 ← gr1

C2 ←
(
u0

∏`
i=1,i/∈W (P ) u

Pi
i

)r
C3 ← m · ê(h1, g2)r

C4 ← (uri )i∈W (P )

Return (P,C1, C2, C3, C4)

Algorithm Decrypt(d(ID1,...,ID`), C):
Parse d(ID1,...,ID`) as (d0, d`+1, . . . , dL+1)
Parse C as (P,C1, C2, C3, C4)
Parse C4 as (vi)i∈W (P )

C′2 ← C2

∏`
i=1,i∈W (P ) v

IDi
i

m′ ← C3 · ê(C
′
2,dL+1)

ê(C1,d0)

Return m′

Fig. 5. The Boneh-Boyen-Goh WIBE scheme.

The BBG-WIBE scheme is significantly more efficient than the Waters-WIBE and BB-WIBE schemes in
terms of decryption, and also offers more efficient encryption and shorter ciphertexts when the recipient pattern
contains few wildcards. More precisely, the master public key contains L + 4 group elements. Encryption to a
recipient pattern of length ` with w wildcards involves w+ 3 (multi-)exponentiations and w+ 3 group elements
in the ciphertext, or L + 3 of these in the worst case that ` = w = L. Decryption requires the computation of
two pairings, as opposed to `+ 1 of these for the Waters-WIBE and BB-WIBE schemes.

Again, the proof of the following theorem is analogous to that of Theorem 7, and hence omitted.

Theorem 6. If there is a (t, qK , ε)-adversary against the IND-sWID-CPA security of the BBG-WIBE (with
hierarchy depth L) then there exists a (t′, q′K , ε

′)-adversary against the IND-sHID-CPA security of the BBG-
HIBE where

t′ ≤ t− L(1 + 2qK) · texp , q′K ≤ qK , and ε′ ≥ ε,

where texp is the time it takes to perform an exponentiation in G.

5.3 The Waters WIBE

Our third construction is based on the Waters-HIBE [Wat05] (see Section 2.8). As in the HIBE scheme, the
WIBE makes use of identities which are n-bit strings and a series of hash functions (F1, . . . , FL) where

Fi(ID i) = ui,0
∏

j∈[IDi]

ui,j .

The scheme is described in Figure 6.
In terms of efficiency, the Waters-WIBE compares unfavourably with the BB-WIBE and BBG-WIBE (but

(conjecturally) provides stronger security guarantees in the standard model). The master public key of the
Waters-WIBE scheme contains (n+ 1)L+ 3 group elements. Encrypting to a pattern of length ` containing w
wildcards comes at the cost of `+ nw + 2 exponentiations and `+ nw + 2 group elements in the ciphertext; in
the worst case of ` = w = L this means (n+ 1)L+ 2 exponentiations and group elements. (The pairing ê(h1, g2)
can be precomputed.) Decryption requires the computation of `+ 1 pairings.

In terms of efficiency, the Waters-WIBE scheme performs well enough to be considered for use in practice,
but definitely leaves room for improvement. The main problem is the dependency of the scheme on n, the bit
length of identity strings. In practice, one would typically use the output of a collision-resistant hash function as
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Algorithm Setup:

g1, g2
$← G ; α

$← Zp
h1 ← gα1 ; h2 ← gα2

ui,j
$← G for i = 1, . . . , L; j = 0 . . . n

mpk ← (g1, g2, h1, u1,0, . . . , uL,n)
msk ← h2

Return (mpk ,msk)

Algorithm KeyDer(d(ID1,...,ID`), ID`+1):
Parse d(ID1,...,ID`) as (d0, . . . , d`)

r`+1
$← Zp

d ′0 ← d0 · F`+1(ID`+1)r`+1

d ′`+1 ← g
r`+1
1

Return (d ′0, d1, . . . , d`, d
′
`+1)

Algorithm Encrypt(mpk , P,m):
Parse P as (P1, . . . , P`)

r
$← Zp ; C1 ← gr1

For i = 1 . . . ` do
If i /∈W (P ) then C2,i ← Fi(ID i)

r

If i ∈W (P ) then C2,i ← (uri,0, . . . , u
r
i,n)

C3 ← m · ê(h1, g2)r

Return (P,C1, C2,1, . . . , C2,`, C3)

Algorithm Decrypt(d(ID1,...,ID`), C):
Parse d(ID1,...,ID`) as (d0, . . . , d`)
Parse C as (P,C1, C2,1, . . . , C2,`, C3)
For i = 1, . . . , ` do

If i /∈W (P ) then C′2,i ← C2,i

If i ∈W (P ) then
Parse C2,i as (v0, . . . , vn)
C′2,i ← v0

∏
i∈[IDi] vi

m′ ← C3 ·
∏`
i=1 ê(di,C

′
2,i)

ê(C1,d0)

Return m′

Fig. 6. The Waters WIBE scheme.

identity strings, so that n = 160 for a reasonable level of security. We note that the techniques of [CS05,Nac07]
could be applied to trade a factor d in efficiency against the loss of a factor of 2Ld in the tightness of the
reduction.

