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Announcements

* Final project presentations on
— Tuesday Dec 11 16:15-19:15 Salle U/V (the standard class time and location)
— Wednesday Dec 12 15:00-18:00 Salle Vertel

INRIA, 23 Av. d’Italie, 75013. See the the schedule linked from the class
webpage for instructions on how to get there.

 See the schedule linked from:
http://www.di.ens.fr/willow/teaching/recvis12/

* If you need a swap arrange it with someone today in the class and
email me.

* Final project report deadline is on December 23,



MVA Itnernships (MVA stage)

* MVA internships in computer vision at Willow
are listed here:

http://www.di.ens.fr/willow/teaching/recvis12/
internships/

Talk to us, if you are interested in an internship.

The internship can lead to a PhD in computer
vision in willow.



http://www.di.ens.fr/willow/teaching/recvis12/internships/

2013 Computer Vision Internships in the
Willow Group

We are looking for strongly motivated candidates with interest in computer vision and applications of machine
learning to computer vision problems. Good background in applied mathematics, strong programming skills and
prior experience with Matlab are required. The internships can lead to a PhD in the Willow Group.

Proposed internship topics:
1. Large-scale image classification and object detection with Deep Convolutional Neural Networks
2. Predicting actions in places
3. Triangulation de nuages de points

We will assign topics to qualified students in the first-come, first-served basis. To apply, please send us your
CV and come to visit us in the lab to discuss the topics.

1. Large-scale image classification and object detection with
Deep Convolutional Neural Networks

Project supervisors: Leon Bottou <leon@bottou.org>, lvan Laptev <lvan.Laptev@ens.fr> and Josef Sivic
<Josef.Sivic@ens.fr>
Location: Willow Group, Laboratoire d'Informatique de I'Ecole Normale Supérieure




How to give a talk and write a paper

Slides by Bill Freeman, MIT:

http://www.di.ens.fr/willow/teaching/recvis12/slides/
lecture23TalksAndPapers.pdf

Lecture notes by Bill Freeman, MIT:

http://www.di.ens.fr/willow/teaching/recvis12/slides/
slideNotes23TalksPapers.pdf

Other sources:
http://www.cs.berkeley.edu/~messer/Bad talk.html
http://www-psych.stanford.edu/~lera/talk.html




High order bit: prepare

 Practice by yourself.

* (1ve practice versions to your friends.

* Think through your talk.

* You can write out verbatim what you want
to say in the difficult parts.

* Ahead of time, visit where you’ll be giving |

the talk and 1dentify any issues that may
come up.

* Preparation is a great cure for nervousness.

http://www.di.ens.fr/willow/teaching/recvis12/slides/lecture23TalksAndPapers.pdf

Slides by W. Freeman



Some bad news...

The more you work on a talk, the better it
gets: if you work on it for 3 hours, the talk
you give will be better than if you had only
worked on it for 2 hours. If you work on it
for 5 hours, it will be better still. 7 hours,

better yet...

Slides by A. Torralba



All talks are important

There are no unimportant talks.
There are no big or small audiences.

Prepare each talk with the same enthusiasm.

Slides by A. Torralba



How to give a talk

Delivering:

Look at the audience! Try not to talk to your laptop or

to the screen. Instead, look at the other humans in
the room.

You have to believe in what you present, be confident...
even if it only lasts for the time of your presentation.

Do not be afraid to acknowledge limitations of
whatever you are presenting. Limitations are good.
They leave job for the people to come. Trying to hide

the problems in your work will make the preparation

of the talk a lot harder and your self confidence will
be hurt.

Slides by A. Torralba



The different kinds of talks you’ll have to give as
a researcher

* 2-5 minute talks
e 20 -30 minute conference presentations
* 30-60 minute colloquia

Slides by A. Torralba



Very short talks

» Rehearse it.

« Cut things out that aren’t essential. You can refer to them
at a high level.

* You might focus on answering just a few questions, eg:
what 1s the problem? Why is it interesting? Why is it
hard?

« Typically these talks are just little advertisements for a

poster or for some other (longer) talk. So you just need to

show people that the problem is interesting and that you’re
fun to talk with.

» These talks can convey important info--note popularity of
SIGGRAPH fast forward session.

http://groups.csail.mit.edu/vision/courses/6.869/lectures/

lecture23TalksAndPapers.pdf Slides by W. Freeman




In your talk try answering the
following questions

nat problem did you address?
ny is it interesting?
ny is it hard?