We now prove the security of the Waters-WIBE, relative to the security of the Waters-HIBE. This proof
provides a template for the proofs of the security theorems for the BB and BBG WIBE’s mentioned above. We
reduce the security of the Waters-WIBE to the security of the Waters-HIBE. The security of the latter scheme,
as has already been mentioned, is believed to reduce to the security of the BDDH problem (see Section 2.8).

Theorem 7. If there exists a (t, qK , ε)-adversary against the IND-WID-CPA security of the Waters-WIBE
scheme (with hierarchy depth L) then there exists a (t′, q′K , ε

′)-adversary against the IND-HID-CPA security of
the HIBE scheme, where

t′ ≤ t+ Ln(1 + qK) · texp , q′K ≤ qK and ε′ ≥ ε/2L,

and texp is the time it takes to perform an exponentiation in G.

Proof. Suppose there exists a (t, qK , ε)-adversary A = (A1,A2) against the IND-WID-CPA security of the
Waters-WIBE scheme. We construct an adversary B = (B1,B2) against the IND-HID-CPA security of the
Waters-HIBE.

The intuitive idea behind the proof is that B guesses the levels in which the challenge pattern contains
wildcards. Any query thatAmakes is passed by B to its own oracles after stripping out the levels corresponding to
wildcards in the challenge pattern. To this end, we construction a ‘projection” map π : {1, . . . , L} → {1, . . . , L}.
Suppose that P̄ ∗ ∈ {ε, *}L is B’s guess for the wildcard positions in the challenge pattern. Define P̄ ∗≤i to be

equal to the first i components of P̄ ∗ and define π as

π(i) =

{
0 if i ∈W (P̄ )
i−
∣∣W (P̄ ∗≤i)

∣∣ if i /∈W (P̄ )

B is an adversary against the Waters-HIBE scheme. We denote parameters associated with the HIBE scheme
using tildes. The algorithm B1 runs as follows:

1. B1 takes as input the master public key of the HIBE scheme ˜mpk = (g̃1, g̃2, h̃1, ũ1,0, . . . , ũL,n).

2. B1 computes P̄ = (P̄1, . . . , P̄L)
$← {ε, *}L.
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3. B1 computes the master public key mpk = (g1, g2, h1, u1,0, . . . , uL,n) as follows:

g1 ← g̃1 g2 ← g̃2 h1 ← h̃1

ui,j ← ũπ(i),j if i /∈W (P̄ ) and j = 1, . . . , n

ui,j ← g
αi,j
1 if i ∈W (P̄ ), j = 1, . . . , n and αi,j

$← Zp

4. B1 runs A1 on mpk . If A1 makes a key derivation oracle on input ID = (ID1, . . . , ID`) then B1 constructs
an identity ˜ID = ( ˜ID1, . . . , ˜ID ˜̀) by setting ˜IDπ(i) ← ID i for each i ∈W (P̄ ∗≤`). B1 queries its key derivation

oracle on ˜ID and receives (d̃0, . . . , d̃˜̀). B1 reconstructs the decryption key dID = (d0, . . . , d`) for ID as:

d0 ← d̃0

∏
i∈W (P̄∗≤`)

(
ui,0

∏
j∈[IDi]

ui,j
)ri

for ri
$← Zp

di ← dπ(i) if i /∈W (P̄ ∗≤`)

di ← gri1 if i ∈W (P̄ ∗≤`)

B1 returns the key dID to A1. A1 outputs two equal-length messages (m0,m1) and a challenge pattern
P ∗ = (P ∗1 , . . . , P

∗
`∗).

5. If P̄ ∗≤`∗ and P ∗ do not have wildcards in exactly the same positions, then B1 aborts. Otherwise, B1 computes

a challenge identity ˜ID
∗

= ( ˜ID
∗
1, . . . , ˜ID

∗
˜̀∗) by setting ˜ID

∗
i ← P ∗i for all i /∈W (P ∗). B1 outputs the challenge

identity ˜ID
∗

and the two messages (m0,m1).

The challenger will now encrypt mβ under the identity ˜ID
∗

using the Waters-HIBE (for β
$← {0, 1}). This

results in a ciphertext C̃∗ = (C̃∗1 , C̃
∗
2,1, . . . , C̃

∗
2,˜̀∗

, C̃∗3 ) which is input to the algorithm B2 described below:

1. B2 computes a challenge WIBE ciphertext C∗ = (P ∗, C∗1 , C
∗
2,1, . . . , C

∗
2,L, C

∗
3 ) as follows:

C∗1 ← C̃∗1
C∗2,i ← C̃∗2,π(i) if i /∈W (P ∗)

C∗2,i ← (C∗1
αi,0 , . . . , C∗1

αi,n) for i ∈W (P ∗)

C∗3 ← C̃∗3

2. B2 runs A2 on the input C∗. If A2 makes a key derivation oracle query, then B2 answer its queries as before.
A2 outputs a guess β′.