S 2 ==

nat was the key to your approach?
* How well did it work?

http://www.di.ens.fr/willow/teaching/recvis12/slides/lecture23TalksAndPapers.pdf

Slides by W. Freeman



See more at:

Writing papers and giving talks

Bill Freeman
MIT CSAIL

May 2, 2011

http://www.di.ens.fr/willow/teaching/recvis12/slides/lecture23TalksAndPapers.pdf




Sources on writing technical papers

How to Get Your SIGGRAPH Paper Rejected, Jim Kajiya, SIGGRAPH

1993 Papers Chair, http://www.siggraph.org/publications/instructions/
rejected.html

Ted Adelson's Informal guidelines for writing a paper, 1991. http://
www.ai.mit.edu/courses/6.899/papers/ted.htm

Notes on technical writing, Don Knuth, 1989.

http://www.ai.mit.edu/courses/6.899/papers/knuthAll.pdf

What's wrong with these equations, David Mermin, Physics
Today, Oct., 1989. http://www.ai.mit.edu/courses/6.899/papers/
mermin.pdf

Ten Simple Rules for Mathematical Writing, Dimitri P. Bertsekas
http://www.mit.edu:8001/people/dimitrib/Ten_Rules.html

Slides by A. Torralba



Today: Scenes and objects

. Scenes as textures (without modeling objects and their

relations)

. Objects within a scene

Recognizing multiple objects in an image.



What is a scene?

The texture

The object he Scene

Slides by A. Torralba



Slides by A. Torralba



Slides by A. Torralba




Slides by A. Torralba




A VIEW OF A PARK ON A NICE SPRING DAY

Slides by A. Torralba
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Slides by A. Torralba



WS VS

“By scene we mean a place in which a human can act within, or a place to which a human
being could navigate. Scenes are a lot more than just a combination of objects (just as

objects are more than the combinations of their parts). Like objects, scenes are
associated with specific functions and behaviors, such as eating in a restaurant, drinking
in a pub, reading in a library, and sleeping in a bedroom.” — A. Torralba

Slides by A. Torralba



Scene views vs. objects
ph of a firehydrant
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Slides by A. Torralba



Part |: Scenes as textures

(No explicit modeling of objects and their
relations)

Slides by A. Torralba



Global and local representations

building

= Urban street scene

== sSidewalk
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Slides by A. Torralba



Global and local representations
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Slides by A. Torralba




Global scene representations

Bag of words Spatially organized textures
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e M. Gorkani, R. Picard, ICPR 1994
) A. Oliva, A. Torralba, 1JCV 2001

Sivic et. al., ICCV 2005

Fei-Fei and Perona, CVPR 2005
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Spatial structure is important in order to provide context for object localization

R. Datta, D. Joshi, J. Li, and J. Z. Wang, Image Retrieval: Ideas, Influences, and Trends of the New Age, ACM
Computing Surveys, vol. 40, no. 2, pp. 5:1-60, 2008.

Slides by A. Torralba



Gist descriptor

Oliva and Torralba, 2001
mess HEEE oo
over different scales
e Average filter energy
in each bin
LT

Similar to SIFT (Lowe 1999) applied to the entire image

M. Gorkani, R. Picard, ICPR 1994; Walker, Malik. Vision Research 2004; Vogel et al. 2004;
Fei-Fei and Perona, CVPR 2005; S. Lazebnik, et al, CVPR 2006; ...

8 orientations

. 4 scales
x 16 bins
. 512 dimensions

Slides by A. Torralba



Gist descriptor

Steerable

Slides by A. Torralba



Gist descriptor

Steerable
pyramid

V = {energy at each orientation and
scale} = 6 x 4 dimensions

7 80 features

— vl —PCA —>
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Oliva, Torralba. IJCV 2001

Slides by A. Torralba



Global features (I) ~ global features (I’) Oliva & Torralba (2001)



Textons (review)

Kmeans over a set of

vectors on a collection
Vector of filter responses of images

at each pixel

I ——>

Filter bank

Slides by A. Torralba Malik, Belongie, Shi, Leung, 1999



Textons (review)

Filter bank K-means (100 clusters)

best match
# occurences
in image
label = beoom universal textons
%% = 417x 108
# occurences
in image
label = beach universal textons  \Walker, Malik, 2004

Slides by A. Torralba



Bag of words (review)
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Slides by A. Torralba



Bag of words &
spatial pyramid matching (review)

Sivic, Zisserman, 2003. Visual words = Kmeans of SIFT descriptors

Slides by A. Torralba S. Lazebnik, et al, CVPR 2006



Scene categorization

Can we use this representation to categorize
scenes?

Slides by A. Torralba



The 15-scenes benchmark

Oliva & Torralba, 2001
Fei Fei & Perona, 2005
Lazebnik, et al 2006

Store
Slides by A. Torralba

Industrial



SVM (review)

A Support Vector Machine (SVM) learns a classifier with the form:

M

H (l) — Z A Ym k ( €I, T m)

m=1

Where {x.,, y,,}, form =1...M, are the training data with x_, being

the input feature vector and y,, = +1,-1 the class label.

k(x, x.,) is the kernel and it can be any symmetric function satisfying the Mercer
Theorem.

The classification is obtained by thresholding the value of H(x).

There is a large number of possible kernels, each yielding a different
family of decision boundaries:

* Linear kernel: k(x, x.,) = x" x,
* Radial basis function: k(x, x_) = exp(=|x = x.,|%/0?).
* Histogram intersection: k(x,x,,) = sum.(min(x(i), x.(i)))

Slides by A. Torralba



Scene recognition

100 training samples per class

SVM classifier in all cases

Pixels: Gaussian kernel
Gist: Gaussian kernel
Bag of words: Histogram intersection

Pyr: Pyramid matching kernel
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Slides by A. Torralba



Large Scale Scene Recognition

Urban Nature Indoor

> 400 categories

Water scenes Rugged places Green spaces

>140,000 images
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Slides by A. Torralba Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010
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Urban Nature
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Per

Slides by A. Torralba
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Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010



Training images

Airplane cabin

Airport terminal

Alley

Amphitheater

Slides by A. Torralba Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010



Training images Correct classifications

Airplane cabin

Airport terminal

Alley

Amphitheater

Slides by A. Torralba Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010



Airplane cabin

Airport terminal

Alley

Amphitheater

Slides by A. Torralba

Training images Correct classifications Miss-classifications
Monastery  Cathedral Castle

Subway Stage  Restaurant

Harbor Coast

Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010



Categories or a continuous space?

From the city to the mountains in 10 steps

Slides by A. Torralba



MVA internship topic:

1. Large-scale image classification and object detection with
Deep Convolutional Neural Networks

Project supervisors: Leon Bottou <leon@bottou.org>, lvan Laptev <lvan.Laptev@ens.fr> and Josef Sivic

<Josef.Sivic@ens.fr>

Location: Willow Group, Laboratoire d'Informatique de I'Ecole Normale Supérieure
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Recall: Similar classification pipeline
has been used for object classification
(lecture 4, C. Schmid)

Experimental results

« Datasets

— ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC)
* 1000 classes and 1.4M images

— ImageNet10K dataset
* 10184 classes and ~ 9 M images

e A RS

L QL A Al D

y )‘ - ." " )
S it

TN

- Anise (92.45% b) Gey

ar Anise (92.4 (b ¢) Pulp Mag 83.0 (d) Carrycot (81.48%
eyl —
r - -
) Pamtbrush ( (h) Mountamn Tent (0.00%)

gallinule (15




Recall: Similar classification pipeline
has been used for object classification
(lecture 4, C. Schmid)

Experimental results

 Features: dense SIFT, reduced to 64 dim with PCA

* Fisher vectors
— 256 Gaussians, using mean and variance
— Spatial pyramid with 4 regions
— Approx. 130K dimensions (4x [2x64x256])
— Normalization: square-rooting and L2 norm

« BOF: dim 1024 + R=4
— 4960 dimensions
— Normalization: square-rooting and L2 norm



Recent break-through by neural networks?

Recent work [Krizhevsky12] (to appear at NIPS’12) have shown
that significant performance gains on the ImageNet
benchmark can be obtained by a vastly different architecture
based on a deep convolutional neural network (Recall lecture

7, by N. Le Roux)

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton Model Top-l TOp-S
University of Toronto University of Toronto University of Toronto -
kriz@cs.utoronto.ca ilyal@cs.utoronto.ca hinton@cs.utoronto Sparse COdH’lg [2] 47.1% 28.2%

SIFT + FVs [24] | 45.7% | 25.7%
CNN 37.5% | 17.0%

Abstract

Table 1: Comparison of results on ILSVRC-

We trained a ]arge, deep convolutional neural network to classnfy the 1.2 mnllngn 2010 test set. In italics are best results
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif- )

ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% achieved by others.
and 17.0% which is considerably better than the previous state-of-the-art. The



MVA internship topic:

1. Large-scale image classification and object detection with
Deep Convolutional Neural Networks

Project supervisors: Leon Bottou <leon@bottou.org>, lvan Laptev <lvan.Laptev@ens.fr> and Josef Sivic
<Josef.Sivic@ens.fr>

Location: Willow Group, Laboratoire d'Informatique de I'Ecole Normale Supérieure
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Goal

You will experiment with a very recent and, as it appears, groundbreaking approach to image classification
based on deep convolutional neural networks in [Krizhevsky12]. The goals are to replicate the state-of-the-art
results in [Krizhevsky12] and to extend the method to object detection.