3. B2 outputs β′.

We make several observations about the adversary B. First, note that B cannot correctly guess the bit β′

unless it correctly guesses the locations of the wildcards in the challenge pattern. This happens with probability
at least 1/2L. Second, we observe that if B correctly guesses the position of the wildcards in the challenge
ciphertext, then B correctly simulates the key derivation oracle and challenge ciphertext for A. Furthermore,
if B correctly guesses the position of the wildcards in the challenge ciphertext, then any legal key derivation
oracle query that A makes results in a legal key derivation oracle query made by B. This is because for any
identity ID 6∈* P ∗ there must exist an index i such that P ∗i 6= * and ID i 6= P ∗i . Hence, the “projected” identity
˜ID has ˜IDπ(i) = ID i 6= P ∗i = ˜ID

∗
π(i). Hence, if B correctly guesses the position of the wildcards in the challenge

ciphertext, then B wins if and only if A wins. This leads to the results of the theorem. ut

Note that the proof above loses a factor of 2L in the security reduction. This limits the secure use of the
scheme in practice to very small (logarithmic) hierarchy depths, but this was already the case for the Waters-
HIBE scheme, which loses a factor (nqK)L in its reduction to the BDDH problem. Alternatively, if we only
consider patterns with a single sequence of consecutive wildcards, for example (ID1, *, *, *, ID5) or (ID1, *, *),
then we only lose a factor of L2 when reducing to the Waters-HIBE scheme. If we consider the selective-identity
notion, there is no need to guess the challenge pattern, so we do not lose any tightness with respect to the
Waters-HIBE scheme. In addition, the Waters-HIBE scheme would itself also have a tight security reduction to
the BDDH problem in the selective-identity notion.
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5.4 Converting Selective-Identity Security to Full Security

As observed by Boneh-Boyen [BB04] for the case of IBE schemes and by Boneh-Boyen-Goh [BBG05] for the
case of HIBE schemes, any HIBE scheme that is selective-identity (IND-sHID) secure can be transformed into
a HIBE scheme that is fully (IND-HID) secure in the random oracle model. The transformation only works for
small hierarchy depths though, since the proof loses a factor O(qLH) in reduction tightness. We show here that
the same transformation works for the case of WIBE schemes at a similar cost of a factor O(qLH) in reduction.

Let Π = (Setup,KeyDer,Encrypt,Decrypt) be a WIBE scheme with maximum hierarchy depth L. We con-
struct a WIBE scheme Π ′ = (Setup,KeyDer′,Encrypt′,Decrypt′) where KeyDer′,Encrypt′, and Decrypt′ are identi-
cal to KeyDer,Encrypt, and Decrypt with the exception that the identity/pattern is input to a hash function before
it is input to the relevant algorithm. A pattern P = (P1, . . . , P`) is transformed into a pattern P ′ = (P ′1, . . . , P

′
`)

where

P ′i ←

{
Hi(Pi) if Pi 6= *

* otherwise,

where Hi : {0, 1}∗ → ID (for 1 ≤ i ≤ L) are independent hash functions (modelled as distinct random oracles)
and ID is an appropriately sized subset of the allowable identities for the original WIBE scheme.10

Theorem 8. In the random oracle model, suppose that there exists a (t, qK , qH , ε)-adversary against the IND-
WID-CPA security of Π ′ (with hierarchy depth L) then there exists a (t′, qK , ε

′)-adversary against the IND-
sWID-CPA security of Π, where t′ ≤ t and

ε′ ≥ ε

(L+ 1)(qH + qKL+ 1)L
− (qH + qKL+ 1)2

|ID|
.

Proof. Suppose there exists a (t, qK , qH , ε)-adversary A = (A1,A2) against the IND-WID-CPA security of Π ′.
We construct an IND-sWID-CPA adversary B = (B0,B1,B2) against Π that uses A as a subroutine. The
algorithm B0 runs as follows:

1. B0 chooses ˆ̀∗ $← {0, 1, . . . , L} and ˆctr
$← {0, 1, . . . , qH + qKL + 1}. B0 computes the challenge pattern

P̂ ∗ ← (P̂ ∗1 , . . . , P̂
∗
ˆ̀∗) where

P̂ ∗i ←

{
* if ˆctr = 0

ID if ˆctr 6= 0 where ID
$← ID

B0 outputs P̂ ∗.