Motivation

Recognizing thouthands of object categories from images is a long-standing goal of computer vision. In recent
years the research on large-scale image classification, e.g., [Sanchez11] has been sparked by the large
amounts of now available image data and large-scale datasets such as ImageNet. Convolutional Neural
Network (CNN) based methods exist for several decades, however, until recently the successful applications
of CNNs have been only shown for relatively limited problems such as handwritten digit recognition [LeCun90]
and face detection [Rowley98]. The groundbreaking results of [Krizhevsky12] presented in the Large Scale
Visual Recognition Challenge 2012 Workshop (ILSVRC2012) now indicate that CNN is a highly competitive
tool when powered with lots of image data. It might be that the necessary amount of image data and the critical
processing power of modern GPUs sufficient to train successful CNN classifiers has just been reached and
we are in front of many exciting new applications of CNNs. This internship will investigate this very timely topic
by first re-producing results in [Krizhevsky12], investigating the performance and properties of this method
when applied to other classification tasks, such as PASCCAL VOC, and then extending the classification
method in [Krizhevsky12] to a more challenging task of object detection. This is an exploratory internship topic
in an exciting and emerging area, which may have a significant impact on the current state of visual recognition.

Project description
The project will build on an existing publically available codebase available from [Krizhevsky12] and will
proceed in the following three steps:

1. Understand the approach and the existing code of [Krizhevsky12]. Reproduce their quantitative and
qualitative image classification results on the ImageNet database.

2. Improve image classification accuracy of [Krizhevsky12] by extending their work. The project will
consider different extensions such as enlarging the class of image transformations when “jittering” the
training data.

3. Apply and extend the deep convolutional neural network approach to object detection/localization on the
Pascal VOC dataset.

The project will be co-supervised by Leon Bottou who is one of the world leading experts on neural networks
and large-scale learning.




Project description

The project will build on an existing publically available codebase available from [Krizhevsky12] and will
proceed in the following three steps:

1. Understand the approach and the existing code of [Krizhevsky12]. Reproduce their quantitative and
qualitative image classification results on the ImageNet database.

2. Improve image classification accuracy of [Krizhevsky12] by extending their work. The project will
consider different extensions such as enlarging the class of image transformations when “jittering” the
training data.

3. Apply and extend the deep convolutional neural network approach to object detection/localization on the
Pascal VOC dataset.

The project will be co-supervised by Leon Bottou who is one of the world leading experts on neural networks
and large-scale learning.

Requirements

We are looking for strongly motivated candidates with an interest in computer vision and machine learning. The
project requires strong background in applied mathematics and excellent programming skills. The project will
also involve using and possibly programming GPUs. Prior experience with GPUs will be also useful, but not
required. If we find a mutual, match the project can lead to a Phd at the Willow group.

References

[Krizhevsky09] A. Krizhevsky, |. Sutskever, and G. Hinton. ImageNet Classification with Deep Convolutional
Neural Networks (2012), In Proc. NIPS 2012.

[Sanchez11] J. Sanchez, F. Perronnin. High-dimensional signature compression for large-scale image
classification, In Proc. CVPR 2011.

[LeCun80] Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel. Handwritten
digit recognition with a back-propagation network. in Proc. NIPS 1990.




Exploiting regularities in real-world
scenes



Scenes are uniqgue

Slides by A. Torralba



But not all scenes are so original




But not all scenes are so original

Slides by A. Torralba



Find similar scenes by matching image
descriptors

-

Slides by A. Torralba



Find similar scenes by matching image
descriptors

Query image GIST Top matches
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Nearest neighbors classification

* Given a new test sample, assign the label of
the nearest neighbor

e Class 1

® Class 2 Test sample

. X o’n__-." ™

/
.

a-

from Duda et a/.

Voronoi partitioning of feature space _
Slides by A. Torralba



K-Nearest neighbors classification

Find the K closest points to the test sample
Use labels of the K neighbors to vote

X,

- Black = negative
} .Red = positive k = 5
vt re S . *° Ifquerylands here, the 5
» ° *"5-e+ *.. « NN consist of 3 negatives
.. fex TS and 2 positives, so we

e Y / * ¢ classify it as negative.

- N
‘-\_‘_,—FF .

Source: D. Lowe

Slides by A. Torralba



Transfer information to the input image from
the nearest neighbors

= Nearest neighbors
. | 5 - F!
Input image i ‘.

The space of world images =]

Hays, Efros, Siggraph 2006
Russell, Liu, Torralba, Fergus, Freeman. NIPS 2007 Slides by A. Torralba



Im2gps

Instead of using objects labels, the web provides other kinds of metadata associate to large
collections of images

20 million geotagged and geographic text-labeled images

Slides by A. Torralba Hays & Efros. CVPR 2008



Hays & Efros. CVPR 2008
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Image completion

Original Image Input Criminisi et al. MS Smart Erase

Instead, generate proposals using millions of images
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Slides by A. Torralba (gist+co|or matChing) Hays, EfI"OS, 2007



Scene matching with camera view transformations

to predict scene outside of the image boundaries

[Sivic, Kaneva, Torralba, Avidan, Freeman, PIEEE 2009]
http://www.di.ens.fr/~josef/publications/kaneva09b.pdf



Scene matching with camera view transformations:
Translation

:
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4. Locally align images
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virtual camera
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Scene matching with camera view transformations:
Camera rotation

Input image
m'_r-“—-'ﬂp”
mp

1. Rotate camera

rotation

2. View from the
virtual camera

3. Find a match to fill-in
the missing pixels

5. Display on a cylinder



Scene matching with camera view transformations:
Forward motion

1. Move camera

2. View from the | ' .

virtual camera Stitched zoom

3. Find a match to

oA R el replace pixels



Basic camera motions

Forwardimotion

-+




Exploring famous sites




Predict events

Large database of videos =

[Liu, Yuen, Torralba, Sivic and Freeman, ECCV 2008]

Nearest neighbor video

e _e' X ! ‘}l,.-‘
R - i gl

* Transfer
motion

Adapted from A. Torralba



Motion synthesis results

......

Video of the

Still image best match

Motion synthesis results

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008



Predicting events

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008



Motion synthesis results

Still image

. =X
Video of the
best match

Motion
synthesis
results

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008



Discussion

* Regularities in scene appearance can be used for a number of
applications (label transfer - recognition, scene completion, gps
location prediction, event prediction...)

* Performance depends on the quality of the matches, i.e. is the
particular scene represented in the database?

* Increase database size [Torralba, PAMI 2008].
* Combine multiple database images [Russell et al. NIPS 2009]

* Object-level labeling [Liu et al. CVPR 2009]

However, some “atypical” scenes might still not be represented
well.






Today: Scenes and objects

. Scenes as textures (without modeling objects and their

relations)

. Objects within a scene

Recognizing multiple objects in an image.



Part Il: Objects within a scene (context)

Figure from A. Torralba



Why is context important?

 Changes the interpretation of an object (or its function)

Slides by A. Torralba
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The multiple personalities of a blob

Slides by A. Torralba




The multiple personalities of a blob

Slides by A. Torralba
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o)

Look-Alikes by Joan Steiner

Even in high resolution, we can not shut down contextual processing and it is hard to

recognize the true identities of the elements that compose this scene.
Slides by A. Torralba



Who needs context anyway?
We can recognize objects even out of context

Banksy

Slides by A. Torralba



The importance of context

I
|
|
|

* Cognitive psychology [
— Palmer 1975 | |
— Biederman 1981 = |

|
.

Figure 3. An example of @ rr;pfr violation, The raxi is BiEderma heta I . 81

violating the Probability, Support, and Size relations.

————

L] L]
o C p t Class Context elements Operator
O m u e r VI S I O n SKY ALWAYS ABOVE-HORIZON
SKY SKY-IS-CLEAR A TIME-IS-DAY BRIGHT
SKY SKY-IS-CLEAR A TIME-IS-DAY UNTEXTURED
- N Oto n a n d Sta rk ( 197 1) SKY SKY-IS-CLEAR A TIME-IS-DAY A RGB-IS-AVAILABLE | BLUE
SKY SKY-IS-OVERCAST A TIME-IS-DAY BRIGHT
H SKY SKY-IS-OVERCAST A TIME-IS-DAY UNTEXTURED
— Hanson and Riseman (1978) SKv | SKYIS.OVERCAST A TIME-SDAY A WHITE
RGB-IS-AVAILABLE
B & T b ( 19 78) SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED
— SKY CAMERA-IS-HORIZONTAL NEAR-TOP
a r rOW e n e n a u m SKY CAMERA-IS-HORIZONTAL A ABOVE-SKYLINE
. CLIQUE-CONTAINS(complete-sky)
— SKY CLIQUE-CONTAINS(sky) SIMILAR-INTENSITY
Ohta) ka nade) Ska I ( 1978) SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE
SKY RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky) SIMILAR-COLOR
H | : k 1983 GROUND CAMERA-IS-HORIZONTAL HORIZONTALLY-STRIATED
- a ra IC ( ) GROUND CAMERA-IS-HORIZONTAL NEAR-BOTTOM
GROUND SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGES-FORM-HORIZONT/
St t d F o h I 199 1 GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-FORM-HORIZONTA
— GROUND CAMERA-IS-HORIZONTAL A BELOW-SKYLINE
ra a n I SC e r ( ) CLIQUE—CONTAINS(compIete—ground)
. . GROUND CAMERA-IS-HORIZONTAL A BELOW-GEOMETRIC-HORIZON
— CLIQUE-CONTAINS(geometric-horizon) A
Bobick and Pinhanez (1995) CLIQUE CONTAINS (geometc
GROUND TIME-IS-DAY DARK