The challenger now issues the master public key mpk to the adversary. Algorithm B1 run as follows:

1. B1 receives the master public key mpk .
2. B1 initialises a set of lists Ti to answer the random oracle queries for the hash function Hi. These lists are

initially empty. For each list, B1 initialises a counter ctr i ← 1.
3. B1 runs A1 on mpk . B1 answers A1’s oracle queries as follows:

– Suppose A1 queries the random oracle Hi on input ID . If Ti[ID ] is defined, then B1 returns Ti[ID ].

Otherwise, if ctr i = ˆctr i, then B1 sets Ti[ID ] ← P̂ ∗i , else B1 sets Ti[ID ]
$← ID. In either case, B1

increments ctr i by one and returns Ti[ID ].
– Suppose A1 queries the key derivation oracle on ID = (ID1, . . . , ID`). B1 computes the hashed identity

ID ′ = (ID ′1, . . . , ID ′`) where ID ′i ← Hi(ID i) using the random oracle algorithm defined above. B1 queries
its own key derivation oracle on the input ID ′ and returns to the result to A1.

A1 terminates by outputting a challenge pattern P ∗ = (P ∗1 , . . . , P
∗
`∗) and two equal-length messages (m0,m1).

4. If `∗ 6= ˆ̀∗, if there exists i ∈ W (P̂ ∗) such that P ∗i 6= *, or if there exists 1 ≤ i ≤ `∗ such that i /∈ W (P̂ ∗)

and Hi(P
∗
i ) 6= P̂ ∗i , then B1 aborts.

10 These L independent random oracles (H1, . . . , HL) can easily be constructed from a single random oracle H, e.g. by
setting Hi(·) = H([i]‖·) where [i] is a fixed-length representation of the integer i.
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5. B1 outputs the two messages (m0,m1).

The challenger computes the challenge ciphertext C∗ (which is the encryption of mβ for some randomly chosen

β
$← {0, 1}). This value is input to algorithm B2 which runs as follows:

1. B2 runs A2 on the input C∗. If A2 makes any oracle query, then they are answered as above. A2 outputs a
bit β′.

2. B2 outputs β′.

B wins the IND-sWID-CPA game if (1) A wins the IND-WID-CPA game; (2) B does not abort because the
challenge pattern it outputs is incorrect; (3) A does not force B to make an illegal key derivation oracle query.
The idea is that the counters ˆctr i are B’s guess as to which oracle query will define the challenge patterns (where
a counter values of ˆctr i = 0 means that that position is a wildcard). We require that for each of the hash oracles
provides no collisions – i.e. for each ID 6= ID ′ we have Hi(ID) 6= Hi(ID ′). Since such a collision could only
occur by accident, the probability is bounded by (qH + qKL + 1)2/|ID| as there exists at most qH + qKL + 1
entries in all the lists. We exclude the possibility this occurs by losing an additive factor of (qH + qKL)2/|ID|
in the security reduction.

Furthermore, we require that the algorithm B correctly identifies the pattern that A outputs. Since the
values are chosen at random, we have that ˆ̀∗ = `∗ with probability 1/(L + 1) and that the ˆctr i value will be
correct with probability 1/(qH + qKL+ 1). If B correctly guesses these values and there are no hash collisions,
then A will never force B to make an illegal key derivation query. Hence, the result of the theorem holds. ut

The above theorem is easily seen to extend to the case of converting an IND-sWID-CCA scheme into an
IND-WID-CCA scheme, with an appropriate alteration of the error term in the advantage statement; to take
into account the number of decryption oracle queries. Indeed adversary B is modified so that when it obtains a
decryption query it first hashes the identities to produce a decryption query suitable for A. Such a simulation
will fail if and only if the hashed identity is equivalent to the challenge identity for A, but this would imply a
collision in the random oracle.

6 IND-WID-CCA Secure WIBEs

In this section, we present constructions for IND-WID-CCA secure WIBEs. We present one generic trans-
form from an IND-WID-CPA WIBE into an IND-WID-CCA WIBE based on the Canetti-Halevi-Katz trans-
form [CHK04] and a generic random-oracle-based transform from an OW-WID-CPA WIBE into an IND-WID-
CCA WIB-KEM based on a transform of Dent [Den03].

6.1 The Canetti-Halevi-Katz Transform

In this section, we construct a variant of the Canetti-Halevi-Katz transform [CHK04] to convert an IND-WID-
CPA secure WIBE with hierarchy depth L + 1 into an IND-WID-CCA secure WIBE with hierarchy depth L,
using a one-time signature scheme (see Section 2.3).