Campbell et al (1997)

Slides by A. Torralba

[Strat and Fischler 1989]



Objects and Scenes

Stimuli from Hock, Romanski, Galie, and Williams (1978).

o g e |

Biederman’s violations (1981):

|. Support (e.g., a floating fire hydrant), The object docs nol appear to be resting on & s.u_rflcn_l

2. Interposition (e.g., the background appearing through the hydrant). The objects undergoing this
violation appear 1o be transparem or passing through another object. ’

3. Probabiliry {e.g., the hydrant in a kitchen). The object is unlikely to appear in the scene.

4, Position (e.g., the fire hydrant on top of a mailbox in a sireet scene). The object i& lkely 1o occur
in that scene, but it is unlikely to be in that particular position.

5. Size (e.g., the fire hydrant appearing larger than a building). The object appears lo be oo large
or too small relative to the other objects in the scenc. B et W et




CONDOR system

Strat and Fischler (1991)

Class Context elements Operator
SKY ALWAYS ABOVE-HORIZON
SKY SKY-IS-CLEAR A TIME-IS-DAY BRIGHT
SKY SKY-IS-CLEAR A TIME-IS-DAY UNTEXTURED
SKY SKY-IS-CLEAR A TIME-IS-DAY A RGB-IS-AVAILABLE | BLUE
SKY SKY-IS-OVERCAST A TIME-IS-DAY BRIGHT
SKY SKY-1S-OVERCAST A TIME-IS-DAY UNTEXTURED
SKY SKY-IS-OVERCAST A TIME-IS-DAY A WHITE
RGB-IS-AVAILABLE
SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED
SKY CAMERA-IS-HORIZONTAL NEAR-TOP
SKY CAMERA-IS-HORIZONTAL A ABOVE-SKYLINE
CLIQUE-CONTAINS(complete-sky)
SKY CLIQUE-CONTAINS(sky) SIMILAR-INTENSITY
SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE
SKY RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky) SIMILAR-COLOR
GROUND CAMERA-IS-HORIZONTAL HORIZONTALLY-STRIATED
GROUND CAMERA-IS-HORIZONTAL NEAR-BOTTOM
GROUND SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGES-FORM-HORIZONT/
GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-FORM-HORIZONTA
GROUND CAMERA-IS-HORIZONTAL A BELOW-SKYLINE
CLIQUE-CONTAINS(complete-ground)
GROUND CAMERA-IS-HORIZONTAL A BELOW-GEOMETRIC-HORIZON
CLIQUE-CONTAINS(geometric-horizon) A
- CLIQUE-CONTAINS(skyline)
GROUND TIME-IS-DAY DARK
*  Guzman (SEE), 1968 e Brooks (ACRONYM), 1979
. Noton and Stark 1971 . Marr, 1982
*  Hansen & Riseman (VISIONS), 1978 e Ohta & Kanade, 1978

Barrow & Tenenbaum 1978

o Yakimovsky & Feldman, 1973
Slides by A. Torralba



An Age of Scene Understanding

e f;.':-:l..
- "_'h B3
v RaP P
- P L 3"'\ itk

-!u'.-ln.-ula-la--nl-:-q-adr 4

/ﬁﬁL..

(a} Bomom-up process (b1 Top-down process () Result
[Ohta & Kanade 1978]

Guzman (SEE), 1968 e Brooks (ACRONYM), 1979
Noton and Stark 1971 e Marr, 1982
Hansen & Riseman (VISIONS),  Ohta & Kanade, 1978

1978 * Yakimovsky & Feldman, 1973

Barrow & Tenenbaum 1978
Slides by A. Torralba



What is the context for a single object
category?

Slides by A. Torralba



The influence of an object extends
beyond its physical boundaries

Slides by A. Torralba




Objects in context

Torralba, Sinha (2001) Torralba Murphy Freeman (2004)

Fink & Perona (2003)

C. face b
feature 4

A. eye
feature

from from face
raw detection
image image Sudderth, Torralba, © TENNIS
. = RACKET
Wilsky, Freeman (2005)
B. face D. eye
feature feature —_
from from eye
i;l:‘;e detection
image
Eonion ::I;T:ng:
osItion.
Kumar, Hebert (2005) = | Gaamwm®» =0 N\
Object Image
Camera
Height

Slides by A. Torralba



See also...

Choi, Torralba and Wilsky, PAMI 2012
Tree-based context model for object
recognition

Localization++ Classification-- Localization-- Classification++

Choi, Torralba and Wilsky, PAMI 2012
Tree-based context model for object
recognition

V. Delaitre, I. Laptev and J. Sivic
Action recognition in still images... , BMVC
2010

car

bus chair

erson
P ofa_tvmonitor pottedplant  baat cow

horse  motorbike bicycle sheep train  aeroplane cat bottle




Context models

Independent model

Dependencies among objects

Slides by A. Torralba



Example: 3D scene context

[Hoiem, Efros, Hebert (2005)]

Horizon
Position

Camera

Object Image
Height
Camera

Height

3D Object g

Object World

Object World
Height i

Height




We are wired for 3D

Slides by A. Torralba



We can not shut down 3D perception

Se

TN
[T

I

I

Slides by A. Torralba



3D from pixel values (single view)

D. Hoiem, A.A. Efros, and M. Hebert "Automatic Photo Pop-up”. SIGGRAPH 2005.

A. Saxena, M. Sun, A. Y. Ng. "Learning 3-D Scene Structure from a Single Still Image"
In ICCV workshop on 3D Representation for Recognition (3dRR-07), 2007.

Slides by A. Torralba



Learn Surface Orientations

* User recognition to learn structure of the world from labeled
examples

f\"? p* 4".,.‘.."\ oy e .’m‘i
== : j.',l/ : +

i

Slides b Efros



Label Geometric Classes

e Goal: learn labeling of image into 7 Geometric Classes:
* Support (ground)
* Vertical

— Planar: facing Left (€), Center (), Right (=)
— Non-planar: Solid (X), Porous or wiry (O)
* Sky Slides by Efros




What cues to use?

. ¥__

e e S Y
——
_—

-0
~
B W e
=,
. -~ o .o -

A T S N

Vanishing points, lines

Texture gradient

Slides by Efros



Dataset very general

Slides by Efros



Let’s use many weak cues

e Material

* Image Location

* Perspective

SURFACE CUES

Location and Shape

L1. Location: normalized x and y. mean

L2. Location: norm. x and y, 10" and 90" pectl

L3. Location: norm. y wrt estimated horizon, 10", 90" petl

L4. Location: whether segment is above, below, or straddles estimated horizon
L5. Shape: number of superpixels in segment

L6. Shape: normalized area in image

Color

C1. RGB values: mean

C2. HSV values: C1 in HSV space
C3. Hue: histogram (5 bins)

C4. Saturation: histogram (3 bins)

Texture
T1. LM filters: mean abs response (135 filters)
T2. LM filters: hist. of maximum responses (15 bins)

Perspective

P1. Long Lines: (num line pixels)/sqrt(area)

P2. Long Lines: % of nearly parallel pairs of lines

P3. Line Intersections: hist. over 8 orientations, entropy

P4. Line Intersections: % right of center

P5. Line Intersections: % above center

P6. Line Intersections: % far from center at 8 orientations

P7. Line Intersections: % very far from center at 8 orientations

P8. Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area)
P9. Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area)
P10. Vanishing Points: percent of total line pixels with vertical VP membership
P11. Vanishing Points: x-pos of horizontal VP - segment center (0 if none)
P12. Vanishing Points: y-pos of highest/lowest vertical VP wrt segment center
P13. Vanishing Points: segment bounds wrt horizontal VP