In order to complete this transform, we will make liberal use of an “encoding” function Encode. We will
need to restrict the space of allowable identities. We assume that “−” represents some fixed, public-known
allowable identity for the CPA scheme; we will deliberately exclude “−” from the space of allowable identities
in the CCA scheme. We assume that 1k is an allowable identity in the CCA scheme. We then encode a pattern
P = (P1, . . . , P`) and a verification key vk as the L+ 1 level identity:

Encode(P, vk) = (P1, . . . , P`,−, . . . ,−, vk) .

We define a similar map for identities (interpreted as patterns without wildcards).
Given an IND-WID-CPA WIBE scheme Π = (Setup,KeyDer,Encrypt,Decrypt) with hierarchy depth L+1, we

define an IND-WID-CCA WIBE Π ′ = (Setup,KeyDer,Encrypt′,Decrypt′) with hierarchy depth L. This scheme
is described in Figure 7. The encryption algorithm now produces ciphertexts which are (a) encrypted under the

pattern Encode(P, vk) for a randomly generated (sk , vk)
$← SigGen, and (b) signed using sk . The decryption

algorithm checks the signature and (if correct) decrypts the ciphertext using a key for an identity which matches
Encode(P, vk) (using the valid identity 1k in place of wildcards).
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Algorithm Encrypt′(mpk , P,m):

(sk , vk)
$← SigGen

P ′ ← Encode(P, vk)

C′
$← Encrypt(mpk , P ′,m)

σ
$← Sign(sk , (P,C′))

C ← (vk , C′, σ)
Return C

Algorithm Decrypt′(dID , C):
Parse C as (vk , C′, σ)
If Verify(vk , C′, σ) = ⊥ then return ⊥
For i equals 1 to |P | − |ID |

If P|ID|+i 6= * then ID ′i ← P|ID|+i
If P|ID|+i = * then ID ′i ← 1k

For i equals 1 to L− |P |
ID ′|P |−|ID|+i ← −

ID ′L−|ID|+1 ← vk

d
$← KeyDer(dID , ID

′)
m← Decrypt(d , C)
Return m

Fig. 7. The Canetti-Halevi-Katz transform.

Theorem 9. Suppose that there exists a (t, qK , qD, ε)-adversary against the IND-WID-CCA security of the
WIBE Π ′ then there exists a (tw, qK + qD, εw)-adversary against the IND-WID-CPA security of Π and a
(ts, εs)-adversary against the one-time unforgeability of the signature scheme, where

tw ≤ t+ tSigGen + tSign + qD(tVerify + tDecrypt) ,

ts ≤ t+ tSetup + tEncrypt + qK · tKeyDer + qD · tDecrypt ,

ε ≥ εw + 2εs ,

where tALG is the time to execute the algorithm ALG.

Proof. The proof closely follows that of [CHK04]. Let A be an IND-WID-CCA adversary against the scheme
Π ′. Suppose P ∗ is the challenge pattern that A chooses and (vk∗, C∗, σ∗) is the challenge ciphertext that A
receives during an execution of the attack game. Let Forge be the event that at some point during its execution
A queries the decryption oracle on an identity ID ∈* P ∗ and a ciphertext of the form (vk∗, C, σ) such that the
algorithm Verify(vk∗, C, σ) returns >. Then we have that A’s advantage is∣∣2 · Pr [A wins ]− 1/2

∣∣ ≤ ∣∣2 · Pr [A wins | ¬Forge ]− 1
∣∣+ 2 · Pr [Forge ] .

Claim. Pr [Forge ] ≤ εs.

We describe an algorithm B = (B1,B2) which breaks the one-time unforgeability of the signature scheme if
the event Forge occurs. The algorithm B1 runs as follows:

1. B1 receives vk∗ as input.

2. B1 generates a master key pair (mpk ,msk)
$← Setup.

3. B1 runs A1 on mpk . If A1 makes a decryption or key derivation oracle query, then B1 answers it using its
knowledge of the master private key msk . B1 outputs a challenge pattern P ∗ and two equal-length messages
(m0,m1).

4. If A1 submitted a decryption oracle query (vk∗, C, σ) for which Verify(vk∗, C, σ) = >, then B1 chooses a
ciphertext C∗ 6= C and returns C∗. This is known as the error event.

5. Otherwise, B1 chooses β
$← {0, 1}, computes C∗

$← Encrypt(mpk ,Encode(P ∗, vk∗),mβ) and returns C∗.

The challenger then computes a signature σ∗ on the “message” C∗. This is input to the algorithm B2 described
as follows:

1. B2 receives σ∗ as input.
2. If the error event occurred during the first phase, then B2 outputs (C, σ).
3. Otherwise B2 runs A2 on the input (vk∗, C∗, σ∗). If A2 makes a key derivation or decryption oracle query,

then B2 answers them using its knowledge of the master private key msk . B2 outputs a bit β′.
4. If A2 submitted a decryption oracle query (vk∗, C, σ) for which Verify(vk∗, C, σ) = >, then B2 outputs

(C, σ). Otherwise B2 outputs the error symbol ⊥.
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Algorithm B is designed to output a valid forgery if the event Forge occurs. If A1 makes a valid decryption
oracle query on (vk∗, C, σ), then the error event occurs, and B trivially wins. If A2 makes a valid decryption
oracle query on (vk∗, C, σ), then, since A2 is forbidden from making a decryption oracle query on (vk∗, C∗, σ∗),
B wins after A finishes its execution. Hence, we have εs = Pr [Forge ].

Claim.
∣∣2 · Pr [A wins | ¬Forge ]− 1

∣∣ ≤ εw.

We describe an algorithm B′ = (B′1,B′2) which breaks the IND-WID-CPA security of the WIBE scheme Π
whenever A wins and Forge did not occur. Algorithm B′1 runs as follows:

1. B′1 receives a master public key mpk as input.

2. B′1 generates (vk∗, sk∗)
$← SigGen.

3. B′1 run A1 on mpk . If A1 makes a key derivation oracle query on identity ID , then B1 makes a key deriva-
tion oracle query on ID and returns the result. If A1 makes a decryption oracle query on identity ID and
ciphertext (vk , C, σ), then B′1 returns ⊥ if vk = vk∗ or if Verify(vk , C, σ) = ⊥. Otherwise, B′1 computes
the extension identity ID ′ required so that ID‖ID ′ matches the pattern Encode(P, vk) as in the decryp-
tion algorithm, queries the key extraction algorithm on ID‖ID ′ to obtain a decryption key d and returns
Decrypt(d , C). A1 outputs a pattern P ∗ and two equal-length messages (m0,m1).

4. B′1 returns the challenge pattern Encode(P ∗, vk∗) and the messages (m0,m1).

The challenger will pick a random β
$← {0, 1} and computes the ciphertext

C∗
$← Encrypt(mpk ,Encode(P ∗, vk∗),mβ).

This ciphertext is input to the algorithm B′2 below:

1. B′2 receives the ciphertext C. B′2 computes σ∗
$← Sign(sk∗, C∗).

2. B′2 runs A2 on the ciphertext (vk∗, C∗, σ∗). All oracle queries are answered in exactly the same way as in
the the first phase. A2 outputs a bit β′.

3. B′2 outputs β′.

It is clear that as long as B′ does not make an illegal key derivation oracle query, then B′ wins if and only if
A wins (assuming that Forge does not occur). B′ may make key derivation oracle queries in response to A
making a key derivation oracle query or a decryption oracle query. If A makes a decryption oracle query on
an identity ID and ciphertext (vk , C, σ) then B′ makes a key derivation query on Encode(ID‖ID ′, vk); however
Encode(ID‖ID ′, vk) 6∈* Encode(P ∗, vk∗) as both encodings are (L+ 1)-bits long and vk 6= vk∗ since Forge does
not occur. Furthermore, if A makes a key derivation oracle query on an identity ID then, by definition, we have
ID 6∈* P ∗. We need to show that ID 6∈* Encode(P ∗, vk∗). This is true as:

– if |ID | > |P ∗| then ID and Encode(P ∗, vk∗) do not agree at level |P ∗|+ 1 (where Encode(P ∗, vk∗) is defined
to be “−” and ID cannot be defined to be “−” since it was excluded from the message space);

– if |ID | ≤ |P ∗| then ID 6∈* Encode(P ∗, vk∗) as Encode(P ∗, vk∗)i = P ∗i for levels 1 ≤ i ≤ |ID | and ID 6∈* P ∗.

Hence, A never forces B′ to make an illegal key derivation oracle query and so B′ wins whenever A. Thus,∣∣2 · Pr [A wins | ¬Forge ]− 1
∣∣ ≤ εw .

A combination of the two claims gives the theorem. ut

Applying the transformation to Waters-WIBE. We may optimise the CHK transform in the particular
case of the Wates-WIBE scheme describe in Section 5.3. In particular, there is no implicit functional reason
why we have to fix the encoded identity using “−” strings, as it is possible to determine a key for which the
(L+ 1)-th level is fixed to vk while leaving lower levels undetermined. In particular, we obtain the scheme given
in Figure 8 which is IND-CCA secure and has depth L. We assume (for simplicity) that verification keys vk are
n-bits long.