P14. Gradient: x, y center of gradient mag. wit. image cenfgg. | | e
eSS vy it




Need Spatial Support

50x50 Patch
50x50 Patch

Color Texture Perspective Color Texture  Perspective

Slides by Efros



Image Segmentation

* Naive Idea #1: segment the image

— Chicken & Egg problem

* Naive Idea #2: multiple segmentations

— Decide later which segments are good Slides by Efros



Image Labeling

Labeled Segmentations

Labeled Pixels
Slides by Efros



No Hard Decisions

Support Vertical Sky

V-Left V-Center V-Right V-Porous V-Solid



Labeling Results

Input 1image Ground Truth Our Result
Slides by Efros



Labeling Results

Input 1image Ground Truth Our Result
Slides by Efros



Labeling Results

Input 1image Ground Truth Our Result
Slides by Efros



Labeling Results

Input 1image Ground Truth Our Result
Slides by Efros



Labeling Results

I

Input 1image Ground Truth Our Result
Slides by Efros



Labeling Results

H' v
f,JH’ ‘,‘w

((((«/ W

Input 1image Ground Truth Our Result
Slides by Efros



Labeling Results

AUG 182001 -

© Tony Northrup; www.northrup.org

Input 1image Ground Truth Our Result
Slides by Efros



Some Failures

Input 1image Ground Truth Our Result
Slides by Efros



Catastrophic Failures

Input 1image Ground Truth Our Result
Slides by Efros



Main Class: 88.1%
Subclasses: 61.5%

Average Accuracy

Main Class
Support  Vertical  Sky
Support 0.84 0.15 0.00
Vertical 0.09 0.90 0.02
Sky 0.00 0.10 0.90
Vertical Subclass
Left Center Right Porous Solid
Left 0.37 0.32 0.08 0.09 0.13
Center 0.05  0.56 0.12 0.16 0.12
Right 002 028 0.47 0.13 0.10
Porous 0.01  0.07 0.03 0.84 0.06
Solid 0.04 020 0.04 0.17 0.55




Better Spatial Support Useful?

Method Main | Sub
Pixels 82.1 | 44.3
Superpixels 86.2 | 53.5
Single Segmentation 86.2 | 56.6
Multiple Segmentations 88.1 | 61.5
Ground Truth Segmentation | 95.1 | 71.5

Table 4. Average accuracy (percent of correctly labeled image pix-
els) of methods using varying levels of spatial support.

Slides by Efros



Do all features help?

Importance of Different Feature Types

Color  Texture Loc/Shape  Geometry
Main | 6% 2% 16% 2%
Sub 6% 2% 8% 7%

Drop in accuracy due to remove of each type of feature

" AUG 18 2001

; S 3
] %
ST L
N a3 b Tt U5
: 3 : X £ % : S -
- » %

(c) Loc Only (d) No Color (e) No Texture  (f) No Loc/Shp  égadNb(iefds




t?

How robust is

Input Labels Input Labels Input Labels
Figure 20, Results on pamtings of outdoor scenes, Although the system is trammed only on real unages, it can often generalize to very
different settings

Input Ground Truth Labels Input Ground Truth Labels
Figure 21. Results on indoor scenes, Slides by Efros



Automatic Photo Popup

Labeled Image Fit Ground-Vertical Form Segments into Cut and Fold
Boundary with Line Polylines
Segments

Final Pop-up Model

[Hoiem Efros Hebert 2005]



Surface Estimation

Vertical Sky

V-Left V-Center V-Right V-Porous V-Solid

Object
Surface?

[Hoiem, Efros, Hebert ICCV 2005]

Support?
Slide by Derek Hoiem




Object Support

Slide by Derek Hoiem



Image

3d Scene Context

Image
Eori%_on Plane Camera
osition ‘

Object Image
Height

Camera
Height

Object World
Height

Object World
Height

World

Hoiem, Efros, Hebert ICCV 2005



What does surface and viewpoint say
about objects?

P(surfaces)

§°‘f ~ = T eay ;&."' i : ‘%;m I;Ilss_.» o
Slide by D. Hoilzggbject) P(object | surfaces) P(object | viewpoint)



What does surface and viewpoint say
about objects?

L. P(object | surfaces, viewpoint)
P(object) . Slide by Derek Hoiem



Single view metrology
Criminisi, et al. 1999

plane vanishing line camera centre

dir.

®
\ ref.
image plane }(\I;%Iillilsthing

N

reference plane

Need to recover:

M * Ground plane
T * Reference height
N * Horizon line
B * Where objects contact the

ground
See also the book by Hartley and Zisserman, 2004



Recovering spatial layout of indoor
rooms from a single image

- Recover approximate camera calibration and orientation from three orthogonal directions.
- Assume a room can be modeled as a single 3D box.

Overview

D

Varsha Hedau, Derek Hoiem, David Forsyth, “Recovering the Spatial Layout of Cluttered
Rooms,” in the Twelfth IEEE International Conference on Computer Vision, 2009.



Modeling outdoor scenes as blocks

- Model an outdoor scene from a single image as a collection of blocks (cuboids)
- Include physical constraints (support, stability, materials)

g%
n =
T

Input Images

Toy Blocks World Rendering

Gupta et al., “Blocks world revisited: image understanding using qualitative geometry and
machanics”, ECCV 2010