26

Algorithm Setup:

g1, g2
$← G ; α

$← Zp
h1 ← gα1 ; h2 ← gα2

ui,j
$← G for i = 1, . . . , L+ 1; j = 0 . . . n

mpk ← (g1, g2, h1, u1,0, . . . , uL+1,n)
msk ← h2

Return (mpk ,msk)

Algorithm KeyDer(d(ID1,...,ID`), ID`+1):
Parse d(ID1,...,ID`) as (d0, . . . , d`)

r`+1
$← Zp

d ′0 ← d0 · F`+1(ID`+1)r`+1

d ′`+1 ← g
r`+1
1

Return (d ′0, d1, . . . , d`, d
′
`+1)

Algorithm Encrypt(mpk , P,m):
Parse P as (P1, . . . , P`)

r
$← Zp ; C1 ← gr1

For i = 1 . . . ` do
If i /∈W (P ) then C2,i ← Fi(ID i)

r

If i ∈W (P ) then C2,i ← (uri,0, . . . , u
r
i,n)

(sk , vk)
$← SigGen

C2,L+1 ← FL+1(vk)r

C3 ← m · ê(h1, g2)r

σ ← Sign(sk , (P,C1, C2,1, . . . , C2,`, C2,L+1, C3))
Return (vk , P, C1, C2,1, . . . , C2,`, C2,L+1, C3, σ)

Algorithm Decrypt(d(ID1,...,ID`), C):
Parse d(ID1,...,ID`) as (d0, . . . , d`)
Parse C as (vk , P, C1, C2,1, . . . , C2,`, C2,L+1, C3, σ)
If Verify(vk , (P,C1, C2,1, . . . , C2,`, C2,L+1, C3), σ) =⊥ then

Return ⊥
For i = 1, . . . , ` do

If i /∈W (P ) then C′2,i ← C2,i

If i ∈W (P ) then
Parse C2,i as (v0, . . . , vn)
C′2,i ← v0

∏
i∈[IDi] vi

m′ ← C3 ·
ê(g1,C2,L+1)·

∏`
i=1 ê(di,C

′
2,i)

ê(C1,FL+1(vk))·ê(C1,d0)

Return m′

Fig. 8. The IND-WID-CCA Waters WIBE scheme.

6.2 The Dent KEM Transform

One approaching to building systems secure against adaptive chosen ciphertext attacks is to transform a weakly-
secure (OW-WID-CPA) WIBE scheme into a strongly-secure (IND-WID-CCA) WIB-KEM scheme. This obvi-
ously gives rise to an IND-WID-CCA WIBE scheme when combined with a suitably secure DEM (see Sections 2.9
and 4). We apply an analogue of the transformation of Dent [Den03].

Suppose Π = (Setup,KeyDer,Encrypt,Decrypt) be an OW-WID-CPA WIBE scheme (see Section 3.2) with
a finite message space M. We assume that the Encrypt algorithm uses random values taken from a set R. We

can write Encrypt as a deterministic algorithm C ← Encrypt(mpk , P,m; r) where r
$← R. We require that the

scheme satisfies a notion of randomness called γ-uniformity.

Definition 13. A WIBE scheme Π is γ-uniform if for all master public keys mpk that could be output by the
key generation algorithm, for all patterns P , for all messages m and ciphertexts C, we have

Pr [Encrypt(mpk , P,m; r) = C ] ≤ γ,

where the probability is taken over the choice of the randomness r used in the encryption function.

The only difficulty in applying the method of Dent [Den03] is that we must re-encrypt the recovered message
as an integrity check. In the WIBE setting, this means we must know the pattern under which the message
was originally encrypted. Recall, that the set W (C) = {i ∈ Z : Pi = *} of the pattern P used to encrypt the
message, along with the length ` of the pattern, is easily derived from the ciphertext. We use this information
to give an algorithm P, which on input (ID , C), where C is a ciphertext and ID = (ID1, . . . , ID`), returns the
pattern P = (P1, . . . , P`) where

Pi =

{
* if i ∈W (C)

idi if i /∈W (C)

We transform the WIBE scheme Π = (Setup,KeyDer,Encrypt,Decrypt) with a finite message space M and
hierarchy depth L into a WIB-KEM scheme Π ′ = (Setup,KeyDer,Encap,Decap) using two hash functions:

H1 : ({0, 1}n ∩ {*})∗ × {0, 1}∗ → R
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and

H2 : {0, 1}∗ → {0, 1}λ .

The complete scheme is given in Figure 9.

Algorithm Encap(mpk , P ):
m←M
r ← H1(P,m)
C ← Encrypt(mpk , P,m; r)
K ← H2(m)
Return (C,K)

Algorithm Decap(dID , C):
m← Decrypt(dID , C)
P ← P(ID , C)
r ← H1(P,m)
C′ ← Encrypt(mpk , P,m; r)
If C = C′ then return m
Otherwise return ⊥

Fig. 9. The Dent transform.

Theorem 10. Suppose that there exists a (t, qK , qD, qH , ε)-adversary, in the random oracle model, against the
IND-WID-CCA security of the WIB-KEM Π ′ then there exists a (t′, qK , ε

′)-adversary against the OW-WID-
CPA security of the WIBE Π, where

ε′ ≥ ε− qD(|M|−1 + γ)

qH + qD
t′ ≤ t+ qHtEncrypt

where tEncrypt is the time taken to perform an encryption, Π has finite message space M, and Π is γ-uniform.

Proof. Suppose there exists a (t, qK , qD, qH , ε)-adversary A = (A1,A2) against the IND-WID-CCA security of
the WIB-KEM in the random oracle model. We construct an adversary B = (B1,B2) against the OW-WID-CPA
security of the WIBE. The algorithm B1 runs as follows:

1. B1 receives a master public key mpk .
2. B1 initialises three lists T1, E1, and T2 which are initially set to be empty.
3. B1 runs A1 on mpk . B1 answers A1’s oracle queries as follows:

– Suppose A1 queries the H1-oracle on input (P,m). If T1[P,m] is defined, B1 returns T1[P,m]. Otherwise,

B1 chooses r
$← R, sets T1[P,m]← r, sets E1[P,m]← Encrypt(mpk , P,m; r), and returns r.

– Suppose A1 queries the H2-oracle on input r. If T2[r] is defined, B1 returns T2[r]. Otherwise, B1 chooses

K
$← {0, 1}λ, sets T2[r]← K, and returns K.

– Suppose A1 queries the key derivation oracle on the input ID . B1 forwards this request to its own key
derivation oracle and returns the result.

– Suppose A1 queries the decryption oracle on the identity ID and the ciphertext C. B1 searches the list
T1 for an entry C = E1[P,m] where P = P(ID , C). If no such entry exists, then B1 returns ⊥. Otherwise,
B1 computes K ← H2(m) as above and returns K.

The adversary outputs a challenge pattern P ∗.
4. B1 outputs the challenge pattern P ∗.

The challenger then computes a challenge encryption C∗
$← Encrypt(mpk , P ∗,m∗; r∗) for m∗

$←M and r∗
$← R.

This ciphertext is input to the algorithm B2:

1. B2 receives C∗.
2. B2 generates K∗

$← {0, 1}λ.
3. B2 runs A2 on the input (C∗,K∗). If A2 queries any oracle, then B2 answers these queries as before. A2

outputs a bit β′.
4. B2 randomly chooses a defined entry for one of the hash functions, either T1[P,m] or T2[m], and outputs m.
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The basic strategy of this security proof is to take advantage of the fact that the only way that A can determine
if C∗ is an encapsulation of K∗ is to query the H2-oracle on m∗. However, we first have to show that the
simulated hash function, key derivation, and decryption oracles are consistent with the real IND-WID-CCA
game.

The simulated key derivation oracle is perfect, as is the hash function oracle, with the exception that the
hash function oracle fails to respond to correctly to an H1-oracle query on (P ∗,m∗) or a H2-oracle query on
m∗. However, the decryption oracle is more problematic. There are two types of error event that can occur with
the decryption oracle:

– The decryption oracle will respond incorrectly if A1 queries the oracle on an identity ID ∈* P ∗ and the
ciphertext C∗. However, since m∗ is information theoretically hidden from A1, this occurs with probability
at most 1/|M|.

– The decryption oracle will respond incorrectly if A queries the decryption oracle on an identity ID and a
ciphertext C for which T1[P,m] is undefined, where P ← P(ID , C) and m← Decrypt(dID , C), but for which

C = Encrypt(mpk ,P(ID , C),m;T1[P,m])

where T1[P,m] is randomly chosen at the end of the game if it is not defined later by an adversarial query.
Since T1[P,m] is randomly chosen and Π is γ-uniform, we have that this occurs with probability γ.

We have that the probability that either of these events occurs is therefore bounded by qD(|M|−1+γ). Assuming
none of these events occur, we have that the simulation is perfect unless A1 makes a query which defines the hash
function values T1[P ∗,m∗] or T2[m∗]. Since A cannot determine whether K∗ is the correct key for C∗ without
querying the H2-oracle on m∗, we have that this event will occur with probability at least ε− qD(|M|−1 + γ).
However, if this event occurs, then B will win the OW-WID-CPA with probability at least 1/(qH +qD) (as there
exists at most qH + qD entries on T1 and T2). Hence, B wins with probability at least

ε′ ≥ ε− qD(|M|−1 + γ)

qH + qD

which gives the theorem. ut

Acknowledgements

We would like to thank Brent Waters, the anonymous referees of ICALP 2006, and the anonymous referees of
the Journal of Cryptology for their valuable input. We also thank Mihir Bellare for pointing out the relation
between WIBE and fuzzy identity-based encryption.

The first author was supported in part by the French ANR-07-TCOM-013 PACE Project. The sixth author
was supported in part by the Concerted Research Action (GOA) Ambiorics 2005/11 of the Flemish Government.
The eighth author is supported by a Royal Society Wolfson Merit Award. The work in this paper was conducted
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